1. Suppose a standard 8×8 chessboard has two diagonally opposite corners removed. Is it possible to place 31 dominoes of size 2×1 so as to cover all of these squares?

2. There are five possible tetrominoes

Is it possible to form a rectangle with the five tetrominoes (one of each)?

- 3. Can a 10×10 chessboard be covered by 25 straight tetrominoes?
- 4. Can an 8×8 chess board be covered by 15 square tetrominoes and one straight tetrominoes?
- 5. Consider an $n \times n$ chessboard with the four corners removed. For which values of n can you cover the board with L-tetrominoes?
- 6. Divide these shapes into 4 identical pieces.

7. Divide this shape into 2 identical pieces:

- 8. Can you divide a square to 5 identical pieces?
- 9. A 6×6 square is tiled by dominoes. Then it always has a fault-line, that is, a line cutting the square without cutting any dominoes.