
Solutions for HW3

1 Problem 1 from Keller and Trotter

1.1 Preamble

The wording for this question is admittedly rather vague. For each part, the question is asking you to do
two things:

1. Specify an algorithm to do the given task.

2. Analyze its runtime.

If you used a different algorithm, your answer might be different from the one provided here. However, as
long as your algorithm performs the specified task and you’ve analyzed its runtime correctly, you should
receive full marks.

What makes this problem tricky is that we have a list of n integers of size ≤ 100n. In other words, the size
of our numbers and the length of our list both grow with n and both of these will affect the runtime. For in-
stance, mergesort (https://en.wikipedia.org/wiki/Merge_sort) requires at most O(n log n) comparisons
to sort a list of length O(n). However, if our integers are really big, each individual comparison can be quite
costly. For instance, if we have two integers of size O(n), then comparing them to see which one is bigger
requires O(log n) time. Why? Well, an integer of size O(n) can be represented using O(log n) bits. What is
the computer doing when it compares two integers? It compares them bit by bit! Thus, the runtime of apply-
ing mergesort to a list of O(n) integers each of which has size O(n) is O(n log (n)) ·O(log (n)) = O(n(log n)2).

In the solutions to this problem, we will make the following assumptions about the time required by a
computer to perform the following basic tasks. For further information, check out the wikipedia page on the
computational complexity of mathematical operations: https://en.wikipedia.org/wiki/Computational_
complexity_of_mathematical_operations.

• Checking if two numbers of size O(n) are equal to one another requires O(log n) time. (Two numbers
are equal if they have the same bits at the same positions. A number of size O(n) can be represented
using O(log n) bits, so there are O(log n) bits to check.)

• Comparing two numbers of size O(n) to see which one is greater requires O(log n) time. (Again, how
do you compare two numbers? You compare them bit by bit and there are at most O(log n) bits to
check.)

• Adding two numbers of size O(n) requires O(log n) time. (Add the numbers bit by bit, the same way
you would add numbers digit by digit in grade school.)

• Subtracting two numbers of size O(n) requires O(log n) time. (Again, perform the subtraction bit by
bit, the same way you would have subtracted two numbers digit by digit in grade school.)

• Multiplying two numbers of size O(n) requires O((log n)2) bitwise operations, using the basic algorithm
you probably learned in grade school. While all of the algorithms mentioned above were optimal,
surprisingly, there are better ways to multiply integers! The first improvement was due to Karatsuba:
https://en.wikipedia.org/wiki/Karatsuba_algorithm. The current record is held by an algorithm
of Harvey and Van der Hoeven (from 2019!) which can multiply n- bit integers in O(n log n) time:
https://annals.math.princeton.edu/2021/193-2/p04.

1

https://en.wikipedia.org/wiki/Merge_sort
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations
https://en.wikipedia.org/wiki/Karatsuba_algorithm
https://annals.math.princeton.edu/2021/193-2/p04

• If we have two numbers of size O(n), finding the quotient and remainder when we divide one number
by the other, using long division, requires O((log n)2) time.

1.2 Solutions

1. (a) For each element of the list, just check whether it is equal to 2n+7. Checking whether a number
of size O(n) is equal to 2n + 7 requires O(log n) time and our list has n = O(n) elements for a

total runtime of O(n) ·O(log n) = O(n log n) .

Remark: notice that sorting our list won’t help us here, since sorting our list via mergesort
already requires O(n(log n)2) time.

(b) For each pair of elements (x, y) where x and y are elements of our list, compute x+ y and check
whether this is equal to 2n+ 7. There are n2 = O(n2) such pairs. Computing the sum of x and
y for each pair (x, y) requires O(log n) time, since x, y ≤ 100n. Similarly, since x + y ≤ 200n,
checking that x+ y is equal to 2n+ 7 requires O(log n) time for a total runtime of:

O(n2) · (O(log n) +O(log n)) = O(n2 log n)

Remark: the algorithm described above is the brute force approach to this problem. It is not
optimal. In particular, if you sort your list of integers and then apply a little cleverness, you can
produce an algorithm that does the prescribed task in O(n(log n)2) time.

(c) The brute force approach to this problem is to compute the product xy for every pair (x, y) of
numbers x and y from our list and check if it’s equal to 2n+7. There are n2 = O(n2) pairs (x, y)
and for each pair (x, y), since x, y ≤ 100n, we can compute the product xy in O((log n)2) time.
Checking whether the product xy is equal to 2n+ 7 requires O(log n) time for a total runtime of

O(n2) · (O((log n)2) +O(log n)) = O(n2(log n)2) . That said, the hint for this problem suggested

that we first sort our list, implying that the book wants us to do something more clever to improve
the runtime.

To improve on the runtime above, we first sort our list using mergesort to get the sorted list
(a1, a2, a3, ..., an). As discussed in the preamble, this takes at most O(n(log n)2) time. From
there, starting with a1, then going on to a2, then a3, etc. for each element ai, we perform long
division to find the quotient qi and remainder ri that we get when we divide 2n+ 7 by ai. That
is, we find qi and ri such that qi · ai + ri = 2n + 7 where qi and ri are nonnegative integers
such that ri < ai. Since the numbers involved are of size O(n), this takes at most O((log n)2)
time. If ri ̸= 0, then ai does not divide 2n+ 7 and we move on to the next integer in our list. If
ri = 0, then ai divides 2n + 7 and it is possible that the quotient qi is somewhere in our list so
that 2n + 7 is the product of two elements in our list, namely ai and qi. We use binary search
(https://en.wikipedia.org/wiki/Binary_search_algorithm) to check if qi is on our list. For
a sorted list of integers of length O(n), binary search requires O(log n) comparisons to find out if
a particular integer is in our list. Since our integers are of size O(log n), each comparison requires
O(log n) time. Thus, checking whether qi is on our list requires O((log n)2) time. If at some point
we find that 2n+ 7 is the product of two integers on our list, we stop. Otherwise, we keep going
until we’ve gone through all the elements ai of our list. Putting all this together, the runtime of
this algorithm is:

O(n(log n)2) +O(n) · (O((log n)2) +O((log n)2)) = O(n(log n)2)

Remark: the reason for the improved runtime of this second algorithm are twofold. Firstly, going
through the n integers of our list and computing n/ai for each i is way more efficient than com-
puting x · y for each distinct pair of integers on our list, of which there are n2. Secondly, sorting

2

https://en.wikipedia.org/wiki/Binary_search_algorithm

our list allowed us to use binary search to figure out if a given integer is in our list, rather than
just going through the list element by element.

(d) Observe that the numbers in our list lying between i and 2n+7+ i for some i is equivalent to the
difference between the maximal and minimal integers in our list being at most 2n + 7. Thus, it
suffices to find the maximal and minimal integer in our list and compute their difference. Finding
the maximal integer in our list requires n− 1 comparisons. Since the numbers involved are of size
O(n), each comparison requires O(log n) time. Similarly, finding the minimal integer in our list
requires n−1 comparisons where each comparison requires O(log n) time. Finally, computing the
difference between the maximal and minimal integers in our list requires O(log n) time for a total
runtime of:

O(n) ·O(log n) +O(n) ·O(log n) +O(log n) = O(n log n)

(e)

(f) Finding the number of primes on our list is a 3 - step process:

i. First, we build a list of all the primes ≤ 100n. We will elaborate on how to do this shortly.
By definition, each element on the resulting list has size at most 100n. By the prime number
theorem (https://en.wikipedia.org//wiki/Prime_number_theorem), this list has length
O(n

logn).

ii. Next, we use mergesort to sort our list of n integers, each of which has size O(n). As we
discussed earlier, this requires O(n(log n)2) time.

iii. Now that we’ve sorted our list from part 2, we can search it using binary search. For each
prime in the list from part 1, we check if it’s on the list from part 2 using binary search. This
costs O((log n)2) for each element in our list of prime numbers, of which there are O(n

logn)

for a total runtime of O(n log n).

Now let’s talk about the runtime of step 1. To produce a list of all the prime numbers ≤
100n we use the classical sieve of Eratosthenes (https://en.wikipedia.org/wiki/Sieve_of_
Eratosthenes). That is, let Pn be the list of prime numbers ≤ n, arranged in increasing order.
P2 is just (2). For n ≥ 3 we do the following: if n is not divisible by any of the elements of
Pn−1, we append n to Pn−1. The resulting list is Pn. If n IS divisible by one of the elements
of Pn−1, then n is not prime. In this case, Pn = Pn−1. What’s the runtime of this algorithm?
Well, at the kth stage of this process we take k and for each element q of Pk−1 we compute the
remainder of dividing k by q using long division. Since Pk−1 is a list of length O(k

log k), each of

whose elements has size O(k), this requires at most O(k log k) time. Summing over n, the time it
takes this algorithm to build a list of all the primes ≤ n is:

n∑
k=2

O(k log k) = O
(n∑

k=2

k log k
)
= O

(∫ n

2

x log xdx
)
= O(n2 log n)

Putting all of this together we get a total runtime for our algorithm of:

O(n2 log n) +O(n(log n)2) +O(n log n) = O(n2 log n)

Remark: our analysis of the runtime of the Sieve of Eratosthenes was admittedly pretty crude. In
particular, if a number of size O(k) is composite, its smallest prime divisor is usually going to be
much smaller than k, so most of the time, we’ll only need to compute the remainder of k modulo
q for a small number of integers q in our list of primes. As per the wikipedia article linked to
above, more careful analysis of this algorithm shows that the runtime is actually on the order of
O(n log n log log n). Thus, sorting our list is actually the most time- consuming step, not building
this list of primes.

3

https://en.wikipedia.org//wiki/Prime_number_theorem
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

(g) First sort our list of n integers so that the entries are in increasing order. For each pair of integers
(x, y) where x and y are entries in our list, compute x+ y and using binary search, check if x+ y
is in our list. We do this until we find a pair (x, y) so that x+ y = z for some integer z in our list,
in which case we stop. Otherwise, we keep going until we exhaust all possible pairs (x, y). As far
as analyzing the runtime of this algorithm,

• Sorting our list using mergesort requires O(n(log n)2) time.

• There are n2 = O(n2) pairs of integers (x, y) where x, y are entries in our list.

• For each pair (x, y), O(log n) time is required to compute x + y, since the entries of our list
are of size O(n). From there, finding out whether x + y is in our list using binary search
requires O(log n) comparisons. Since the numbers involved are of size O(n), each comparison
requires O(log n) time.

In summa, the runtime of this algorithm is:

O(n(log n)2) +O(n2) · (O(log n) +O((log n)2)) = O(n2(log n)2)

(h) First sort our list of n positive integers so that the entries are in increasing order. Let (a1, a2,, an)
be the resulting sorted list. For each index i, we multiply ai by itself to get the new list
(a21, a

2
2, ..., a

2
n). This can be done in O(n(log n)2) time, since multiplying two numbers of size

O(n) can be done in O((log n)2) time, and we are just doing this n times. Observe now that
finding integers x, y, z in our original list (a1, a2,, an) such that x2 + y2 = z2 is equivalent to
the problem of finding integers x, y, z in our new list (a21, a

2
2, ..., a

2
n) so that x + y = z. But this

is exactly the problem we addressed in part (g)! The only difference is now the entries of our list
are of size O(n2) instead of O(n), but this difference turns out to be unimportant since the con-
tribution of the size of our integers to the runtime depends on the number of bits that is required
to represent them. Whether our numbers are of size O(n) or O(n2), both can be represented by
O(log n) bits. Thus, applying our algorithm from part (g) to our new list allows us to solve this
problem in time:

O(n(log n)2) +O(n2(log n)2) = O(n2(log n)2)

(i) First sort our list of n integers so that the entries are in increasing order. For each pair of integers
(x, y) where x and y are entries in our list, compute xy and using binary search, check if xy is in
our list. We do this until we find a pair (x, y) so that xy = z for some integer z in our list, in
which case we stop. Otherwise, we keep going until we exhaust all possible pairs (x, y). As far as
analyzing the runtime of this algorithm,

• Sorting our list using mergesort requires O(n(log n)2) time.

• There are n2 = O(n2) pairs of integers (x, y) where x, y are entries in our list.

• For each pair (x, y), we can compute xy in O((log n)2) time, since the entries of our list are
of size O(n). From there, finding out whether xy is in our list using binary search requires
O(log n) comparisons. Since the numbers involved all have O(log n) bits, each comparison
requires O(log n) time.

In summa, the runtime of this algorithm is:

O(n(log n)2) +O(n2) · (O((log n)2) +O((log n)2)) = O(n2(log n)2)

(j) To answer this question, we first need to understand the computational complexity of computing
xy for a pair of integers x and y. Write out y in binary:

y =

m∑
i=0

ai2
i

where ai ∈ {0, 1} for all i and m = ⌊log2 x⌋. For each i ∈ {0, 1, 2, ...,m} we compute x2i recur-

sively by multiplying x2i−1

and x2i−1

. As discussed earlier, we can do this in O((log x2k−1

)2) =

4

O(4k(log x)2) time. Thus, the total cost of computing x21 , x22 , x23 , ..., x2m in this way is:

m∑
i=1

O(4i(log x)2) = O
(m∑

i=1

4i(log x)2
)
= O

((4m+1 − 1

3

)
(log x)2

)
= O(4m(log x)2)

= O(4⌊log2 y⌋(log x)2) = O(y2(log x)2)

From here, we compute xy by multiplying powers of x as follows:

xy = x

m∑
i=0

ai2
i

= x2am
(...x23a3(x22a2(x21a1xa0))...)

The brackets in the product above indicate the order in which we multiply our powers of x. In

particular, notice that at the kth stage, we are multiplying two numbers of size O(x2k) which,

as discussed earlier, can be done in O((log x2k)2) = O(4k(log x)2) time. Thus, the total cost of
computing this product is:

m∑
k=1

O(4k(log x)2) = O(y2(log x)2)

In summa, given two positive integers x and y, we can compute xy in O(y2(log x)2) time. With
this in mind, we can now deal with the problem at hand.

• First, we sort our list of n positive integers, each of which has size ≤ 100n using mergesort.This
requires O(n(log n)2) time. Let (b1, b2, b3, ..., bn) denote the resulting sorted list.

• For each integer x on our list, compute xb1 , xb2 , xb3 ... until we arrive at an integer bk so that
xbk > 100n, meaning that xbi cannot be on our list for any i ≥ k. Since b1 ≤ b2 ≤ ... ≤ bk−1

where xbk−1 ≤ 100n =⇒ bk−1 = O(logn
log x), the cost of computing xbi for any i < k is:

O(b2i (log x)
2) = O

((log n
log x

)2

(log x)2
)
= O((log n)2)

• Having computed xbi for some i < k, we check whether or not this number is on our list using
binary search. If we find some index r so that xbi = br we stop, having answered our question
in the affirmative. Otherwise, we keep going. Since our list has length n and all the numbers
involved are of size ≤ 100n, the runtime of this is O((log n)2).

• For each fixed x, we need to compute xbi for at most n indices i and for each i, check if xbi is on
our list. Thus, every element x of our list contributes at most n·

(
O((log n)2) +O((log n)2)

)
=

O(n(log n)2) to the runtime. Since there are n elements on our list, this gives us a total runtime

of O(n2(log n)2) .

(k) Observe that if x and y are positive integers, xy is prime if and only if x is prime and y = 1.
Thus, to determine if there is a pair (x, y) on our list so that xy is prime, we first check whether
1 is on our list. This requires O(n) time, since there are n numbers to check and we can find
out if a number is equal to 1 in O(1) bitwise comparisons. From there, we check whether there
is a prime on our list. Using the algorithm from part (f), we can do this in O(n2 log n) time. In
summa, the runtime of this algorithm is:

O(n) +O(n2(log n)) = O(n2 log n)

(l)

(m)

(n)

(o)

5

2 Problems 2-3 from Keller and Trotter

2. If you put mn + 1 pigeons into n holes, one of these holes must contain at least (m + 1) pigeons. (If
this were not the case, then each hole would contain at most m pigeons so the total number of pigeons
would be at most mn < (mn+ 1).)

3. i If X = {1, 2, 3, 4, 5} it IS possible to place the 2- element subsets of X into two holes so that for any
3- element subset {a, b, c, } ⊆ X, {a, b}, {b, c} and {a, c} aren’t all in the same hole. In fact, there
are multiple ways to do this. One way to do this is as follows: place {1, 2}, {1, 3}, {2, 4}, {2, 5}, {3, 5}
in the first hole and {1, 4}, {1, 5}, {2, 3}, {3, 4}, {4, 5} in the second hole. Then for any 3- element
subset {a, b, c} ⊆ {1, 2, 3, 4, 5} you can check that {a, b}, {b, c} and {a, c} are not all in the same hole.

ii If X = {1, 2, 3, 4, 5, 6}, this is not possible. Why? Well, there are five 2- element subsets of X
containing 1: {1, 2}, {1, 3}, {1, 4}, {1, 5} and {1, 6}. By the pigeonhole principle, one of our holes
must contain at least three of these subsets. Without loss of generality, suppose that {1, 2}, {1, 3}
and {1, 4} are all placed in the first hole. If any of subsets {2, 3}, {2, 4} or {3, 4} is also in the first
hole, we have that there is a 3- element subset {a, b, c} ⊆ X so that {a, b}, {b, c} and {a, c} are
all in the same hole. Thus, to avoid this, {2, 3}, {2, 4} and {3, 4} must all be placed in the other
hole. However, in this case, we see that the other hole contains all of the 2- element subsets of
{2, 3, 4}. Thus, we see that however we place the 2- element subsets of X into two holes, one hole
will contain all of the 2- element subsets of some 3- element set {a, b, c} ⊆ X.

Remark: now that you know some graph theory, notice that problem 3 can actually be rein-
terpreted as a graph coloring problem. Namely, given the finite set X = {1, 2, 3, ..., n}, we can
think of the 2- element subsets of X as edges of the complete graph on n vertices. Placing these
2- element subsets into two holes can be interpreted as coloring the edges of Kn one of two colors.
Namely, given an edge {a, b}, we color it red if {a, b} is placed in the first hole. Otherwise, we color
it blue. In this language, question 2 is asking you the following: is it possible to color the edges of
K5 (in part (i)) and K6 (in part (ii)) so that there are no monochromatic triangles?

3 Problems 1-5 from the Pigeonhole Principle Handout

1. A quick Google search reveals that the current population of Toronto is around 6.372 million. Mean-
while, the number of hair follicles on the head of a healthy adult human ranges between 90, 000 and
150, 000. Thus, by the pigeonhole principle, there are at least:⌈

6.372× 106

1.5× 105

⌉
= 43

people in Toronto with the same number of hairs on their head.

2. Subdivide the unit square into four squares with side length 1/2 as so:

If a pair of points lie in the same subsquare of the unit square, the distance between them is at most√
2/2. If we choose 5 points in the unit square, by the pigeonhole principle, two of them must lie in the

same subsquare with side length 1/2. The distance between these two points is then at most
√
2/2.

6

3. Assume that acquaintance is mutual. That is, if person A knows person B, then person B knows person
A. In this case, we say that A and B are acquaintances. We claim that among the 20 people present at
the party, there are two that have the same number of acquaintances among those present. To prove
this, we consider two cases:

Case 1: There is at least one person who knows everyone else.

Since acquaintance is mutual, if there is at least one person who knows everyone else at the party,
it follows that everyone at the party knows at least one person. Thus, each person at the party has
between 1 and 19 acquaintances among the other 19 people at the party. Since there are 20 people at
the party, by the pigeonhole principle, there must be ⌈ 20

19⌉ = 2 people who have the same number of
acquaintances present at the party.

Case 2: There is no person at the party who knows every other person at the party.

In this case, every person at the party has between 0 and 18 acquaintances among the other 19
people at the party. By the pigeonhole principle, there must be ⌈ 20

19⌉ = 2 people with the same number
of acquaintances.

4. Consider the list of numbers:

a1, a1 + a2, a1 + a2 + a3, a1 + a2 + a3 + a4, a1 + a2 + a3 + a4 + a5

These are the sums of the elements in the subsets {a1}, {a1, a2}, {a1, a2, a3}, {a1, a2, a3, a4} and {a1, a2, a3, a4, a5}.
If one of these numbers is divisible by 5, then we’ve found a subset of {a1, a2, a3, a4, a5} whose sum is
divisible by 5. Otherwise, each of these numbers has remainder 1, 2, 3 or 4 modulo 5. Since we have 5
numbers and 4 possible values for the remainder modulo 5, by the pigeonhole principle, two of these
numbers must have the same remainder modulo 5 and so their difference is divisible by 5. But the
difference between any pair of numbers in the list above is itself the sum of the elements of some subset
of {a1, a2, a3, a4, a5}. Thus, we’ve found a subset of {a1, a2, a3, a4, a5} whose sum is divisible by 5.

5. Given n+1 positive integers of size at most 2n, we want to show that we have two integers so that one
divides the other. Notice that we can assume our n + 1 integers are distinct: were this not the case,
since any number divides itself, we immediately have a pair of positive integers in our set so that one
divides the other. Split the set {1, 2, 3, ..., 2n} into subsets Sk,n defined as follows:

Sk,n := {m ∈ N : m = (2k − 1)2r for some r ∈ N0 and m ≤ 2n}

where k ∈ {1, 2, ..., n}. That is, each Sk,n is the set of numbers between 1 and 2n that can be written
as (2k− 1) multiplied by a power of 2 and we can write {1, 2, 3, ..., 2n} as a disjoint union of sets Sk,n:

{1, 2, 3, ..., 2n} =

n⊔
k=1

Sk,n

Suppose A ⊆ {1, 2, 3, ..., 2n} is a set with n+ 1 elements. If we take the elements of A as our pigeons
and the Sk,n’s as our holes, the pigeonhole principle tells us that for some positive integer k ≤ n, Sk,n

contains at least ⌈n+1
n ⌉ = 2 elements of A. However, by the definition of Sk,n, if a, b ∈ Sk,n where

a ≤ b then a divides b. Thus, we see that any set of n+ 1 positive integers of size at most 2n has two
elements so that one divides the other.

Remark: while this problem is on a pigeonhole principle handout, which suggests that this is the
technique you should try to use, it is probably easier to solve it by induction. In particular, if you
couldn’t figure out how to solve this problem on your own or had to look up the answer on Stackex-
change, try see if you can solve it using induction.

7

