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MATHEMATICAL THEORY OF SINGLE CHANNEL SYSTEMS.
ANALYTICITY OF SCATTERING MATRIX
BY
L M. SIGAL

ABSTRACT. We show that the S-matrix of a quantum many-body, short-range,
single-channel system has a meromorphic continuation whose poles occur at mast
at the dilation-analytic resonances [28], [24] and at the eigenvalues of the Hamilto-
nian. In passing, we prove the main spectral theorem {on location of the essential
spectrum) and asymptotic completeness for the mentioned class of systems.

Introduction. In this paper we study the analytic properties of the scattering
matrix for many-body, short-range, single-channel systems. Our main theorem
asserts that the scattering matrix has a meromorphic continuation in the energy
parameter into a certain sector of the complex plane. The poles of this continuation
accur only at eigenvalues of the dilation analytic family H({) associated with the
Hamiltonian H. By Balslev’s and Combes’ theorem the latter eigenvalues lead to
the poles of the meromorphic continuation of the matrix elements (¢, (H-z)"'F)
on the dilation analytic vectors across the continuous spectrum into the
second Riemann sheet. Moreover, if the potentials are nice enough so that the
negative axis belongs to the meromorphic domain, then the poles on this axis occur
at most at the negative eigenvalues of H.

To prepare the ground for the proof of our main theorem we prove most of the
theorems of the spectral and scattering theory for single-channel systems. These
results are not new, but some of the theorems (e.g. the asymptotic completeness)
contain improvements over the previous results.

Most of the work is done in an abstract setting and only at the end we check the
assumptions of the abstract theorems. This allows us to treat the problems of
different character separately. The abstract approach has forced us to introduce the
notions of the abstract Schrodinger operator and abstract many-body system. We
hope they will be useful in extending our methods to other systems.

The paper is self-contained; all necessary definitions are given in the text. §§I-V
contain the preparatory abstract results; the main theorem is formulated and
proved in §VI, where all relevant definitions and preliminary results for N-body
systems are also given. §§VII and VIII deal with the estimates of certain operators
built out of the potentials and the free resolvent. These estimates are needed in the
theorem of §VI on the behavior of (H — z)~! near the continuous spectrum. In
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410 I. M. SIGAL

§IX we prove the existence of the meromorphic continuations for the wave
operators. Generalizations, different approaches and literature are discussed in §X.
The appendix contains some abstract results about the regularizers needed in the
main text.
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Hunziker, to whom he is very grateful. The author is also very grateful to B. Simon
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inaccuracy in the preprint, and to a referee for carefully reading the manuscript
and making many useful remarks which led to improvement of the paper.

L. Abstract Schridinger operators spectral theory. Let T be a selfadjoint operator
on a Hilbert space % and @ a finite lattice. Let, furthermore, {¥,, a € @} be the
collection of T-bounded operators with the relative bounds 0. The following
operators are well defined on D(T):

H=T+2 V, and H, =T+ 2 V,
bBCa
If ¥, are symmetric then H and H, are selfadjoint. We call H an abstract
Schrodinger operator (ASQ). Set
G = Max{a,a € &} and a,;, = min{a,a €&}.
In this paper b C a stands for the strict inclusion only.
Spectral theory of ASO.

PrROPOSITION L.1. Assume V, exp(:'Tt)u—s) 0 on some dense set from D(T). Then
ao(Ty C a(H).

ProoF. Let A € o(T) and {u,} € D(T) be such that [|u,|| = | and [(A — T)u,||
—0(n —0). We have
A — H)eTw,|| <A — Ty + [ (H - T)eTu,|| -0
as n — oo and |{| — oo, which implies that A € a(H). O

TueoReM L2. Let the following condition be satisfied:
(A M gaa [VAT = 2)" 1] is compact for some (and therefore for all) z € p(T)
and any collection of &’s, U a = a,,. Then

0. (H)YC U o(H,).

AFBypan,

A proof of the theorem will be given in §IL
Condition (A) is discussed in the following:

LemMA 1.3, Let there exist bounded operators X, a € @, n € N™, on I such that
fora,b € @ (Ry(z) =(T — 2)™\):

@) V, X Ri) — 0 (n — o0);

(i) [X7, T1RLH) —> 0 (n — w0);

(ii) [ X7, V,JRo(i) 0 (1 = 0);
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(iv) Hc(fi") V,Ro(i) is compact for any n € N* whenever the ¢’s satisfy U ¢ =
Ao Here X7 =1 - X7,

Then TI[V, R, is compact for any z € N p(T) and any collections of a’s satisfying
Ja=a,,.

PrOOF. We claim that [[X™ TI[ ¥, R;] converge in norm to [I[V,Ry] as n — co.
Then since the former operators are compact for {Ja = ap,, in virtue of (iv), the
compactness of the latter will follow from the theorem on closedness of the set of
compact operator in the uniform topology. The convergence is proved in two steps.
First we note that because of (i), [I[¥, X"R,} converge in norm to JI[V,R,] as
n — o0. On the second step we commute the X*'s in the former operator to the left
in the position in front of the first R, on the left. Because of the equation

[ X2, Ry] = Ro[ X2 T] R,
and conditions (ii) and (iii), the terms containing at least one commutator [ X7, R
or [X7, ¥,] vanish in norm as n — o0. Therefore the difference between the

operators [V, X7Ry} and TIXI][V,Ry| goes in norm to zero as n — co. This
completes the proof. []

CoROLLARY 14, If an ASO H satisfies the conditions of Lemma 1.3, then
o) C U, o(H,)

ReMarK [.5. Theorem L2 can be slightly generalized in order to fit our later
considerations. Namely, condition (A) can be replaced by the requirement that
[I[B,Ry4,, ) are compact for some factorization V, = A, B,. The factorization
A, = 1 and therefore B, = V, gives Theorem L.1. The factorization we use in the
scattering theory is 4, = |V,|'/%

IL Regularizers for H — z. Let I be a Banach space and T an operator on 3
with a domain D(T). We call a bounded operator F from 0 to D(T) a (right,
exact) regularizer for T iff (i) F is invertible and (ii) TF — 1, raised to some power,
is compact on ¥. In this section we construct regularizers for the family H —~ z
and use them to study the spectral properties of H.

DeriNtTioN IL1. Let & be a finite lattice and {H,, a € @}, the collection of
operators on K with 0 (Hy) € D(H,), where Hy = H, . We define by induction
on a € @ the following families of bounded operators on IC:

(IL1) A(2) = (H, - )Hy - )7 11 4,7,
bCa
where the arrow over the top of the product sign indicates the following order of
the A ~Vs: if A ! stands on the right of 4; ' then ¢ ¢ 4.
We set the family of bounded operators from 3C to D(H,):

@2 EG&) = (-2 T 4

(IL.1) and (I1.2) imply that
(IL.3) (H, — 2)F(2) = A,(2).



412 L. M. SIGAL

The obvious properties of A, and F, are listed for reference convenience in the
following two lemmas:

Lemma IL2. For any a € & and all z € N ,_, p(H,), the operator F,(z) is
bounded from 3 to D(H,) and has the bounded inverse (from D(Hy) to ). Both
operators are analytic in z € N, _, p(H,).

Lemma IL3. For any a € @ and all z € N, p(H,), the operator Az is
bounded on ). and is analytic in z € N ,_, p(H,). It has the bounded inverse for
z € My, P(Hy) and the following statements are equivalent:

(1) 0 € 6(A,(z)) and ¢ € Ker A,(z);

(2) z € a,(H,) and F(z)p € Ker(H — 2).

In the case when the H,’s are constructed as in {I.1), the operators F,(z) and
A,(2) have an additional structure:

Lemma L4, The operators F,(z) and A,(z) — 1 are finite, linear combinations of
moromials of the form

(4  RII[V.R], ebca ad II[V,R], bca Uc=aq
respectively. Here Ry(z) = (Hy — 2) ' (Hy = T).
The statement can easily be derived by induction. The details can be found in

[17]. Note here only that since ¥, have 7-bounded O, they are H,-bounded as well.
Therefore monomials of form (I1.4) are bounded and analytic in z € (M p(H,).

Lemma IL3. For z with dist(z, o(T)) sufficiently large, A (z) — 1 is a norm
convergent series of a-connected graphs [1 (VAT —2)7"].

Proor. The statement follows from Lemma II1.4 and the fact that for
dist(z, o(T)) large enough the following series are norm convergent:

e=g

a1s) Ry(z) = (T - 2)"" i S wr-a7"

Indeed, |A(T — z)7!|| — 0 as dist(z, o(T)) — o for any T-bounded operator A.
O

In what follows we drop the subindex a whenever a = a,,,.

Proor oF THEOREM 1.2, We begin with

LeMMA 11.6. The operator A(z) — 1 is compact on K for all z € M o, MH,):

ProOF. The statement follows from Lemmas [1.3 and II.5, condition (A) and the
theorem about analytic families of compact operators (see e.g. [15]). [

Lemmas I1.2 and I1.6 imply (see Theorem A.1) the statement of the theorem. [

REMARK I1.7. Lemmas IL.2, IL3 and IL6é show that F(z) is a regularizer for
H— 2.

III. Review of the Hilbert space scattering theory. In this section H and T are
selfadjoint operators on a Hilbert space I(, E, is the projection on the subspace of
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the point spectrum, a (H), of H, and E(A) is the spectral projection for H. The
strong limits
(I11.1) W* = ts-li+m eHlg 1T,
whenever they exist on the absolute continuous subspace of 7, are called the wave
operators for the pair (H, T). In order not to carry an extra symbol we assume
henceforth that T is absolute continuous. The scattering operator is defined on X
by

S=Wwr*w-.
It commutes with T, [ S, T] = 0, and therefore is decomposable on a representation
of K as a fiber direct integral [© 9(, dA with respect to T: IISTI* = [® §(A) 4\,
Here S(A), called the scattering matrix, is an operator on J(,, and IT is a unitary
operator from I to f® I, dA.

The definition of W™ implies (1) W™ are isometric, W**W™* =1, (2) W™ are
intertwining operators for (H, T), HW* = W*T, and (3) R(W ™) c R(1 — E))
or E,W* = 0. Property (2) yields that W*W “* are projections from I into
RAW=). If R(W*)= R(W "), then S is unitary. We call W™= complete iff
WEW=*=1-E,.

If we replace the ¢-limit in the definition of W™ by the weaker Abel-limit, then
the resulting operators are called stationary wave operators. They may exist even if
W * do not. However, if W* do exist, then the stationary wave operators exist and
equal W ™. It is convenient to define

Z* = s-Abel-lim e™e ~#,
= o0
If W=* and Z= exist then W=* = Z*. The (stationary) wave operators and
scattering matrix can be expressed in terms of the resolvents R(z) = (H — z)~!
and Ry(z) = (T — z)~ ! (see [14], [19]), e.8.,

(IL2)  Z* =slimZ®  z®= % f Ry(A — ie)R(A + ie) dA.

In the stationary case, where the integration over the spectral parameter is
involved, it is useful to consider a local version of (IIL.2). We define for any Borel
ACR:

(IL3)  Z*(@) = sbim Z29@),  Z9) =§ f Ry(A — ie)R(A + ie) dA.

These operators are the central objects in the stationary theory and W™ are
recovered through W *(A) = Z *(A)* by (see [19])

Lemma IIL1. Ler Z *(A) exist for all A's from a directed sequence ¢ = {A} of
Borel subsets of R and satisfy Z=(AVZ*(A') = EQANA) for any A, A € ¢.
Assume that the Lebesgue measure of R\ U ., A is zero. Then s-lim,_, 5 Z*(4)
and Z* exist and are equal.

Note that if W= are defined in a stationary way, then their isometry does not
follow from their existence and has to be proven using additional information
about A and T.
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Let

m=[®ma,  &H-N= % Im RO\ + ie),  T(z) = V — VR(z)V.

TueOREM II1.2. Let there exist a Banach space X with X 1 K dense in X such
that: (1) for any compact interval A C R\ a,(HY), (T — Nu(\) can be extended to a
Jamily of uniformly (in ¢ € R*) bounded operators from LYA, X) to LA, X ", where
X' is dual to X; (i) (H — T)R(- +ie)f € L¥A, X) and has strong limits in LXA, X)
as e — £ 0 for any f from a dense set Y C JC. Then (a) o, . (H) = &, (b) Z*(A)
exist (as strong limits), (c) W =(A)Z =(A") = E(A N &)

Prookr. See Appendix II. [

CoOROLLARY IIL3. Under the conditions of Theorem 111.2 the global wave operators
exist and Z* = s-lim, o Z*(A).

TueoreM I11.4. Let there exist a Banach space X with X () dense in X and
such that: (o) 8T — A} can be extended to a family of operators from X to its dual
X', uniformly bounded in e ER” and X ER; (8) (H — T)R(2), z € C\R, can be
extended to a family of bounded operators on X which have strong boundary values on
R\ o, (H).

Then T, = s-lim, ;o IL, TQA + ie)I1} exists as a measurable B(¥,)-valued function
and S(A) = 1, + 2«iT,.

If, in addition, §,(T — X} is norm continuous as el0, then T, is strongly continuous
in A € R\ g, (H).

ProoOF. We begin with

Lemma IILS. For some Banach space X with X ( 3 dense in X, let (T — A) be
bounded from X fto X' uniformly in ¢ ER™ and A € R. Then I1,, as a family of
aperators from X to ‘X, , is uniformly bounded in X € R. If, in addition, 8(T — A) has
weakly continuous boundary values as €|0, then (|1 u|lo, is continuous in .

Proor. First of all for any u € %, |[Mully, € L'R). We can write
AT = Nu, u) = | 8(s ~ N)|[TLu||3 ds, a Poisson integral of ||ILu|3.. On the
ather hand, since {8,(T — A)u, #> is harmonic, positive, and uniformly bounded in
A ER and e €R™, it is a Poisson integral of a uniformly bounded function, to
which it converges as £|0 in the »-weak topology of 1. [22]. The proof now follows
from the uniqueness of the Poisson integral.

LemMa II1.6. If W= exist then

(13) 8~ L= lim 2 f 8T — W *VB(T — Ay d\ (strongly)
PrROOF. Using the definition of S and W= = lim,_,,, W%,

W =1 — f RO\ + ie) VS,(Hy — A) dA,
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we obtain
S§-1= ljfon Wrs(wi—9 — ),

substituting into here the expression for W and taking into account the intertwin-
ing property of W**, one finds (II1.3). O

Now we proceed to the proof of Theorem IIL4. The properties of T, follow
directly from Lemma IIL5 and conditions (a) and ( 8). To obtain S(A) =1, + T,
we replace W** in (IIL3) by 1 — lim,, [ 87 — v)VR(v + i¢') dv, take the
diagonal ¢ = e in the limit, apply to the obtained equation II, from the left and
I} from the right and integrate out the variable » (to justify this integration one
uses conditions (e} and (8)). [

Examples of the spaces X.

Deemarion IIL7 (T. Karo). A closed operator 4 is relatively smooth with
respect to a selfadjoint operator T (or T-smooth) iff D{T) C D{A) and

fm AR * ie)ul> dh < M||u|?, M < o,
forany u € D(T)yand ¢ > 0.

Denote by A9 the completion of the range of A in the norm || xf| 4 =
inf, 4., llh]l« Note that 49 a IC/Ker 4. In this notation, 3 4,3 = (B 4,30),
where j(Bx) = Zx,.

LemmMa 1118, Let operators A; on I be T-smooth and define X = SA} 3. Then
X 1 K is dense in X and §(T — N) is bounded from X to X' uniformly in ¢ € R*
and A € R. If, in addition, A8(T — N A} is weakly continuous on I as £|0 then so
is8(T~MNonXtX

Proor. X n K dense in X by the definition of X as the completion of £ R(A,) in
the norm of X. Recall now that 4, is T-smooth if and only if A 8(T — A)A* is
uniformly in e € R* and A € R bounded on (. This implies that

[484T — NAX* <[|4,8(T — M)A | 48LT ~ N4}

is uniformly bounded on I for any { and j. The latter implies the desired
statement. [

Remark IIL.9. Another proof of the lemma would be to use an equivalent Kato’s
definition of the relative smooth operator, which implies readily that 24, is
T-smooth. Then one uses the equivalence of the norms in ¥ 4,3 and (T A4))7C.

IV. Scattering theory for abstract Schrivdinger operators. In this section we discuss
the stationary scattering theory for abstract Schrodinger operators. As a basis for
the discussion we take an abstract Hilbert space scattering theory outlined in §III.
Below H = T + 2V, is an abstract Schrodinger operator and W *(A) are the local
wave operators for (H, T). For the other notation see §§I and III. We assume that
6. (H) C R, which holds for single-channel H.
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Turorem IV.1. Assume that |V,|'/? are T-smooth and |V, |"/*R(z)|V;|'/?, for any
a, be &, is a family of bounded operators on I strongly continuous as z —
R\ o (H). Then (1) o, (H) = &, (2} Z=(A) exist for all compact A C R\ a,(H) as
strong limits, (3) WH(A)Z*(A") = E(A N X)), and (4) T, = lim, o I, T\ + ie)IT}
exists as a measurable B(3(, )-valued function uniformly bounded in A € R and
Sy =1, + 1.

ProoF. The statement follows from Theorems II1.2 and IIL.4 with the Banach
space

(IV.1) Y=XxX=3(V|'"*%
and Lemma IIL.5. [
ReMark IV.2, One can show also that under the conditions of Theorem IV.1,
W *(A) exist as strong (stationary) limits and satisfy Z *(AYW 5(4") = E4A n A).
Qur next task is to reduce the condition of Theorem IV.1 on R(z) to restrictions

on the basic operators T and V,. The following statement is the first step in this
program. Define :

ViI/2=(sign VYL H(D) =T+ 2 2V Rz )= (H(g)—2)",

bca

G= (g a,(H(g)=Dloralla #a,,}.

THEOREM IV.3. Let the following conditions be satisfied:

(i} For all b, ¢ and a, with b, ¢ C a if a # a,,,, the operators |V,|'?R (2, g)|V,|'/?
are bounded on I, analytic in z € C\o(T) and g € G and strongly continuous as
z = * Quniformly ing € G.

(i) There is an integer s > O such that the product of s operator-functions of the
form

L4
'];Il [ Vb}l/zRD(ZN Vb!+l11/2]’ U b.i = dpax

is compact on Y together with its boundary values on o T).

(iil) (H(g) — AN =0, ¢ € R\ + iOZ|V,|'2H = either y =0 or A E
a,(H(g)).

Then for any b, c € @ and g € G, |V,|'?R(z, g)|V.|'/* are bounded on K,
analytic in z € C\Na(T) U o,(H(g)) and g € G, strongly continuous as z -
R\ o,(H(g)) uniformly in g € G.

ReMaRrk, For the sake of explicitness we write condition (iii} here and analogous
conditions below in a somewhat formal way. To make them precise one should
consider (H — A)Ry(A £ i0) = 1 + SV, R\ + i0) on Z|V,|'/*K instead of H — A
on Ry £ i0)|V,|'/23C. The former family is well defined for all A (and strongly
continuous in A) by virtue of (i).

Proor. Consider the operator I(z, g) = A(z, g} — 1. Writng I(z, g) =
3, [V]'2LLz, g) and defining L, = L\V,|'/*and F, = V;/*F|V,['/%, we obtain
(IV.2) VIRV + S vIPRV) AL, = F

f

R
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The operators L, and F,, are linear combinations of monomials of the form
&

—

(1IV.3) -I-Il (VAR VL '] 8 e

hi = ¢ fsr = d with the conditions U f, = a,,, and f, # a_, , respectively.

We transform (IV.3) so that each factor satisfies f, f,,, C b, if @ #*a,,,,. To this
end we use the equations R, = F, — R,L, and R, = F; — I, R,, where F)(z) =
Fy(2)* and L;(2) = L,(2)*, to surround each R, in (IV.3) with ¥}/, next on its left,
and |V,|'/%, next on its right, satisfying f, g C b.

PROPOSITION IV.4. The operators L (z,8) and F(z, g) are bounded on X,
analytic in 2 € C\No(T) and g € G and strongly continuous in z, uniformly in
g € G, as z approaches a(T).

Proor. The statement follows from assumption (i) using the transformation
described in the paragraph preceding the proposition. [

PROPOSITION IV 5. The matrix [L,(z, 2)Y, g € G, is compact for all z € C\R up
to the real axis,

PROOF. Since the matrix is analytic in g € G, it suffices to prove the proposition
for a neighborhood of g = 0. It follows from condition (i) that the series (I1.5) with
V. — gV, converges in the norm for all z € C\ R up to the real axis, as long as g
is confined to a neighborhood of 0. Substituting such series for R’ in (IV.3) we
conclude that L,(z, g) for g in a neighborhood ¥ of zero is a norm convergent
series of terms of the form

g« Il [v72RlY,, |2
U fi= ey
Then the matrix [L(z)f for g € V is a norm convergent series of terms, each of
which is, by virtue of condition (ii), a compact operator on @K forall z € C\R
up to the real axis. By the theorem on the closedness of the set of compact
operators in the uniform topology, [L,(z, g)f is compact as well (for g € V). [J

PROPOSITION IV.6. The following two statements are equivalent:
(@) =1 € o([L,(z, g))).
(B) z € a,(H(g)).

PrOOF. If f+ [L (2, 2)1f =0, f= B f, € @ K, then x = I|V,|'/%, satisfies
A(z, g)x = 0 and, therefore, by virtue of (IL3), p = F(z, g)x obeys formally (in the
weak sense) (H — z)p = 0.1f z & o(T) = U o(H,(g)), then, obviously, ¢ € D(T)
= D(H(g)) and therefore g is an cigenvector of H(g) corresponding to the
eigenvalue z. Otherwise we use condition (3). [

Propositions IV.4-IV.6 imply the statement of Theorem IV.3. []

There are two ways to prove condition (iii), starting from assumptions on T and
V, (the argument g is suppressed in what follows). The first is based on the
observation [19] that (i) and (ii) imply, for selfadjoint A, that lim, 8T — Mg, o)
=0 for ¢ € RyA + iOZ|V,|'?H, a weak solution of (H —A)g = 0. Then by
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strengthening somewhat conditions (i) and (ii) on¢ can obtain a necessary smooth-
ness for ¢ to guarantee that ¢ € D(H).

In the second way condition (iii) is replaced by the following two conditions:

(iii;) There is a unitary representation p—» Ufp) of R* on % such that
Up)TU(p)™" and U(p)V,U(p)~", a € &, have analytic continuations 7({) and
V() from R to & € C, & n R* # &, the former on D(T) and the latter as an
operator from D{T) to .

(i) (H-Ng=0, A€(T)No(TQ)), Im{#0, ¢ € RIA + )2 V,H =
cither p = O or A € g,(H).

ReMark IV.7. The advantage of new conditions (iii,) and (iii,} lies in the fact
that the set o(T) N o(7(})), Im ¢ 5 0, usually is small and (iii;) can be easily
proven.

ExampLE IV.8. Let T be unitary equivalent to a multiplication operator T of the
form

If= @ M), f= ®f € X =BLYE, »), K),
where E, € R and ‘31’1 are Hilbert spaces, and let U be the corresponding unitary
operator from I to K. We can define U(p) as

UU(p)f = Pl/z[ @ (Uf) oA — E) + E‘)]
Then o(T) N o(T($)) = { £} for Im { 5 Q.

ProposITion IV.9. (iii)) and (iiiy) imply (iii).
The proof follows readily from the following

ProrosiTiON IV.I0, Let A € o(T)\N o(T({)), Im{ # 0, and ¢ €
RoA = i)Z|V,|"*H be a weak solution to (H — Nyg = 0. Then either ¢ =0 or
A € g, (H).

Proor. The following two conditions are equivalent by the definition of L _, (see
the proof of Proposition [V.6):

(H — A)p = 0 has a nontrivial weak solution from RyA + i0)Z| V|29 and

-1 € oL, 4\ + i0))).

We define L_(z, {) for H({) = T(}) + ZV (). L., is analytic in { as long as
z & a,(H({)). Therefore by Lemma AL3,

1€ a([L A *i0)])o~1 € a([ LN\ O Im ¢ # Q.
Furthermore, as in Proposition IV.6,

1€ o[ LM §)]) @A € a(H(E)) for A & a (H(S)).

The following lemma, which is a simple extension of one of the Balslev-Combes
theorems [15] (the proof is exactly the same), completes the chain.

LemMa IV.11. Let H({) be as defined above. Then
a(H() NR=g(H)NR
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Proor. It suffices to prove that o (H({)) N R C a,(H). The other direction
follows if one exchanges roles of H and H({) (say, define H ., = H({)). Let F and
¢ be U{p)-analytic vectors. We have

(b, R(2)F) = {¢({), R(z, §)F({)),
where ¢({) is an analytic continuation of [/(p)p. This implies the ()-inclusion.
O
The proof of Propositions IV.10 and IV.9 is completed. []

VY. Abstract many-body systems. The task of this section is to derive the properties
of H required in Theorem IV.1 essentially from restrictions on the basic operators
T and V,, a € &. In the previous section we have reduced the desired statement
about A to restrictions on R, a € &, and on T and V,, a € @. To continue this
process so as to end up with conditions only on T and V,, we have to give some
additional structure to the space 3C and operator H.

Dermvirion V.1. Let & be a finite lattice. With each pair (b, a) € & X @ such
that b C a, we associate a Hilbert space 3G and a positive, absolutely continuous
operator T7 on J(;. We denote I, = 3G and T, = T; if a = a,,,, and 3¢ = 3G
and T° = T2 if b = a,;, (we omit an index if it is a,,, or a,,,). Moreover, to every
a we assign an operator ¥ on H(* and denote V7 = ¥ ® 1. We call a collection
(3G, T4, Vo, b Cae @) (or simply {77, V7)) an abstract many-body system
(AMBS) if and only if the following conditions are satisfied:

W= @I forcChCa,

v.1)
T°=T'Q12+12R@ 77 forcChCa

and

(B) for any 4, ¥* is T%-compact.

DermNiTION V.2, The operator H = T + X ¥, defined on I(T) by virtue of (B),
is called the Schrédinger operator for {77, ¥}, If V* are symmetric, then H is
selfadjoint.

The following operators play an important role in the many-body problem:

H=T+ > V, and H =T+ 3 V£
bga ECa

Note that
(V.2) H=H®Q®L+1"®T,

Spectral theory. For notational convenience we set a,(H?) = (0} for a = ag,.

PROPOSITION V.3. Let (T, V*) be an AMBS. Then o(T*) C a(H") for each
a€e@.

PRrOOF. Since V* is T-compact, V’exp(— iT?%) >0 on D(T?) to I as || - oo,
and therefore Vb“exp(—iT"t)—s)O on D(T%) to J* as |f] »o00 for all b C a.
Applying Proposition I.1 we complete the proof. [
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THEOREM V 4. Suppose an abstract many-body system { Tg, V°} satisfies condition
(A) of Thearem 1.2 for each H®, a € Q. Then

oT*) C o (H?) € U [o(H) + o(TP)],

bCa
where the union extends only over the b’s with a,(H by = &,

Prookr. The inclusion a(T?) C a, (H¢) follows from Proposition V.3. The other
direction follows from Theorem L2, applied to each H®, and (V.2). [

ReEMARK V.5. If we assume that for each eigenvalue A € a,(H %) with the
projection Py and for each ¢ € &, the operator VA(P? ® 1%), whered = b U ¢, is
(® ® Ty)-compact, then U,__[6,(H") + o(T{)] C 6, (H). The proof of this
fact goes exactly as that of Proposition V.3. Combining this statement with
Theorem V.4 we obtain that under the joint conditions,

o) = U [a,(H*) + a(T})].

bca
COROLLARY V.6. If a{ H®) = D for all a € § \ {a,,,}, then a (H") = a(T?).

DEFINITION V.7, An abstract many-body system with a,(H*) = for all 2 €
& \ {ag,,} will be called the abstract, single channel, many-body system.

We say that an abstract many-body system, { 7,7, ¥}, is strongly single channel
iff {T, g,V°} are single channel for all { g,} in a neighborhood of one (roughly
speaking, if it temains single channel under smalt perturbations).

Resolvent on the continuous spectrum and scattering theory. Denote by G¢ a
connected subset of {g, aP(H”(g)) =(J ¥h C a), containing the origin g = 0.
Recall that H%(g)=T°+ =, ., g V2. Let Ei(g) be the projection onto the
subspace of the point spectrum of H(g).

THROREM V.8. Assume that an abstract, many-body system {1}, 1% ) satisfies for
alla € &

(i) For all ¢, d C a, the operators |V2|YH (T — 2)"|V3|'/? are bounded on H*
and strongly continuous as Im z —» + 0.

(ii) There is an integer s > O such that the product of s operators of the form

k
k+1

L [t -7 v ] U b=
i=1 1

is compact together with its boundary values on a(T?).

Moreover, assume

(i) HZ)p = Ap, ¢ € Ry + i0)Z, ., |VF|'*H* = either 9 =0 or A E
o,(H*(8)).

Then | V2|V 2R4(z, )| V5|2 for each ¢, d C a is a family of bounded operators on
I, analytic in 2 € C\[a(T) U o,(H(g))| and g € G strongly continuous in z
uniformly in g € G° up to the boundary o(T)\ 6,(H(g)).

Proor. We conduct the proof by induction on a € &. For ¢ = ¢, we do not
have H¢. Let the statement be true for all b, b C «, and prove it for . In the sequel
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we suppress the superindex «. In order to apply Theorem IV.3 to H we have to
obtain the required information about Ry(z), & C a, on JC. To this end we use

LemMa V9. The aperators |V,|' 2Ry (2, g)| V"% ¢, d C b C a, considered on I,
are bounded analytic in z € C\a(T) and g € G and strongly continuous in z €
C \R uniformly in g € G up to the real axis.

PrROOF. Let S, = 1* @ s, where 5, is a unitary operator from ¥, to the direct

integral {® I, 4\ with respect to T,,: (s, T)A) = A(s,#)(A). Then ( g is omitted)
S| V| 2R (2)| Vo P = | V| 2R (2 — M) V' 3(S,u)(A).

This equation together with the induction statement about |V2?|'/2R%(z)|V2|'/2
implies the lemma. [

This completes the proof of Theorem V.8. ]

RemArk V.10. For a discussion of condition (iif) see the part of §IV following the
proof of Proposition IV.6.

Combining Theorems 1V.1 and V.8 we obtain

TaeoREM V.11. Assume that a single channel, AMBS saiisfies the conditions of
Theorem NV 8. Then the statement of Theorem IV.1 holds for H=T + X V.

Remark V.12, If we consider instead of H the fapuly H( g), then the operators
Z*, W*, § and S(A) are analytic in g € G (definitions of these operators for
complex g or nonsymmetric V%5 are given in §IX).

VL. Single channel many-body systems. In this section we describe spectral
properties of the Schrodinger operators for many-body systems and establish
fundamental properties of the wave operators and scattering matrices associated
with these operators. We begin with definitions.

Hamiltonian. Consider a system of N particles in R” with masses m; and
interacting via pair potentials V,(x"). Here / labels pairs of indices and x’ = x;, — X;
for I = (). The configuration space of the system in the center-of-mass (CM)
frame is defined as R = {x € R*, ¥ mx; = 0} with the inner product (x, ) =
3 mx, - . Denote by ¥/ and ¥, the multiplication operators on L*(R*) and LXR)
by the (real-valued) functions ¥,(y) and V{x'), respectively.

We assume that V' are A-compact, i.e. compact as operators from the Sobolev
space H,(R*) to LX(R”). Then the operator

H=Hy+ Y V,  Hy=—4(Laplacian on L}(R))

is defined on L% R) and is selfadjoint there.

Partitions. Let a = {C;} be a decompostion of the set {1,..., N} into non-
empty, disjoint subsets C,, called clusters. Denote by & the set of all such
de sompositions. @ can be given the structure of a lattice; namely, if b is a partition
obtained by breaking up certain subsystems of @, write b C a. The smallest
partition containing two partitions ¢ and & will be denoted by a U b, 1e,a U b =
sup(4, b). The largest partition contained in both a and b will be denoted by
an b:an b =inf(a, b).
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A pair [ will be identified with the decomposition on N — 1 clusters, one of
which is the pair [ itself and the others are free particles, Therefore, in the N-body
case H, = H,+ 2,., V}

Many-body structure. The spaces 3G are constructed as follows. Define the
configuration space of a system of N particles with the centers-of-mass of subsys-
tems C; € a fixed:

R® = {xER, > mjxj=0VC,-Ea];
Jjeq

and the configuration space of the relative motion of the centers-of-mass of the

clusters C; € a:

R, = {x € R, x; = x;if i and j belong to the same C, € a}.
Then R“1L R, and
R°®R, =R, ILYR%)® LYR,)=LXR).

Note that R* C R°and R, C R, for b C a, so we can define R = R“ G R* =R, ©
R,. Then R® @ R% = R% and H; = L*(RY) satisfies (V.1). Moreover, R, = R for
a=a_, and R = Riforb = a_;,.

The operator T on 3C; is defined as the selfadjoint extension of — 1A%, where A%,
is the Laplacian on R%. So (77, V') is 2 many-body system in the sense of Definition
V.1 it is single channel iff o (H*) = &, where H* =T + 2ca Vi on LY R%), for
all a % @y Amax. Moreover, it follows from Lemmas VI1.6a and VI.6b below
that a single channel, short range (ie, V, € L? N LYR), p > v > g) system Is
strongly single channel iff for any {, 'Y = 0 has no nontrivial non-L? solution in
(TH™Y V!|'72LYR") (notice that R' =R’ and T = — 1A on L%R*)). This is an
implicit condition on ¥’ which fails rarely (if ¥/ fails to satisfy the condition then
gV, 0 <|g,|< s, for some ¢ > 0, obeys it).

X-operators. Let

XeCc*(R), X(y)=0for|y|<1 and X(y)=lfor|y[>2.

We define the multiplication operators X! on L2(R') by the functions X(n~ 'x’) and
the operators X; = 1 ~ ¥}, approximations of identities on L*(R’). Therefore, since
VAT — 2)” " is compact, X:F/(T! — 2)7' - 0 (n - 0). Moreover, we compute

(7%, X1} = n 2l + n7'G) - 9/,

where 4, is the reduced mass for the pair /, F! is the multiplication operator by the
function (2) "(AX)(n ™ 'x’), and the ith component of G, is the multiplication
operator with p, YV, X)(n" 'x/). Therefore [T/, X!T' — 2) "' 50 as n » 0. We
define X = X! ® 1,. Then

II XM € CP(R).
Ur={1...n}

Thus X satisfy all requirements of Lemma 1.3.
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Potentials. Below we describe two classes of pair potentials which satisfy abstract
conditions of the previous sections, Proposition VI.1 is given without a proof and
Propositions V1.3 and V1.4 are proven in §§VII and VIII, respectively.

ProposiTioN VI.1. The potentials of the class LPR) + (L°®R")),, where p >
max(p/2, 2) if v+ 4 and p > 2 if v = 4, and subindex ¢ indicates that the L*-
component can be taken arbitrary small, are A-compact.

ProposITION VI.2. The potentials of the class IP N LYR), p > v > ¢, are
A-smooth,

Actually, a stronger statement holds for the class above:

PROPOSITION VL3, Let U and W be the multiplication operators by functions ¢(x")
and Y(x*), where @, y € LP N LYR*), p > v > g and { and s are arbitrary pairs of
indices. The family W(—A® — 2)~"U is bounded on L*(R®), analytic in z € C\R™,
has strong boundary values on R* and is bounded in norm as | W(— A" — 2)"'U|| <
const|| @[ o el ¥l 5 po- Moreover, if I (s # O, then the family is norm continu-
ous as Imz - = 0.

ProOPOSITION VI4. Let U, and W, be the multiplication operators by functions
@ (x) and Y(x'), respectively, where @, y € L? N LYR"), p>v>>q. Then a
product of three operator-functions C R* — B(LYR®)) of the form
MW, (—a—2)"'U,, ), Ul = a, has norm-continuous boundary values on R™.
These boundary values are compact.

The following class of potentials gives rise to single channel systems: V, can be
written as a sum of repulsive (ie. dV,/3|x'[<0 for x'+# @ [34), [15]) and
| x |72 + | x )~ L=(R*)-small Kato potentials. To demonstrate this we use the
results of R. Lavine [30], [31], [15] and a modified lorio-O’Carroll technique [9], [15):
if ¥,= ¥ + ¥ in the obvious notation, then it suffices to show that the operators
UR (A + i0)W, where U and W obey | F(x)|< C[x |71 + |x])™'/?7¢ and R (z2)
= (T + IV} — z)7!, are bounded on L*(R). The latter can be deduced [35] from
the results of R. Lavine [30], [31] {see also [15] and [32]).

On the other hand the results of {17] imply (see the remark at the beginning of
the proof of Theorem. V1.5) that an open neighborhood of the repulsive LX n L*-
potentials produces strongly single channel systems.

Another class of potentials furnishing single channel systems is described by
Simon [36] and Balslev [37] (see also {15]). These are dilation analytic potentials in
the strip |arg {| < /2, continuous in [arg {| < 7/2.

Dilation analyticity. Let U(p)f(x) = p &~ Yo~ 'x). Then U(p)TU(p) ™' = p*T
and V(p) = U(p)V,U(p)~" is the multiplication operator with V(p~'x’). A T-
bounded operator V; is said to be dilation analyticin § € C, § n R # D iff V(p),
considered as an operator from Hy(R') = D(T') to LX(R"), has analytic continua-
tion into ©. In this case the family H{(p) = L{p)HU(p) ' has an analytic continua-
tion. from R to & with the common domain D(T). Note also that if V; is dilation
analytic in @ it is dilation analytic in the sector 4 = {z € C, [arg z| < a}, where
o = sup(larg z[,z € O}
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Spectral properties of H. Applying the results of the previous subsections to each
operator H* = T* + X V{ and taking into account Remark V.5, we obtain that
o (H) = U [a,(H%) + o(Tf)] !
bCa
In particular, we have:

(1) For a single channel, N-body system, o, (H?) = o(T*) = R* .
(2) If H%({) is the dilation family of Schrodinger operators, defined as above,
then, applying the equation above to {"2H*({) = T° + E;QJ‘IVI“({),

(VL1) au(H($) = U [oH$)) + {R7]

bca
(the first Balslev-Combes theorem).
We mention also another Balslev-Combes theorem which we use below:
The isolated eigenvalues of H({) are locally independent of { or, more pre-
cisely, they are independent of { as long as they stay away from a, ( H({)).
A consequence of this fact is

0, (H($)) C Ay, + 24* for{ € A*, where A, = min a,( H?)

(V1.2)
if o,(H?) # P and A, = Ootherwiseand 4™ = 4 N C*.

In passing, we remark that the first Balslev-Combes theorem implies that
a, (H?) = Jforeacha € &.

In conclusion we mention the following fact {21]: In the case of a single channel
system with potentials V({) € LP n L%(R*),p > »/2 > g, each H*({) has only a
finite number of eigenvalues in any compact region of a neighborhood of R.

Scattering theory.

TarEOREM V1.5, Let H be the Hamiltonian of an N-body, strongly single channel
system with real, dilation analytic potentials V, such thar V{({) € L* n LYR),
p>v/2>q, for each { € A. Then for all | and s and § € A,
VREL DIV is an analytic in 2 @ U, [ HQ)) + R]
family of bounded operators on LM(R) with strong boundary values on R* if
Imz-Im{ > 0andon

R* H{C\ (§ 2 U e (HEN + E‘L”
[- Y S
if Imz-Im{ < 0. Moreover, z is allowed to approach R* with angles other than
7/, eg.z2=X+iel 26— +0 Inboth cases (2 = A + ie and z = X + iet ~?) the
convergence is uniform in § from any compact subset of
(Re z)_'[2A \[1, ) U o,,(H"(e‘_"‘“))]

aFd gy
for Imz Z 0.

Proor. We prove only the first statement. The second statement requires a
simple modification in Proposition VI.3. We will prove in fact a slightly weaker
statement which covers only those strongly single channel systems for which there

! Remember that we use the convention that a,( F*) = {0} for a = {(1}...(N)}.
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is a path in the complex { g,}-space joining { g = 1} with { g = 0} and such that
each of its points corresponds to a strongly single channel system (given a
many-body system {77, V') we associate with each point {g} the many-body
system (77, g V'}). To prove the general case one can use the method of
[17] which, instead of the analytic continuation in g, uses approximation of
(T® — z)R%z) by the operators on L¥R?) with smooth fast vanishing integral
kernels. We use the method below because of a certain ¢legance it possesses and
because a significant part of it can be formulated in an abstract way. In addition,
we conjecture that for any given L? N Lé-potential the set {(g;): X gV} is strongly
single channel} is simply complex connected and therefore contains a neighbor-
hood of (g, = 0).

It follows from Propositions V1.3 and VI.4 that conditions (i) and (ii) of Theorem
V.7 are obeyed for the operator { “2H({) = T + § ~*V({). To verify condition (iii)
we use Proposition IV.9. Since (iii,) is satisfied for dilation analytic potentials, and
since a(T) N a(T(¢)) = {0} for Im { # 0, we have to check only (iily) for one
point A = 0. This is done in the following two lemmas. For simplicity we consider
only the case » > 3.

LemMa VL.6a. Let VI € L? 1 LYR*), p > v/2 > q. Then for all internal points of
G'= {g: o,(H(8)) = &} the equation H ‘(g = 0 has no nontrivial solutions in
(TJ')— l| Vl|1/2L1(R.’).

PROOF. Let, an the contrary, H'(ghp = 0 with ¢ € (T)™'"WLHR') and ¢ # 0.
Then —g~!' € a(V(TH ™Y on |V!|'2LYR’). By the perturbation theory (we use
here the fact that VAT’ — A)~' is norm continuous as A10) for any sufficiently
small A < O there exists g’ such that —g' ' € a(V(T!' = X)) and g’ —> g as
A —0. The latter implies that X\ € o (H'(g")) for g as close to g as we wish.
However, this is impossible since g is an internal point of G'. []

Lemma VL6h. Let the conditions of Theorem V1.5 be satisfied. Then H®Y = 0,
¢ E(T*) 'S V|V/2LYR?), implies that either = 0 or G € o,(H?) for all a with
(N — #(a)) > 4. Here #(a) is the number of clusters in the partition a.

Proor. In the proof below we omit the superindex 4. Let ¢ €
T'S|V|2LX(R); then F(0) 'y € S|V)|'/*LYR). If, moreover,  is a solution to
Hy = 0, then ¢ = F(0)~ 'y is a solution to ¢ + L(0)¢ = 0. On the other hand, we
can show, as in [16], [19], that L(0) is defined and compact and TF(0) is bounded
on I?(R), 3 — & < p < 2. Therefore by an abstract result of [16], [19] all the
eigenfunctions of L) on I|V)|'2L¥R) belong also to LA(R), 3—e<p < 2.
Thus i = FO) € T~'L?(R). Hence by Sobolev’s potential theorem, ¢ € L(R).
Let now @ € C°(R) and () = 1 for |A| € 1. Then o(T)y € D(T). Furthermore,
since (1 — o(T)T " is bounded and maps IC into D(T), (I — «(THT ~'T¢ €
XT). (]

Now all three conditions of Theorem V.8 are verified for the operator { ~2H({).
In order to derive the statement of Theorem VL5 from that of Theorem V.8 we
make the following remarks:
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(a) The statement of Theorem V.8 is applicable strictly speaking only to the cdse
when { o (HU)NR=( for all a #a,,, ie to single channel systems,
However, the proof of the theorem goes through without a change if the last
condition fails, but we restrict the boundary values to the following part of the
positive semiaxis:

R* m{cx (;-1 U e (H() + ﬁ+)],
Q@ Fdpay
where the union extends only to the ¢’s with g,( H“({)) # &.

() If ¢ € RA £ i0)Z, , |VAO)|'/2LHR?) obeys HAS)p = {™Ay for ¢ € 47,
then yy = 0. If the same is true for { € 4=, then, if ¢ # 0, {2\ € g (H(e™™)).

Indeed, the fact that ¢ € RoA + i0)F,, |V(£)|'/2LY(R?) obeys H ()Y =
¢ 2\ implies by virtue of (IL.3) that ¢ = FY (A £ i0)¢2 &) 'y € |V ALARY)
satisfies ¢ + LA = i0)¢?, {)p = 0. The latter, by virtue of Lemma AlL2, implies
that, if ¢ # 0, then -1 € o(L*(AS, {e™™), ¥ > 0. Therefore, going backward and
using that M? € N, _, o(H,(§e*7)), X2 € a(H({e¥™)). The latter is impossible
for { € A=, since taking y = |arg {| we would get A{% € a,(H) (A{” & Rand H is
selfadjoint). For { € AT we find, taking y = a — [arg {|, that \{? € a,(H%e™ ).
This completes the proof of Theorem VLS. [

Before proceeding to the theorem on a structure of the S-matrix, we describe a
fiber direct integral with respect to 7. We define [® %, dA as LYRY, LYQ)), i.e.
K, = LX) Here 2 is the unit sphere in R (w.r. to the inner product defined at the
beginning of the section). The unitary operator Il = (® I, dA from ¥ to
J® 3G, dX\is defined as

(I f)(w) = CyN fem P f(x) i,

y=((N—1)—2)/4, Cy=1402a)" "

(V1.3)

Obviously, 11,7 = AIl, on 9(T) and II, = A~'*II,U(/A), where U(p) is the
dilation group defined above in this section.

THEOREM V1.7, Let the conditions of Theorem V1.5 be satisfied. Then:

(1) W= and W = * exist as strong Abel limits, W~ are isometric,

(2) W= are complete,ie. W=W=*=1—E

(3) The scattering operator and scattering matrix are unitary,

(4) T, = s-lim, o IL,T(A + ie}IT}, where, remember, T(z) = V — VR(z)V, exists
as a strongly continuous B{ L*())-valued function of A € R and S(A) = 1, + 27i 7).

Proor. Theorems IV.1 and VL5 imply all the statements (see also Remark 1V.2
on the existence of W™), except for the strong continuity of T,.

Lemaa VI8, Let [ be a pair of indices and M the multiplication operator by Fxh,
fELF NLIR), p>v>q, or f € LXR). Then IIM is a uniformly bounded
family of operators from LX) to LX(R), strongly continuous in s. A similar statement
is true also for M*II,.
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PrROOF. Let f € L? n L% p > v > g. Then the statement follows from Lemmas
IIL.5 and IIL.8, Proposition V1.2, equation (VL.3} and strong continuity at p = 1 of
U(p) on L* (different underlying spaces!). If f € L? then the statement is obtained
by the application of the Cauchy-Schwarz inequality to MII*q, ¢ € L(§2), or
[T, Mu, u € L}(R), written explicitly as an integral. []

This lemma implies readily the strong continuity of 7. [

THROREM VI1.9. Ler all the conditions of Theorem V1.5 be satisfied. Then the
scattering matrix S(A\) has a meromorphic continuation into the sector

AE24\[Loo] U a(HYe ™).

This continuation has poles in A (\ C~ only at eigenvalues of H(e™ ), i.e. at the
points where the meromorphic continuation of (u, R{(z)v) (on dilation analytic vectors
u, v) from C* across a(H) into the second Riemann sheet has iis poles. If « > n /2,
then the poles of S(\) on the negative semiaxis occur at most at the eigenvalues of H.

Proor. We consider T, = IL, VIIF — IL VR + i) VIIY. Let A® = C* N A.
Using (V1.3), we find: T, VTI} = A 'L, ¥(VX )I1#. Therefore T, V'II# is analytic
in A € 24, where, remember, A is the sector of dilation analyticity of V,. Next we
obtain

(VI4) TL VR + ie) VIT = AL (VA YR(A + ie, VA )V(VAIIL.
The r.hs.is a B(L’(ﬂ))-valued function, meromorphic in A € 24 as long as

Atie € o (HVA)Y= U [aa.(H“(\/)_\ ) + M_l*}. '
a7y

It follows from Theorem VI.5 and Lemma VL8 that (V14) converge in the

L¥Q)-operator norm as £)0, uniformly in A from any compact subset of

B=24\[1,00] U odH (™))
AF gy

(take z = 1 + ieA™) and ¢ = VA in Theorem V1.5). Then by the theorem on
uniform convergence of analytic functions, the boundary value of (VI4) asel0is a
meromorphic function in B which can have poles only where R(A + i0, VX ) does.
All the poles of the latter family are in 4~ and at the eigenvalues of H{e ). The
converse is also true. Indeed, for ¢, F, two dilation vectors, and A € 24 we have
{f, RO\ + i0, VX)YF) = (¢(}), R\, VA HF(L)D, where { € A~ and ¢(¢) is an
analytic continuation of U(p)p. If A € 24, then taking { = A~ € 4~ we see
that the rhs. of this equality has no poles at all. If A €247, we can take
{=A"Y%"% € A~ to convince ourselves that it has poles exactly at eigenvalues
of Hle ™). O

VIL Operators W(T — z)”'U. In this section we prove Proposition VL3. The
superindex & is omitted in what follows. Our task is to show that the family
W(T — z)~U is bounded on LXR) for z € C\R", strongly continuous as z
approaches R* and obeys the corresponding estimate.
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We study WRy(z)U using the following representation for Ry(z):
(VIL1) Ro(2) = i Cee-Ta s ecH,
Q

valid for any selfadjoint 7. We consider below two cases:
(i) I n s = & Using the cquauon T=T"+ T, and the fact that 7, commutes
with Wwefind (a ™! + '~ ' = 1)

— T} —iT
[We™ ) < Ul exmermrcanlle ™ ™| ecrrrrocanll Wl cocary ey
Writing the kernel of exp(—iT"%) as

canst - ¢ M/ 2K g i/ lg =¥/t
and using the boundedness of the Fourier transform from L? to L7, P <2, we
obtain the estimate |le~"*(|,_ . < const - 1 */2-V/® Taking into account this
estimate and

[P eocrysrmsy <|¥, and Ul epeysrocrey <190
a’"l=27"+ r! (which follows from ||f- ulf, < Nl ull g, a=t = ¢=1+ 874,
we finally arrive at

|We™*TU] < const|[¢] |||+ ",
This implies the desired properties of WRy(z) U.
(i) /Ns=¢ In this case we use the decomposition 7= T'+ T* + T,
b =14 s Since T*/T', T, commutes with U/ W, we have

(VIL2) ' We™ Ty = e ~Tole =T e —iT*,
We prove now the strong continuity of WR(z)U. The estimate of its norm
follows in the same way. To spare us unpleasant domain remarks, we use hence-

forth the extended definition of the norm: [ Au|| = oo if u & D(4) and |[A4] = oo
if A is unbounded. Using (VIL.1) and (VIL.2) we obtain.

| W(Ro(z") — Ry(2))UF | < IISFPI f‘(We“T‘Uf, {p>| et — i) dp
o=

< {f I IrVe_""”'f”1 |et — e‘"‘j2 d’t}l/2 sup {f|| U*e Ty dr}

Hel=1
To complete our estimate we use Kato's inequality [11]:

ire 2

JUEAE 4 < sup 48T - N4,
flee| e>0

valid for any selfadjoint T and densely defined closed 4, and the estimates of case

() for U*Ry(2)U and WR(2)W*. ()

VIIL Boundary values of [I[ W,(T — 2)”'U, ] In this section we prove Proposi-
tion VL4, It states that the product of three a-connected graphs on L R?) is norm
continuous as Im z » + 0. In virtue of Theorem 1.2 this implies that the corre-
sponding boundary values are compact. By the graph on L R") we understand
here an operator of the form [wyr" - z)"UJl .} where, remember, U, and W,
denote the multiplication. operators by functions ,(x) and Y, (x"), respectively, @
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Y € (LP n LYY, p > v > g. We say that the graph is a-connected if U/ = a.
The proof is based on the two following lemmas.

LemMa VIIL1. Graphs I[W (T — z)'lUﬂﬂ] are norm continuous in @, ¢, € L
M LYARY), p > v > g, uniformly in z € CA\R*,

Proor. The statement follows from the estimate of Proposition VL3, [J

LemMA VIIL2. The product of three a-connected graphs with g, € S(R®) is norm
continuous on L (R*) as Im z - x 0.

Before proceeding to the proof of this lemma we deduce the proof of Proposition
VL4 from Lemmas VIIL1 and VIIL2. Indeed, since S is dense in L7, there exist
sequences @® and ™ converging in L? 0 LYR"), p > » > g, to ¢ and i,
respectively. Given a graph G we construct the new graphs, G*(z), by replacing in
G(z) all U, and W, by the operators U and W of multiplication by ¢{”(x’) and
$"(x"), respectively. By Lemma VIIL1, G®(z)— G(z) is norm, uniformly in
z € C\R*, as n —» c0. Now consider the product of three a-connected graphs and
the norm approximation to this product constructed as above, By Lemma VIIL.2,
this approximation is norm continuous as Im z — + Q. Hence the product itself is
norm continuous as Im z — * 0. This completes the proof of Proposition V1.4,

ProoF oF LEMMa VIIL2. Below we prove a statement stronger than Lemma
VIIIL.2. Namely, we show that the Fourier transform of the kernel of the product in
Lemma VIIL.2 is a Holder continuous, fast decreasing at infinity function, Holder
continuous in the parameter z € C\ R* up toR*.

We set

AW f(x,p) =B "(f(x + hp) — fix,p)) f0<p<1
and
Ay(R)f(x,y) = flx,y) ifv=0.

Lemma VIIL3. Let G(2) be a product of three a-connected graphs with ¢,
Yy € S(R”). Then the Fourier transform, G(p, q, z), of its kernel satisfies the estimate
(VIILL) |& (RAMw)G(p,q,2)|< const-(L+|p—ql)~", rER™.

Here p and q are two sets of independent variables in the space dual to R“ (i.e. in the
corresponding momentum space).

Proor. The expression for the kernel of G(z) in the momentum representation
(i.e. the Fourier transform of the kernel) can be easily computed, since the kernels
of U, W, and (T* — z)” " in this representation are known. It has the form

(VIIL2) G(p, g, 7) = f #(p, g, k) d"%

y 4

I;I [Pi(ps 4, k) - Z]

where ¢{(p, ¢, k) € C* comes from the potential part (U, and W) of &(2) and
P(p,g,k) is the symbol of T“ expressed in the varables p, g, &k, using an
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i-dependent linear function. The estimate of the decay of G(p, ¢, z) at infinity can
be easily obtained if we note that those of the P’s with large enough p, or g, (say
Pi > 10Rez + 1) are not singular in the sense that P, —Rez 28 > 0. An
estimation of the decay of G(p, g, z) in such a p, or g, is a rather simple but,
unfortunately, boring and long exercise. Since, moreover, the precise form of the
estimating function is not important (what is important is its L'-property) we omit
here the derivation of the infinity-decay estimate.

To obtain the smoothness estimates for those variables p; and g, which stay in the
bounded region of R* and the smoothness estimates in z, we Join those P, which
contain variables from the vicinity of infinity specified above, to b.

The resulting integral is of the form

(VIIL3)  J(u, 2) = f Hs[(t(k;‘i;k— 2]’

x =(k,u), kER™ ueR™

where u varies in a compact region of R™, ¢ € C®R"™) and satisfies
[(1 + [k[yD*¢(k)| < const for all a and some » > 0 and R’ are real, nonnegative,
(m + n) X (m + n)-matrices. R’ act on the space R*™*" of which vectors are
written as p = (p; ... Ppenh B € R, according to the equation (Rp), =
27 (R

It is shown in Lemma L1 of [17] that such integrals are Hélder continuous in
and z (including z — R). The conditions of this lemma are satisfied by (VIIL.2), For
the reader’s convenience we reproduce the lemma under more restrictive condi-
tions, which are still obeyed in our case, in a separate preprint which can be
obtained from the author.

Here we mention only that to obtain the desired estimates on {VIIL.3) we first
use the Feynman identity,

¥ -4
II A7l = f (2“;’{:‘) 8(1 — Eai] d'a,
=1 0,17

to transform the product of s polynomials (of the second degree) in the denomina-
tor into one polynomial (also of the second degree) but taken to the sth power,
Then we integrate by parts in k.

IX. Analyticity of the wave operators. In this section we show that the wave
operators U(p) W *U(p) ™' have analytic continuations, W *({), from R* to the
angle 4 with the cuts along the semilines

E=R" U ofH(e*™))',
[-E - T
where, remember, a = sup{|arg z|, z € 4}. In order to construct W*({) weneed a
scattering theory for nonselfadjoint operators which is outlined below.

First Jet T be any absolutely continuous operator and H any operator on the
same Hilbert space (. To define the wave operators we use stationary expressions
(IIL.3). However, we have to require that the domains of Z®(A) contain a common
dense set, on which we define the limit. Note that in the nonselfadjoint case some
of the properties of W* and Z*, discussed in §III, fail: Z*(A) # W*(A)* and
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W =(A) and Z *(A) are not partially isometric in general, and the other properties
(e.g. intertwining) are not implied any more by the mere existence of W *(A) and
Z *(4).

Lesoia [X.1. Let W*(A) and Z*(B) exist in the weak sense. Then E,W*(A) =
Z=(A)E, = 0.

Proor. Consider some eigenvalue A € a,(H). If A & A, then the statement ig
obvious. If A € A, then the problem is reduced to the selfadjoint case. []

Lemma [X.2. Z®(A) are defined on all vectors u € K such that

Je|f IR\ + ie)ul? dX < o
and
(= £ oYyl 2

(IX.1) | ZEA)ulf < [; f& 1RO + i d}\] .
The same siatement holds also for WO(A)*.

Proor. Consider Z“)(A). Applying the Schwarz inequality to

e f [(ROA + ie)u, Ro(A + ie)o)| dA
A

and using the fact that [e|f[|RgA + ie)o|> dX = =], we find AX.1). []

COROLLARY [X.3. Let Z *(A) exist. Consider the set of all vectors u for which the
supremum of the RHS of (IX.1) over |e| > 0 is finite. Then Z *(A) is defined on this
set and obeys

. l€| 5 1/2
(IX.2) 1Z%(&)u| < sup [ E 1RO+ ey d;\} .
eER*® T A
The same is true for W™ (A)*.
Lemma [X 4. Assume that Z *(A)/ W =(A) exist (in the weak sense) and
(1X.3) welim. e [ R\ + ie)u dX = 0 on a dense set.
A

Then Z “(A)/ W*(A) are intertwining for (H, T): TZ*(8) = Z *(A)H, HW™*(4) =
W=(A)T.

Proor. Consider W *(A). Applying twice AR (z) = 1 + zR(z), we find
HWO(A) — WOQA)T = i f [ Ro(A — ie) — R(A + ie) ] A + 2ieWO(4).

Now, ef Ry(A — ie) dh vanishes as |¢] — 0 since T is selfadjoint and the other terms
on the right-hand side vanish by the assumptions. [J

REMARK IX.5. (IX.3) is obviously obeyed for those u’s for which the RHS of
(IX.2) is finite.
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THeOREM IX.6. Theorems I11.2 and IV.1 remain true if the condition of selfadjoint-
ness of H is replaced by the weaker one: o (H) C R (i.e. V, are allowed to be
nonselfadjoint in Theorem IV.1). E(A) in the statement of the theorems is defined as
E(A) = lim, o [, §,(H — X) d\ and Z“AA) converge strongly to Z *(A) as bounded
operators from X = Z|V,|'2H to I (we have, in addition, to assume in Theorem
12 thar Y = X and (H — TYR(\ + ie) extends to a fomily of bounded operators
from X to LX4, X)).

RemMARK IX.7. Applying Theorem [X.6 to H* we obtain the same statement for
W =(A)r.

Prookr. The selfadjointness of H is not used in an essential way in the proofs of
Theorems II1.2 and 1V.1. The same proofs go through if one requires instead that
o (H)cR. []

We proceed now to the many-body systems. Let U, be the multiplication
operators by functions g(x’), ¢, € L2 N LIR*), p >» > q.

THEOREM IX.8. Let H be the many-body Hamiltonian with real, dilation analytic
potentials V, such that V() € LF n L*R"), p > v/2 > q, and let 6,(H") = & for
a 7 Ay, Then (1) the wave operators Z*({, A) and W=(, A), { € A\ E, for the
pair (£ T2H(L), T) = (H($), $2T) exist as strong limits of bounded aperators from
SULHR) to LXR) and from LYR) to SULXR), respectively; (2)
W=($, 8)Z5@, ) = E(, AN A) and ZF(, W, A) = EfA n &) ()
Z*(, &) and W*($, 8) for AN {6, (H(})) = & are analytic in { € A\ E; (4)
Z=(p, A) = U(p)Z=(M)U(p)~', p ER, and the same relation holds also for
W *(p, A).

CoROLLARY [X.9. The local scattering operator S(§, A) = Z (¢, A)W (¢, A) for
¢ HE,T) and A N a,(§ TIHE) = is anabtic in ANE and S(p, A) =
U(p)SAU(p) ™" for p € RY,

Proor oF THEOREM IX.8. (1) and (2) follow from Theorems V1.5 and [X.6. By
the way, (2) follows also from (1) and (3). Equation (IIL.3) shows that Z®(¢, A),
considered as a family of operators from 2 U,LX(R) to L*(R), is analytic in { as
long as { stays away from E. The analyticity of Z*({, A) in 4 \ E follows from the
analyticity of Z®({, A) and the fact that the convergence of Z®(¢, A) to Z*(¢, A)
is uniform in § from any compact subset of 4 \ E. The latter can be seen from a
careful examining of the proof of (1). [J

Appendix I. Regularizers. In this appendix we present a simple application of the
regularizers to the study of spectral properties of operators. In the sequel H and G
denote an operator (in general unbounded and nonselfadjoint) on a Hilbert space
I and an open set in C.

THEOREM Al L. Lef there exist a family F(z): G — B(3C, S (H)) with a bounded
inverse F(z)~': G — B(D(H), K), such that the aperator (H — 2z)F(z) — 1, raised
to some power, is compact on K. Then o (H) c C\ G.
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REMARK. This theorem can be regarded as a generalization of Weyl's-e theorem.
Indeed, let H =T+ V, where V is T-compact. Taking F(z)=(T — z)~' for
z € p(T} we see immediately that the conditions of Theorem ALl are satisfied and
therefore p(TY N o (H)= Z. Reversing the role of H and T we get p(H) N
0. (T)= 8. Ifo,(T)= &, then o, (H) = a(T).

Proar. Introduce the operator A(z) = (H — z)F{(z). Then
(AL1) H—z=A()Fz)"".

Therefore in virtue of the properties of F(z), Ker(H — z) = F(z)Ker A(z).

Since A(z) — 1, raised to some power, is compact, A(z) [ € © Ker A(z) has a

bounded inverse on J(. Therefore, in virtue of (Al.l), s0 has H — z, restricted to

% (H) & F(z)Ker A(z). Since dim Ker A(z) < oo, the latter conclusion implies that
z&a (H). O

Lemma AL2. Let G ¢ C\ o (H) and let F(z) obey the conditions of Theorem
AL, Let there exist a Banach space X such that X 1 K is dense in X and ¥ and:

(1) (H — 2)F(z) — 1 is bounded on X and strongly continuous as z — 3G and,
raised ta some power, is continuous and compact for z € G.

Assume the following condition is satisfied.

(2) There is a unitary representation, p— U(p), of R* on 9 such that
Up) HU(p) ™" and U(p)A(2)U(p) " have analytic continuations, H({) and A(z, {), to
adomain® C C, 0 NRY # &, and A(z, {) is continuous in z € G \ 6 (H()) and
inteBforze GonIH andon X.

Then 0 € a(A(2)) ¢z € a,(H) for z € G\ a (H({)), Im ¢ # 0.

PrROOF. In order to avoid lengthy expressions we assume here that A(2) — 1 is
compact and norm continuous itself (and not only in a power). We begin with

Lemsa ALY Let O, D C C and K(z,¢) a family of compact operators, norm
continuous in 2 € Q for all t € D and analytic in { € D as z € Q. Let, moreover,
K(z, ¢y = U DK(z, &' 28U { ), where U(p) is unitary for p ER™ . Then for
z e Q—and v =10,

vEa(K(z,p), p€ID, oreakizf)), (€D

Proor, For z €  the statement is obtained by the standard Combes argument:
a(K(z, {)) is analytic in {'/# for some integer p > 0 (by the analytic perturbation
theory) and is, at the same time, independent of |{| (by the condition of the
theorem). Therefore it is {-independent.

Consider now z € 8G. We use

Lemma Al4. Ler K(\) be a continuous family of compact operators, A € Q, a
closed set, and v € a(K(\y)). Then there exist a neighborhood V of Ay and v(\) €
o(K(\)) continuous in X € V N Q, for which v(hg) = v.

ProoF. For any contour I' C p(K(A)) around the point » there is a small disk, U,
with the center at A, such that T’ C p(K(A)) for A € U.
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Therefore we can write P, = 2mi)~'$r(z — KQA))™' dz for A € U. Since P, is
continuous in A € I/ and Py, 7 0, we have P, 0, for A € U. Therefore a(K(\))
N V # for A € U and the neighborhood ¥ with 3V =T, ]

We proceed to the proof of Lemma AL3. Assume for z, € 3Q, » € o(K(z, p)).
By Lemma AL4, there is »(z), continuous in a Q-neighborhood of 24 and such that
#(zg) = v and w(z) € a(K(z, p)). Since a(K(z, {)) is independent of { as long as
K(z,{) is analytic in { (see above), ¥(z) € a(K(z, {)). Therefore, in virtue of the
norm continuity of K(z,{)in z € Q for { € D, » € a(K(z,, {)) (see Appendix to
(16]).

Tao prove the opposite direction we repeat our arguments in the reverse order.
|

Further, the proof of Lemma AL2 goes as follows. Applying Lemma AL3 to
A(z) — 1, we find that 0 € a(A(z)) = 0 € o( A(z, ,$)) for z € 3G\ o (H({), Im§
7 0. Since A(z, {) — 1 is norm continuous in z € G as long as z & g, (H(})) and is
compact on X and on X for z € G, it is also compact for z & 3G\ o, (H({)). Next,
we use the lemma from (17], [19], stating that if a compact operator X is defined on
Banach spaces X and Y and Y C X, densely and continuously, then the spectra of X
on X and on Y coincide. We apply this lemma to X N 3C, X, H and 4(z,¢) — T to
conclude that a(A(z, {)) on X and on & is the same. This and the definition of
A(z,§) produce: 0 € 6(4(2,{)) =z € 0,(H({)). Finally, z € o,(H({)) =z €
a,(H) for z € 9G N (Co  (H({))) by Lemma IV.11.

THEOREM ALS. Assume in addition to the conditions of Lemma AL12 that for some
family of operators T(z) with N(T(2)) C D(H), T(2)F(z) extends to a family of
bounded operators on X, strongly continuous in z € G. Then T(z)(H - 2)” 1 extends
to a family of bounded operators on X, strongly continuous in 2 € G\(G N a 1, (H)).

Proor. The proof follows from Lemma AL2Z. [J

Appendix IL. Proof of Theorem IIL2. Before proceeding to the proof of the
theorem we mention a few auxiliary relations which follow from the density of
X n K in X and some facts about operator-valued functions [19}. Let T be an
absolute continuous operator and x, y € L%(A, X); then

) [T =0 = T =N A0 (e —0),

" L (T = VAT = )x6),y0) dr o
2 b4

_ fA Ly BT = N2y (0) A0 (e —0).

Proor oF THEOREM II1.2. (a) In virtue of Stone’s theorem it suffices to prove that
(e/m)|| R\ + ie)x(|* for all x € Y is a Cauchy sequence in ¢ in L(A). We have

§||R(A + ie)x|? = i"Ro(h + ie) O\ + ie) x|,

where Q(z) = (T — z)(H — z)”'. The term on the right-hand side is Cauchy in ¢ in
L(A) by (1).
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(b) W®(A)* is bounded as follows from

l¢]

172
e < {2 150+ ioon + o)

ki)

<[ QC +ie)ul| Lo, x)-
WEA)* converges strongly as £ — + 0:

| Wa)* - WOy
< (2 AT =27 = 84T = 1) + i)l af”

172
+ { L 18T — N(QA + &) — QA + ie))u|” d}\] _

The right-hand side converges to 0 as ¢, &' — *+ 0 by (i), (i} and (1).
{c) Using (2),

WEHA) WENAY)* = f QO + ie)*8,(T — MO + ie) dh + o(1)
AnA
weakly as ¢ —» = 0. Using the definition of Q(2),

L 8(H ~ A) d\ = J; O + ie)*8(T — N)Q(\ + ie) dA

as a sesquilinear form on Y. Comparing these two equations we arrive at the
desired relation. []

Notes and literature comments.

$§I. Theorem 1.2 is an abstractization of the main step of the spectral theorem for
N-body systems {8]. Lemma 1.3 originates in the commutator method of V. Enss
[4]. A statement close to Corollary 1.4 can be found in {3]. Note that ¢, (H) C

U o(H,) is a difficult direction of the famous HVZ theorem (see e.g. [15]).

§1I. The first part of the section is a reformulation of Berezin's equations {2]
studied in detail in {16}, [17].

§III. Lemma III.1 was proven in [19]. Theorems II1.2 and TI1.4 are special cases
of the corresponding theorems from [19] (see also {13], {23] and [20]). An earlier
result of this genre was established in [11}, [14} and {29]. Lemma 1.5 was proven in
[19]. A slightly weaker statement was proven earlier in [6] (see also [12]). The spaces
24,3 of Lemma I11.8 were introduced in {19] and in an earlier form in [17].

§LV. A statement similar to Proposition I'V.10 was proven by G. Hagedorn [7].

§VI. Our X-operators are similar to those of Enss [4]. Proposition V1.1 is a simple
exercise [15] on embedding theorems for Sobolev spaces and on compact integral
operators. Proposition V1.2 belongs to T. Kato [11}. Proposition V1.3 was proven
by G. Hagedorn [7] (see also [5], [19]) who has extended a close result of R. Torio
and M. O’Carroll {9]. Proposition VL4 is a special case of a result of [. M. Sigal
[17]. A similar result was obtained earlier by K. Hepp [25].

A discussion of dilation analyticity as well as the Balslev-Combes theorems can
be found in [15], [26] and [27].
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Detailed references on asymptotic completeness theorems can be found in [19].

Theorem VI8 is our main result. Note the analytic extension of the N-body
S-matrix was proven for the first time by G. Hagedorn [6] for (two-cluster) — (two-
cluster) scattering. Our proof is completely different from that of G. Hagedorn. As
in the two-particle scattering, he represents the integral kernels of the correspond-
ing matrix elements of the S-matrix as sesquilinear forms and applies the Combes
analytic continuation to those forms.

The analyticity of the diagonal elements of the S-matrix in the three body
scattering and the many-body scattering below the three-body thresholds was
proven by E. Balslev [1], [33].

§VIL. See remarks to Proposition VL3.

§VIIL. See remarks to Proposition VI.4.

§IX. The scattering theory for nonselfadjoint operators was constructed in a
different way by T. Kato [11} and Kako and K. Yajima [10] and applied by E.
Balslev {1].

Appendix 1. Results close to those of the appendix were announced in [18]. More
general results were proved in [19]. Lemma AlL3 was proven by G. Hagedorn [7].

Appendix I1. There is a simpler proof of a close theorem [11] using Kato’s relative
smoothness method. We stick to the given proven since it uses only resolvents and
therefore is extendable onto the nonselfadjoint case.
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