MAT344 HW 2 Solutions

Solution to Ex. 1: Let n > 2. There are three types of valid record identifiers (VRIs) of length n. A VRI
of length n of the first type begins with any upper-case letter other than D and is followed by any valid
record identifier of length n — 1. Thus, there are 25 - r(n — 1) VRIs of length n of the first type. A VRI of
length n of the second type begins with 1C, 2K, or 7J and is followed by any valid record identifier of length
n — 2. Thus, there are 3 -r(n — 2) VRIs of length n of the second type. A VRI of length n of the third type
begins with D and is followed by any string of n — 1 decimal digits. Thus there are 10"~ VRIs of length n
of the third type. In total, we get

r(n)=25-r(n—1)+3-r(n—2)+ 10"

Since r(0) = 1 and r(1) = 26, we have

r(2)=25-7(1) +3-r(0) + 10" =25-26 +3- 1+ 10 = 663

r(3) =25-7(2) +3-r(1) + 10> = 25 - 663 + 3 - 26 + 100 = 16 753

r(4) = 25-7(3) +3-7(2) + 10% = 25 - 16 753 + 3 - 663 + 1000 = 421814

r(5) = 25-7(4) + 3 - r(3) + 10* = 25 - 421814 + 3 - 16 753 + 10000 = 10 605 609

Solution to Ex. 3: For each non-negative integer n, let S(n) denote the set of all ternary strings of length
n that do not contain 102 as a substring. Note that g(n) = |S(n)|. All ternary strings of length at most 2
do not contain 102 as a substring. Therefore g(0) =1, g(1) = 3, and g(2) = 32 = 9.

Let n > 3. For i =0, 1,2, define S;(n) = {z1...2, € S(n) : , = i}. Then S(n) is the disjoint union of
So(n), S1(n), and S(n), s0 g(n) = [S(n)| = So(m)] + |S1(n)| + [Sa(n)].

Let i« = 0,1. If z1...x,_17 is a ternary string of length n that ends in 4, then z;...x,_17¢ does not
contain 102 as a substring if and only if 7 ...2z,_1 does not contain 102 as a substring. Therefore S;(n) =
S(n —1) x {i}, and consequently |S;(n)| = |S(n —1)] = g(n —1).

Now we will show that Sa(n) = S(n — 3) x ({0,1,2}?\ {10}) x {2}, and consequently |Sz(n)| = |S(n —
3)| - (32 — 1) = 8g(n — 3). In words, we will show that Sa(n) is the set of ternary strings z; ...z, _12 such
that x7 ...z,_3 does not contain 102 as a substring and x,_sx,_o # 10. To show this, consider a ternary
string x7 ...x,_12 of length n that ends in 2. The string =7 ...x,_12 does not contain 102 as a substring if
and only if z1 ...z,_1 does not contain 102 as a substring and x,,_2x,_1 # 10. Now, when x,,_sx,_1 # 10,
the string x; ...z,_1 does not contain 102 as a substring if and only if z; ...x,_3 does not contain 102 as
a substring. Therefore 7 ...x,_12 does not contain 102 as a substring if and only if x;...xz,_3 does not
contain 102 as a substring and z,,_sx,_o # 10, as required.

Putting everything together, we have g(n) = 2g(n — 1) + 8g(n — 3).

Solution to Ex. 5: Recall that S is the set of quaternary strings (strings on the alphabet {0,1,2,3}) that
do not contain 12 or 20 as a substring and we wish to find a recursion for the number h(n) of strings in S
of length n > 0. All quaternary strings of length at most 1 are in S, so h(0) = 1 and h(1) = 4. Let n > 2.
Consider a quaternary string z ...z, of length n.

Suppose that =, =1 or x,, = 3. Then xy ...z, is in S if and only if x1...2,_1 is in S. Therefore the
number of strings in S of length n that end in 1 or 3 is 2h(n — 1).

Suppose that z,, = 0. Then z; ...z, isin S if and only if 1 ...2,_1 isin S and z,,_1 = 0,1, 3, and this
happens if and only if 27 ... 2, 5 isin S and z,,_1 = 0,1,3. Therefore the number of strings in S of length
n that end in 0 is 3h(n — 2).

Suppose that z,, = 2. Then z;...x, isin S if and only if z1...x,_1 isin S and x,_1 = 0,2, 3, and this
happens if and only if 1 ..., z,_2 isin S and z,,_1 = 0,2, 3. Therefore the number of strings in S of length
n that end in 2 is 3h(n — 2).

In total, the number of strings in S of length n is thus h(n) = 2h(n — 1) 4+ 6h(n — 2).



Solution to Ex. 7: We apply the Euclid’s algorithm:
827 =3-249+ 80

249=3-80+9
80=8-9+38
9=1-8+1
8§=8-1+0.

Therefore ged(827,249) = 1 and
1=9-1-8
— (249 —3-80) —1- (80 — 8-9)
=249 —4-80+8-9
— 249 — 4. (827 — 3-249) + 8- (249 — 3 - 80)
= 4827421249 — 24 -80
= 4827+ 21249 — 24 - (827 — 3 - 249)
— 928827+ 93 - 249,

Thus, if we take a =6 - (—28) = —168 and b = 6 - 93 = 558, then 827a + 249b = 6.

Solution to Ex. 9.a: First, we prove the identity by induction. If n = 1, then

nn+1)2n+1) 1-2:3 6 5, <=,
= = — = 1 =

6 6 6 ;Z ’
so the identity holds. Let n > 1 and assume that >, i* = w. Then

%iQ a4+ 1)(2n+1)
i=1

n(n+1)2n+1) + 6(n + 1)
6
(n+1)(n(2n+1)+6(n+1))
6
(n+1)(2n% + Tn + 6)
6
(n+1)(n+2)(2n+3)
6
m+1)((n+1)+1D)2n+1)+1)
; .
Therefore, by the principle of induction the identity holds for all positive integers n.
Now we give a combinatorial proof of the identity. Let n be a positive integer. We will prove that

322'2"(”;1).(271“)

by counting the number of elements in a set in two different ways. The proof will make clear why the
triangular number w appears. Afterwards we will give a second way of concluding the combinatorial

proof, which proves the identity in the form

n

63 i =n(n+1)(2n+1).



Consider the following three “step-pyramids”:

n—1
Pr=Jlin =i x [i,n—1] x [i,i + 1],

=0

n—1
Py=J00,n—i] x [n—i,n—i+1] x [i,n],

=0

n—1
Py=Jln—i—1,n—i x[0,n—i x[i+1,n+1].

=0

Let us call a unit cube of the form [i,i+ 1] x [j,j + 1] x [k, k 4+ 1] with ¢, j, k € Z an integral unit cube. Note
that each of Py, P2, P3 is a union of >, i? distinct integral unit cubes. (For example, consider P;. For each
i=0,...,n— 1, the solid box [i,n — i] x [i,n — i] x [i,i + 1] contains precisely (n — i)? integral unit cubes,
namely [j,7 + 1] x [k, k 4+ 1] X [¢,i + 1] for j,k =0,...,n —i — 1.) Moreover, no two of Py, P», P3 share an
integral unit cube. Therefore the union S = P; U P, U P contains precisely 3>, 7% integral unit cubes.
We will now count the number of integral unit cubes contained in S in a different way and show that it

is % - (2n 4+ 1). Consider the following two “step-triangular prisms”:
n—1
Ty = | Jlin] x [i,i + 1] x [0,1]
i=0
n—1
Ty = (J[0,n—d] x [n—i,n—i+1] x[0,1]
i=0
Each of T} and T% is a union of > I i = "(";1 distinct integral unit cubes, and T} and 75 do not

share any integral unit cubes. Now, S is the union of the n + 1 vertical translates of 77 by the vectors
(0,0,1),...,(0,0,n 4+ 1) and n vertical translates of T by the vectors (0,0,1),...,(0,0,n). Therefore the
number of integral unit cubes contained in S is (2n + 1) - w as required.

Alternatively, one can conclude the proof by observing that the solid box B [0,n] x[0,n+1] %[0, 2n+1]
is the union of S and a solid S’ congruent to S, which also contains 3 Z 1 i? integral unit cubes that are all
distinct from those contained in S. Therefore the number of mtegral unit cubes in B is the number contained
in S plus the number contained in S’, in other words 31" | i* +3> 1" 1 i? =6 . ,i% Since the number

of integral unit cubes in B is clearly n(n +1)(2n+ 1), we obtain 6, i* = n(n + 1)(2n +1).
Solution to Ex. 9.b:

If n = 0, then the left hand side of the identity is (") 20 = 1 and the right hand side is 3° = 1, so the
identity holds. Let n > 0 and suppose that y ;_ 0 ( )2Z = 3". Then

S0 R () ()

:1+§<if >2+§(”)

:1+;<>zz+l+"z“<>



Since Y7 (7)2" = 3", we have

n+1

?

=0

By the principle of induction, the identity holds for all non-negative integers n.

Now we give a combinatorial proof. Let n be a non-negative integer. Let B(n) (resp. T'(n)) denote the
set of binary (resp. ternary) strings of length n. For each ¢ = 0,...,n, let T;(n) denote the set of ternary
strings of length n with ¢ Os and 1s (and n — i 2s). Then we have the disjoint union T'(n) = [[;_, Ti(n).
Therefore 3" = |T'(n)| = .1, |T;(n)].

We will show that for each i = 0,...,n we have |Tj(n)| = (7)2". To show this, it suffices to construct a bi-
jection f; : Ty(n) — ({"™) x B(i), as the codomain has cardinality (7)2. Let & = 21 ..., € Tj(n). Define
ky < .-+ < k; so that xg,,..., 2z, € {0,1}. Then {k1,...,kn} € ({1"'1.""}) and T, ...z, € B(i). We define
filx) = ({k1,. .., ki}, @k, - .- xk,). This gives a well-defined map f; : T3(n) — ({1"'1,""}) x B(i). The map f;
is a bijection since we can write down its inverse. Indeed, for ({k1,...,ki},zp, ... ax,) € ({1"'1.""}) x B(1)
define by g;({k1,...,ki}, Yk, - --Yr,) to be the ternary string x; ...z, with z;, = yg, for alli =0,...,i and
xp=2forall ke {1,...,n}\ {k1,...,k;}. Then g; is the inverse of f;.

Solution to Ex. 11: It is straightforward to prove the identity by induction. We give a combintorial proof.
Let n be a non-negative integer. The set 2T\ {@} of non-empty subsets of [n+ 1] = {1,...,n + 1} is the
disjoint union
n
o[n+1] \ {2} = HS“
i=0

where S; is the set of non-empty subsets of [n + 1] whose largest element is ¢ + 1. For each i =0, ..., n, the
the map f; : S; — 2[4 defined by f;(A) = A\ {i + 1} is a bijection, so |S;| = 2'. Therefore

n

i=0 =0

i=0

as required.

Solution to Ex. 13: We proceed by induction on n. If n =1, then 9" — 5" =9 — 5 = 4, which is divisible
by 4. Let n be a positive integer and assume that 9™ — 5™ is divisible by 4. Let ¢ be the integer such that
9" — 5™ = 4q. Then

gl 5t —9.9" —5.5" =4.9" +5.(9" —5") =4 (9" + 5q).

Therefore 4 divides 9"+! — 571, By the principle of induction, we have that 4 divides 9" — 5" for all positive
integers n.

Solution to Ex. 15: If n =0, then n® + (n+ 1)* + (n +2)®> =0+ 1 + 8 = 9, which is divisible by 9. Let
n be a non-negative integer and assume that n® + (n + 1)® + (n + 2)3 is divisible by 9. Let ¢ be the integer
such that n® + (n +1)% + (n + 2)® = 9¢. Then

m+1P2+((n+D+1P2+(n+1D)+2°=n+13+n+2)>+(n+3)3

=m+1)>+n+2)7>+n*+ G’>3n2 + <2>3Qn+ <§>33
=9q+9n? +27n + 27

=9(q¢+n*+3n+3).

Thus, (n+1)>+((n+1)+1)3+((n+1)+2)? is divisible by 9. By the principle of induction, n3+(n+1)3+(n+2)3
is divisible by 9 for all non-negative integers n.



Solution to Ex. 17: If n = 0, then 3n? —n+2 =2 = f(0). If n =1, then 3n> —n+2=3-1+2=4 = f(1).
Let n > 1 be a integer and assume that f(k) = 3k? — k + 2 for all non-negative integers k < n. Then

F(n+1)=2f(n) — f(n—1)+6

=203n*—n+2)-Bn-12—-(n—-1)+2)+6

=6n—2n+4—3(n*—2n+1)—n+3)+6

=6n>—2n+4—(3n* —Tn+6)+6

=3n" +5n+4.
On the other hand, 3(n +1)2 = (n+1)+2 =3n*>+2n+1)—n+1=3n2+5n+4, so f(n+1) =
3(n+1)2 — (n + 1) + 2. Therefore, by the principle of strong induction we have f(n) = 3n% —n + 2 for all
non-negative integers n.
Solution to Ex. 19: We proceed by induction. When n = 0, we have (1 + ) =1 and 1 + nz = 1, so
(14+z)™ > 1+ nz. Let n be a non-negative integer and assume that (1 +x)™ > 1+ na. Since 1 +2 > 0 and
(I1+2)" > 1+ nz, we have

1+2)1+2)" > (14+2)(1+nx).

Therefore
A+2)"">A+2)1+nz)=1+nz+z+nz> =1+ n+Dz+nz®>1+ (n+ 1)z,

where the last inequality holds since nz? > 0. By the principle of induction, we have (14 x)" > 1 + na for
all non-negative integers n.



