Chapter 1

Fundamental Concepts

1.1. What Is a Graph?

How can we lay cable at minimum cost to make every telephone reachable
from every other? What is the fastest route from the national capital to each
state capital? How can n jobs be filled by n people with maximum total utility?
What is the maximum flow per unit time from source to sink in a network of
pipes? How many layers does a computer chip need so that wires in the same
layer don’t cross? How can the season of a sports league be scheduled into the
minimum number of weeks? In what order should a traveling salesman visit
cities to minimize travel time? Can we color the regions of every map using
four colors so that neighboring regions receive different colors?

These and many other practical problems involve graph theory. In this
book, we develop the theory of graphs and apply it to such problems. Our
starting point assumes the mathematical background in Appendix A, where
basic objects and language of mathematics are discussed.

THE DEFINITION

The problem that is often said to have been the birth of graph theory will
suggest our basic definition of a graph.

1.1.1. Example. The Konigsberg Bridge Problem. The city of Konigsberg was
located on the Pregel river in Prussia. The city occupied two islands plus ar-
eas on both banks. These regions were linked by seven bridges as shown on
the left below. The citizens wondered whether they could leave home, cross ev-
ery bridge exactly once, and return home. The problem reduces to traversing
the figure on the right, with heavy dots representing land masses and curves
representing bridges.
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The model on the right makes it easy to argue that the desired traversal
does not exist. Each time we enter and leave a land mass, we use two bridges
ending at it. We can also pair the first bridge with the last bridge on the land
mass where we begin and end. Thus existence of the desired traversal requires
that each land mass be involved in an even number of bridges. This necessary
condition did not hold in Konigsberg. - n

The Konigsberg Bridge Problem becomes more interesting when we show
in Section 1.2 which configurations have traversals. Meanwhile, the problem
suggests a general model for discussing such questions.

1.1.2. Definition. A graph ¢ is a triple consisting of a vertex set V(G), an
edge set E(G), and a relation that associates with each edge two vertices
(not necessarily distinct) called its endpoints.

We draw a graph on paper by placing each vertex at a point and repre-
senting each edge by a curve joining the locations of its endpoints.

1.1.3. Example. In the graph in Example 1.1.1, the vertex set is {x, y, z, w},
the edge set is {e1, €9, e3, e4, €5, €6, €7}, and the assignment of endpoints to edges
can be read from the picture.

Note that edges e; and e; have the same endpoints, as'do e3 and e4. Also,
if we had a bridge over an inlet, then its ends would be in the same land mass,
and we would draw it as a curve with both ends at the same point. We have
appropriate terms for these types of edges in graphs. ]

1.1.4. Definition. A loop is an edge whose endpoints are equal. Multiple
edges are edges having the same pair of endpoints.

A simple graph is a graph having no loops or multiple edges. We
specify a simple graph by its vertex set and edge set, treating the edge set
as a set of unordered pairs of vertices and writing e = uv (or ¢ = vu) for an
edge ¢ with endpoints « and v.

When « and v are the endpoints of an edge, they are adjacent and are
neighbors. We write u < v for “u is adjacent to v”.

In many important applications, loops and multiple edges do not arise, and
we restrict our attention to simple graphs. In this case an edge is determined by
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its endpoints, so we can name the edge by its endpoints, as stated in Definition
1.1.4. Thus in a simple graph we view an edge as an unordered pair of vertices
and can ignore the formality of the relation associating endpoints to edges. This
book emphasizes simple graphs.

1.1.5. Example. On the left below are two drawings of a simple graph. The
vertex set is {u, v, w, x, y}, and the edge set is {uv, uw, ux, vx, vw, xw, xy}.

The terms “vertex” and “edge” arise from solid geometry. A cube has ver-
tices and edges, and these form the vertex set and edge set of a graph. It is
drawn on the right below, omitting the names of vertices and edges. ]

*y

A graph is finite if its vertex set and edge set are finite. We adopt the con-
vention that every graph mentioned in this book is finite, unless explicitly
constructed otherwise.

1.1.6.* Remark. The null graph is the graph whose vertex set and edge set
are empty. Extending general theorems to the null graph introduces unnec-
essary distractions, so we ignore it. All statements and exercises should be
considered only for graphs with a nonempty set of vertices. [ ]

GRAPHS AS MODELS

Graphs arise in many settings. The applications suggest useful concepts
and terminology about the structure of graphs.

1.1.7. Example. Acquaintance relations and subgraphs. Does every set of six
people contain three mutual acquaintances or three mutual strangers? Since
“acquaintance” is symmetric, we model it using a simple graph with a vertex
for each person and an edge for each acquainted pair. The “nonacquaintance”
relation on the same set yields another graph with the “complementary” set of
edges. We introduce terms for these concepts. [ |

U u
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1.1.8. Definition. The complement G of a simple graph G is the simple graph
with vertex set V(G) defined by uv € E(G) if and only if uv ¢ E(G). A
clique in a graph is a set of pairwise adjacent vertices. An independent
set (or stable set) in a graph is a set of pairwise nonadjacent vertices.

In the graph G of Example 1.1.7, {u, x, y} is a clique of size 3 and {u, w} is
an independent set of size 2, and these are the largest such sets. These values
reverse in the complement G, since cliques become independent sets (and vice
versa) under complementation. The question in Example 1.1.7 asks whether it
is true that every 6-vertex graph has a clique of size 3 or an independent set of
size 3 (Exercise 29). Deleting edge ux from G yields a 5-vertex graph having no
clique or independent set of size 3.

1.1.9. Example. Job assignments and bipartite graphs. We have m jobs and
n people, but not all people are qualified for all jobs. Can we fill the jobs with
qualified people? We model this using a simple graph H with vertices for the
jobs and people; job j is adjacent to person p if p can do ;.

Each job is to be filled by exactly one person, and each person can hold at
most one of the jobs. Thus we seek m pairwise disjoint edges in H (viewing
edges as pairs of vertices). Chapter 3 shows how to test for this; it can’t be done
in the graph below.

The use of graphs to model relations between two disjoint sets has many
important applications. These are the graphs whose vertex sets can be parti-
tioned into two independent sets; we need a name for them. N |

. jobs

1.1.10. Definition. A graph G is bipartite if V(G) is the union of two disjoint
(possibly empty) independent sets called partite sets of G.

1.1.11. Example. Scheduling and graph coloring. Suppose we must schedule
Senate committee meetings into designated weekiy time periods. We cannot
assign two committees to the same time if they have a common member. How
many different time periods do we need?

We create a vertex for each committee, with two vertices adjacent when
their committees have a common member. We must assign labels (time periods)
to the vertices so the endpoints of each edge receive different labels. In the
graph below, we can use one label for each of the three independent sets of
vertices grouped closely together. The members of a clique must receive distinct
labels, so in this example the minimum number of time periods is three.

Since we are only interested in partitioning the vertices, and the labels
have no numerical value, it is convenient to call them colors. [ |
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1.1.12. Definition. The chromatic number of a graph G, written x(G), is
the minimum number of colors needed to label the vertices so that adjacent
vertices receive different colors. A graph G is k-partite if V(G) can be
expressed as the union of k£ (possibly empty) independent sets.

This generalizes the idea of bipartite graphs, which are 2-partite. Vertices
given the same color must form an independent set, so x(G) is the minimum
number of independent sets needed to partition V(G). A graph is k-partite if
and only if its chromatic number is at most k. We use the term “partite set”
when referring to a set in a partition into independent sets.

We study chromatic number and graph colorings in Chapter 5. The most
(in)famous problem in graph theory involves coloring of “maps”.

1.1.13. Example. Maps and coloring, Roughly speaking, a map is a partition
of the plane into connected regions. Can we color the regions of every map
using at most four colors so that neighboring regions have different colors?

To relate map coloring to graph coloring, we introduce a vertex for each
region and an edge for regions sharing a boundary The map question asks
whether the resulting graph must have chromatic number at most 4. The graph
can be drawn in the plane without crossing edges; such graphs are planar.
The graph before Definition 1.1.12 is planar; that drawing has a crossing, but
another drawing has no crossings. We study planar graphs in Chapter 6. ]

1.1.14. Example. Routes in road networks. We can model a road network using
a graph with edges corresponding to road segments between intersections. We
can assign edge weights to measure distance or travel time. In this context
edges do represent physical links. How can we find the shortest route from x
to y? We show how to compute this in Chapter 2.

If the vertices of the graph represent our house and other places to visit,
then we may want to follow a route that visits every vertex exactly once, so as
to visit everyone without overstaying our welcome. We consider the existence
of such a route in Chapter 7.

We need terms to describe these two types of routes in graphs. a

1.1.15. Definition. A path is a simple graph whose vertices can be ordered
so that two vertices are adjacent if and only if they are consecutive in the
“list. A cycle is a graph with an equal number of vertices and edges whose
vertices can be placed around a circle so that two vertices are adjacent if
and only if they appear consecutively along the circle.
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Above we show a path and a cycle, as demonstrated by listing the vertices
in the order x, b, a, z, y. Dropping one edge from a cycle produces a path. In
studying the routes in road networks, we think of paths and cycles contained
in the graph. Also, we hope that every vertex in the network can be reached
from every other. The next definition makes these concepts precise.

1.1.16. Definition. A subgraph of a graph G is a graph H such that V(H) C
V(G) and E(H) C E(G) and the assignment of endpoints to edges in H is
the same as in G. We then write H C G and say that “G contains H”.
A graph G is connected if each pair of vertices in G belongs to a path;
otherwise, G is disconnected.

The graph before Definition 1.1.12 has three subgraphs that are cycles. It
is a connected graph, but the graph in Example 1.1.9 is not.

MATRICES AND ISOMORPHISM

How do we specify a graph? We can list the vertices and edges (with end-
points), but there are other useful representations. Saying that a graph is
loopless means that multiple edges are allowed but loops are not.

1.1.17. Definition. Let G be aloopless graph with vertexset V(G) = {vy, ..., v,}
and edge set E(G) = {ey,...,en}. The adjacency matrix of G, written
A(G), is the n-by-n matrix in which entry g; ; is the number of edges in G
with endpoints {v;, v;}. The incidence matrix M(G) is the n-by-m matrix
in which entry m; ; is 1 if v; is an endpoint of ¢; and otherwise is 0.

If vertex v is an endpoint of edge ¢, then v and ¢ are incident. The
degree of vertex v (in a loopless graph) is the number of incident edges.

The appropriate way to define adjacency matrix, incidence matrix, or ver-
tex degrees for graphs with loops depends on the application; Sections 1.2 and
1.3 discuss this.

1.1.18. Remark. An adjacency matrix is determined by a vertex ordering. Ev-
ery adjacency matrix is symmetric (a; ; = a;; for all i, j). An adjacency matrix
of a simple graph G has entries 0 or 1, with Os on the diagonal. The degree of
v is the sum of the entries in the row for v in either A(G) or M(G). |

1.1.19. Example. For the loopless graph G below, we exhibit the adjacency
matrix and incidence matrix that result from the vertex ordering w, x, y, z and
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the edge ordering a, b, ¢, d, e. The degree of y is 4, by viewing the graph or by

summing the row for y in either matrix. ]
w x y z a b c d e
w0 1 1 0 11000
x{1 0 2 O 10110
y|l1l1 2 0 1 01111
z\0 0 10 0 00 01
A(G) M(G)

Presenting an adjacency matrix for a graph implicitly names the vertices
by the order of the rows; the ith vertex corresponds to the ith row and column.
Storing a graph in a computer requires naming the vertices.

Nevertheless, we want to study properties (like connectedness) that do not
depend on these names. Intuitively, the structural properties of G and H will
be the same if we can rename the vertices of G using the vertices in H so that G
will actually become H. We make the definition precise for simple graphs. The
renaming is a function from V(G) to V(H) that assigns each element of V (H)
to one element of V(G), thus pairing them up. Such a function is a one-to-one
correspondence or bijection (see Appendix A). Saying that the renaming turns
G into H is saying that the vertex bijection preserves the adjacency relation.

1.1.20. Definition. An isomorphism from a simple graph G to a simple
graph H is a bijection f: V(G) - V(H) such that uv € E(G) if and only if
f@)f(v) € E(H). We say “G is'isomorphic to H”, written G = H, if there
is an isomorphism from G to H.

1.1.21. Example. The graphs G and H drawn below are 4-vertex paths. Define

. the function f: V(G) - V(H) by f(w) = a, f(x) =d, f(y) =b, f(z) =c. To
show that f is an isomorphism, we check that f preserves edges and non-
edges. Note that rewriting A(G) by placing the rows in the order w, y, z, x and
the columns also in that order yields A(H), as illustrated below; this verifies
that f is an isomorphism.

Another isomorphism maps w, x, y, z to ¢, b, d, a, respectively. ]
w y c d
x b4 a b
w x y z w 'y 2z X a b ¢ d
w0 1 0 O w/f0 0 0 1 af0 0 0 1
x|{1 010 y|{0 0 1 1 b|]O0O 0 1 1
y{o0 1.0 1 zJ0 100 c{0 1 0 O
z\0 0 10 x\1 1 00 d\1 1 0 0
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1.1.22. Remark. Finding isomorphisms. As suggested in Example 1.1.21, pre-
senting the adjacency matrices with vertices ordered so that the matrices are
identical is one way to prove that two graphs are isomorphic. Applying a per-
mutation o to both the rows and the columns of A(G) has the effect of reordering
the vertices of G. If the new matrix equals A(H), then the permutation yields
an isomorphism. One can also verify preservation of the adjacency relation
without writing out the matrices.

In order for an explicit vertex bijection to be an isomorphism from G to H,
the image in H of a vertex v in G must behave in H as v doesin G. For example,
they must have the same degree. [ ]

1.1.23.* Remark. Isomorphism for non-simple graphs. The definition of iso-
morphism extends to graphs with loops and multiple edges, but the precise
statement needs the language of Definition 1.1.2.

An isomorphism from G to H is a bijection f that maps V(G) to
V(H) and E(G) to E(H) such each edge of G with endpoints # and v is
mapped to an edge with endpoints f(«) and f(v).

This technicality will not concern us, because we will study isomorphism only
in the context of simple graphs. ) g ]

Since H is isomorphic to G whenever G is isomorphic to H, we often say
“G and H are isomorphic” (meaning to each other). The adjective “isomorphic”
applies only to pairs of graphs; “G is isomorphic” by itself has no meaning (we
respond, “isomorphic to what?”). Similarly, we may say that a set of graphs is
“pairwise isomorphic” (taken two at a time), but it doesn’t make sense to say
“this set of graphs is isomorphic”.

A relation on a set S is a collection of ordered pairs from S. An equiv-
alence relation is a relation that is reflexive, symmetric, and transitive (see
Appendix A). For example, the adjacency relation on the set of vertices of a
graph is symmetric, but it is not reflexive and rarely is transitive. On the other
hand, the isomorphism relation, consisting of the set of ordered pairs (G, H)
such that G is isomorphic to H, does have all three properties.

1.1.24. Proposition. The isomorphism relation is an equivalence relation on
the set of (simple) graphs.

Proof: Reflexive property. The identity permutation on V(G) is an isomorphism
from G to itself. Thus G = G.

Symmetric property. If f: V(G) — V(H) is an isomorphism from G to H,
then f~!is an isomorphism from H to G, because the statement “uv € E(G) if
and only if f(u) f(v) € E(H)” yields “xy € E(H) if and only if f~1(x)f1(y) €
E(H)”. Thus G = H implies H = G.

Transitive property. Suppose that f: V(F) - V(G) and g: V(G) - V(H)
are isomorphisms. We are given “uv € E(F) if and only if f(u) f(v) € E(G)”
and “xy € E(G) if and only if g(x)g(y) € E(H)”. Since f is an isomorphism, for
every xy € E(G) we can find uv € E(F) such that f(u) = x and f(v) = y. This
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yields “uv € E(F) if and only if g(f(u))g(f(v)) € E(H)”. Thus the composition
g o f is an isomorphism from F to H. We have proved that F = Gand G = H
together imply F = H. ]

An equivalence relation partitions a set into equivalence classes; two
elements satisfy the relation if and only if they lie in the same class.

1.1.25. Definition. An isomorphism class of graphs is an equivalence class
of graphs under the isomorphism relation.

Paths with »n vertices are pairwise isomorphic; the set of all n-vertex paths
forms an isomorphism class.

1.1.26. Remark. “Unlabeled” graphs and isomorphism classes. When dis-
cussing a graph G, we have a fixed vertex set, but our structural comments
apply also to every graph isomorphic to G. Our conclusions are independent
of the names (labels) of the vertices. Thus, we use the informal expression
“unlabeled graph” to mean an isomorphism class of graphs.

When we draw a graph, its vertices are named by their physical locations,
even if we give them no other names. Hence a drawing of a graph is a member -
of its isomorphism class, and we just call it a graph. When we redraw a graph
to display some structural aspect, we have chosen a more convenient member
of the isomorphism class, still discussing the same “unlabeled graph”. ]

When discussing structure of graphs, it is convenient to have names and
notation for important isomorphism classes. We want the flexibility to refer to
the isomorphism class or to any representative of it.

1.1.27. Definition. The (unlabeled) path and cycle with n vertices are denoted
P, and C,, respectively; an n-cycle is a cycle with n vertices. A com-
plete graph is a simple graph whose vertices are pairwise adjacent; the
(unlabeled) complete graph with n vertices is denoted K,. A complete
bipartite graph or biclique is a simple bipartite graph such that two
vertices are adjacent if and only if they are in different partite sets. When
the sets have sizes r and s, the (unlabeled) biclique is denoted X, ;.

1.1.28.* Remark. We have defined a complete graph as a graph whose vertices
are pairwise adjacent, while a clique is a set of pairwise adjacent vertices in a
graph. Many authors use the terms interchangeably, but the distinction allows
us to discuss cliques in the same language as independent sets.
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In the bipartite setting, we simply use “biclique” to abbreviate “complete
bipartite graph”. The alternative name “biclique” is a reminder that a complete
bipartite graph is generally not a complete graph (Exercise 1). |

1.1.29. Remark. A graph by any other name . . . When we name a graph
without naming its vertices, we often mean its isomorphism class. Technically,
“H is-a subgraph of G” means that some subgraph of G is isomorphic to H (we
say “G contains a copy of H”). Thus C3 is a subgraph of K5 (every complete
graph with 5 vertices has 10 subgraphs isomorphic to C3) but not of K3 3.
Similarly, asking whether G “is” C, means asking whether G is isomorphic
to a cycle with n vertices. .

The structural properties of a graph are determined by its adjacency re-
lation and hence are preserved by isomorphism. We can prove that G and
H are not isomorphic by finding some structural property in which they dif-
fer. If they have different number of edges, or different subgraphs, or different
complements, etc., then they cannot be isomorphic.

On the other hand, checking that a few structural properties are the same
does not imply that G = H. To prove that G = H, we must present a bijection
f: V(G) —> V(H) that preserves the adjacency relation.

1.1.30. Example. Isomorphic or not? Each graph below has six vertices and
nine edges and is connected, but these graphs are not pairwise isomorphic.

To prove that G; = G, we give names to the vertices, specify a bijection,
and check that it preserves the adjacency relation. As labeled below, the bijec-
tion that sends u, v, w,x,y,z to 1, 3,5, 2, 4, 6, respectively, is an isomorphism
from G; to G3. The map sending u, v, w, x, y, z t0 6, 4, 2, 1, 3, 5, respectively, is
another isomorphism.

Both G; and Gg are bipartite; they are drawings of K33 (as is G4). The
graph G3 contains K3, so its vertices cannot be partitioned into two independent
sets. Thus G3 is not isomorphic to the others.

Sometimes we can test isomorphism quickly using the complements. Sim-
ple graphs G and H are isomorphic if and only if their complements are iso-
morphic (Exercise 4). Here Gi, Gz, G4 all consist of two disjoint 3-cycles and
are not connected, but Gj is a 6-cycle and is connected. [ ]

u v w 6 1
Xy z 4 3
G1 Go Gs3 Gy

1.1.31. Example. The number of n-vertex graphs. When choosing two vertices
from a set of size n, we can pick one and then the other but don’t care about the
order, so the number of ways is n(n — 1) /2. (The notation for the number of ways
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to choose k elements from n elements is (), read “n choose k”. These numbers
are called binomial coefficients; see Appendix A for further background.)

In a simple graph with a vertex set X of size n, each vertex pair may form
an edge or may not. Making the choice for each pair specifies the graph, so the
number of simple graphs with vertex set X is 20).

For example, there are 64 simple graphs on a fixed set of four vertices.
These graphs form only 11 isomorphism classes. The classes appear below in
complementary pairs; only P, is isomorphic to its complement. Isomorphism
classes have different sizes, so we cannot count the isomorphism classes of n-
vertex simple graphs by dividing 2(2) by the size of a class. [ ]

IINXX%N
(O 74 N 7O B O AN

DECOMPOSITION AND SPECIAL GRAPHS

The example Py, = P4 suggests a family of graph problems.

1.1.32. Definition. A graph is self-complementary if it is isomorphic to its
complement. A decomposition of a graph is a list of subgraphs such that
each edge appears in exactly one subgraph in the list.

An n-vertex graph H is self-complementary if and only if X, has a decom-
position consisting of two copies of H.

1.1.33. Example. We can decompose K5 into two 5-cycles, and thus the 5-cycle
is self-complementary. Any n-vertex graph and its complement decompose K,,.
Also K, ,-; and K,_;.decompose K,, even though one of these subgraphs omits
a vertex. On the right below we show a decomposition of K4 using three copies
of P3. Exercises 31-39 consider graph decompositions. [ |

1.1.34.* Example. The question of which complete graphs decompose into
copies of K3 is a fundamental question in the theory of combinatorial designs.
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On the left below we suggest such a decomposition for K. Rotating the triangle
through seven positions uses each edge exactly once.

On the right we suggest a decomposition of Kg into copies of P4. Placing
one vertex in the center groups the edges into three types: the outer 5-cycle, the
inner (crossing) 5-cycle on those vertices, and the edges involving the central
vertex. Each 4-vertex path in the decomposition uses one edge of each type; we
rotate the picture to get the next path. |

We referred to a copy of K3 as a triangle. Short names for graphs that arise
frequently in structural discussions can be convenient.

1.1.35. Example. The Graph Menagerie. A catchy “name” for a graph usually
comes from some drawing of the graph. We also use such a name for all other
drawings, and hence it is best viewed as a name for the isomorphism class.
Below we give names to several graphs with at most five vertices.

Among these the most important are the triangle (K3) and the claw (K 3).
We also sometimes discuss the paw (K 3 + ¢)and the kite (K4 — ¢); the others
arise less frequently.

The complements of the graphs in the first row are disconnected. The
complement of the house is P5, and the bull is self-complementary. Exercise 39

asks which of these graphs can be used to decompose Kg. |
triangle claw kite
house bull bowtie

In order to decompose H into copies of G, the number of edges of G must
divide the number of edges of H. This is not sufficient, since K5 does not
decompose into two copies of the kite.
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1.1.36. Definition. The Petersen graph is the simple graph whose vertices
are the 2-element subsets of a 5-element set and whose edges are the pairs
of disjoint 2-element subsets.

12

45 34
N VF

N
24

23 51

We have drawn the Petersen graph in three ways above. It is a useful
example so often that an entire book was devoted to it (Holton—Sheehan [1993]).
Its properties follow from the statement of its adjacency relation that we have
used as the definition.

1.1.37. Example. Structure of the Petersen graph. Using [5] = {1, 2, 3, 4, 5}
as our 5-element set, we write the pair {a, b} as ab or ba. Since 12 and 34 are
disjoint, they are adjacent vertices when we form the graph, but 12 and 23 are
not. For each 2-set ab, there are three ways to pick a 2-set from the remaining
three elements of [5], so every vertex has degree 3.

The Petersen graph consists of two disjoint 5-cycles plus edges that pair
up vertices on the two 5-cycles. The disjointness defirition tells us that
12, 34, 51, 23, 45 in order are the vertices of a 5-cycle, and similarly this holds
for the remaining vertices 13, 52, 41, 35, 24. Also 13 is adjacent to 45, and 52 is
adjacent to 34, and so on, as shown on the left above.

We use this name even when we do not specify the vertex labeling; in
essence, we use “Petersen graph” to name an isomorphism class. To show that
the graphs above are pair./ise isomorphic, it suffices to name the vertices of
each using the 2-element subsets of [5] so that in each case the adjacency rela-
tion is disjointness (Exercise 24). n

1.1.38. Proposition. If two vertices are nonadjacent in the Petersen graph,
then they have exactly one common neighbor.

Proof: Nonadjacent vertices are 2-sets sharing one element; their union § has
size 3. A vertex adjacent to both is a 2-set disjoint from both. Since the 2-sets
are chosen from {1, 2, 3, 4, 5}, there is exactly one 2-set disjoint from S. |

1.1.39. Definition. The girth of a graph with a cycle is the length of its short-
est cycle. A graph with no cycle has infinite girth.

1.1.40. Corollary. The Petersen graph has girth 5.

Proof: The graph is simple, so it has no 1-cycle or 2-cycle. A 3-cycle would
require three pairwise-disjoint 2-sets, which can’t occur among 5 elements.
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A 4-cycle in the absence of 3-cycles would require nonadjacent vertices with
two common neighbors, which Proposition 1.1.38 forbids. Finally, the vertices
12, 34, 51, 23, 45 yield a 5-cycle, so the girth is 5. ]

The Petersen graph is highly symmetric. Every permutation of {1, 2, 3, 4, 5}
generates a permutation of the 2-subsets that preserves the disjointness rela-
tion. Thus there are at least 5! = 120 isomorphisms from the Petersen graph
to itself. Exercise 43 confirms that there are no others.

1.1.41.* Definition. An automorphism of G is an isomorphism from G to G.
A graph G is vertex-transitive if for every pair u, v € V(G) there is an
automorphism that maps u to v.

The automorphisms of G are the permutations of V(G) that can be applied
to both the rows and the columns of A(G) without changing A(G).

1.1.42.* Example. Automorphisms. Let G be the path with vertex set
{1, 2, 3, 4} and edge set {12, 23, 34}. This graph has two automorphisms: the
identity permutation and the permutation that switches 1 with 4 and switches
2 with 3. Interchanging vertices 1 and 2 is not an automorphism of G, although
G is isomorphic to the graph with vertex set {1, 2, 3, 4} and edge set {21, 13, 34}.

In KX, ;, permuting the vertices of one partite set does not change the ad-
jacency matrix; this leads to r!s! automorphisms. When r = s, we can also
interchange the partite sets; K, , has 2(!)> automorphisms.

The biclique K, ; is vertex-transitive if and only if r = 5. If n > 2, then P, is
not vertex-transitive, but every cycle is vertex-transitive. The Petersen graph
is vertex-transitive. [ ]

We can prove a statement for every vertex in a vertex-transitive graph by
proving it for one vertex. Vertex-transitivity guarantees that the graph “looks
the same” from each vertex.

EXERCISES

Solutions to problems generally require clear explanations written in sentences.
The designations on problems have the following meanings:

“(=)” = easier or shorter than most,

“(+)” = harder or longer than most,

“()” = particularly useful or instructive,

“(x)” = involves concepts marked optional in the text.
The exercise sections begin with easier problems to check understanding, ending with
a line of dots. The remaining problems roughly follow the order of material in the text.

1.1.1. (-) Determine which complete bipartite graphs are complete graphs.

1.1.2, (—) Write down all possible adjacency matrices and incidence matrices for a 3-
vertex path. Also write down an adjacency matrix for a path with six vertices and for a
cycle with six vertices.
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1.1.3. (-) Usingrectangular blocks whose entries are all equal, write down an adjacency
matrix for K,, ,,.

1.1.4. (-) From the definition of isomorphism, prove that G = H if and only if G = H.

1.1.5. (-) Prove or disprove: If every vertex of a simple graph G has degree 2, then G
is a cycle.

1.1.6. (—) Determine whether the graph below decomposes into copies of P;.

1.1.7. (-) Prove that a graph with more than six vertices of odd degree cannot be
decomposed into three paths.

1.1.8. (—) Prove that the 8-vertex graph on the left below decomposes into copies of K 3
and also into copies of P;.

1.1.9. (-) Prove that the graph on the right above is isomorphic to the complement of
the graph on the left.

1.1.10. (—) Prove or disprove: The complement of a simple disconnected graph must be
connected.

1.1.11. Determine the maximum size of a clique and the maximum size of an indepen-
dent set in the graph below.

1.1.12. Determine whether the Petersen graph is bipartite, and find the size of its
largest independent set.

1.1.13. Let G be the graph whose vertex set is the set of k-tuples with coordinates
in {0, 1}, with x adjacent to y when x and y differ in exactly one position. Determine
whether G is bipartite.

1.1.14. (!) Prove that removing opposite corner squares from an 8-by-8 checkerboard
leaves a subboard that cannot be partitioned into 1-by-2 and 2-by-1 rectangles. Using
the same argument, make a general statement about all bipartite graphs.
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1.1.15. Consider the following four families of graphs: A = {paths}, B = {cycles}, C =
{complete graphs}, D = {bipartite graphs}. For each pair of these families, determine
all isomorphism classes of graphs that belong to both families.

1.1.16. Determine whether the graphs below are isomorphic.

V7
A\

1.1.17, Determine the number of isomorphism classes of simple 7-vertex graphs in
which every vertex has degree 4.

1.1.18. Determine which pairs of graphs below are isomorphic.

d c v . 0 o
5 f y v n B
e f ' t X
¢ 14
a b $ w € )

1.1.19. Determine which pairs of graphs below are isomorphic.

ks

1.1.20. Determine which pairs of graphs below are isomorphic.

% @ / \
N

%\ /]

N X ¥

1.1.21. Determine whether the graphs below are bipartite and whether they are iso-
morphic. (The graph on the left appears on the cover of Wilson-Watkins [1990].)

)
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1.1.22. (!) Determine which pairs of graphs below are isomorphic, presenting the proof
by testing the smallest possible number of pairs.

D0 Do R

1.1.23. In each class below, determine the smallest n such that there exist nonisomor-
phic n-vertex graphs having the same list of vertex degrees.

(a) all graphs, (b) loopless graphs, (c) simple graphs.

(Hint: Since each class contains the next, the answers form a nondecreasing triple. For
part (c), use the list of isomorphism classes in Example 1.1.31.)

1.1.24. (!) Prove that the graphs below are all drawings of the Petersen graph (Definition
1.1.36). (Hint: Use the disjointness definition of adjacency.)

& A B

1.1.25. (!) Prove that the Petersen graph has no cycle of length 7.

1.1.26. (!) Let G be a graph with girth 4 in which every vertex has degree k. Prove that
G has at least 2k vertices. Determine all such graphs with exactly 2k vertices.

1.1.27. (!) Let G be a graph with girth 5. Prove that if every vertex of G has degree at
least k, then G has at least k% + 1 vertices. For k = 2 and k = 3, find one such graph
with exactly k2 + 1 vertices.

1.1.28. (+) The Odd Graph Oy. The vertices of the graph O, are the k-element subsets
of {1,2,..., 2k + 1}. Two vertices are adjacent if and only if they are disjoint sets. Thus
O, is the Petersen graph. Prove that the girth of O, is 6 if k > 3.

1.1.29. Prove that every set of six people contains (at least) three mutual acquaintances
or three mutual strangers.

1.1.30. Let G be a simple graph with adjacency matrix A and incidence matrix M. Prove
that the degree of v; is the ith diagonal entry in A? and in MM7. What do the entries in
position (i, j) of A2 and M M7 say about G?

1.1.31. (!) Prove that a self-complementary graph with n vertices exists if and only if n
or n — 1 is divisible by 4. (Hint: When r is divisible by 4, generalize the structure of P,
by splitting the vertices into four groups. For n = 1 mod 4, add one vertex to the graph
constructed forn — 1.)

1.1.32. Determine which bicliques decompose into two isomorphic subgraphs.

1.1.33. Forn =5,n =17, and n = 9, decompose K, into copies of C,.
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1.1.34. (!) Decompose the Petersen graph into three connected subgraphs that are pair-
wise isomorphic. Also decompose it into copies of Py.

1.1.35. (!) Prove that K, decomposes into three pairwise-isomorphic subgraphs if and
only if n + 1 is not divisible by 3. (Hint: For the case where 7 is divisible by 3, split the
vertices into three sets of equal size.)

1.1.36. Prove that if K, decomposes into triangles, then n — 1 or n — 3 is divisible by 6.

1.1.37. Let G be a graph in which every vertex has degree 3. Prove that G has no
decomposition into paths that each have at least 5 vertices.

1.1.38. (!) Let G be a simple graph in which every vertex has degree 3. Prove that G
decomposes into claws if and only if G is bipartite.

1.1.39. (+) Determine which of the graphs in Example 1.1.35 can be used to form a
decomposition of Kg into pairwise-isomorphic subgraphs. (Hint: Each graph that is not
excluded by some divisibility condition works.)

1.1.40. (x) Count the automorphisms of P,, C,, and K,,.

1.1.41. (x) Construct a simple graph with six vertices that has only one automorphism.
Construct a simple graph that has exactly three automorphisms. (Hint: Think of a
rotating triangle with appendages to prevent flips.)

1.1.42. (x) Verify that the set of automorphisms of G has the following properties:
a) The composition of two automorphisms is an automorphism.
b) The identity permutation is an automorphism.
¢) The inverse of an automorphism is also an automorphism.
d) Composition of automorphisms satisfies the associative property.
(Comment: Thus the set of automorphisms satisfies the defining properties for a group.)

1.1.43. (x) Automorphisms of the Petersen graph. Consider the Petersen graph as de-
fined by disjointness of 2-sets in {1, 2, 3,4, 5}. Prove that every automorphism maps
the 5-cycle with vertices 12, 34,51, 23,45 to a 5-cycle with vertices ab, cd, ea, bc, de
determined by a permutation of {1, 2, 3, 4, 5} taking elements 1,2,3,4,5 to a, b,c,d, e,
respectively. (Comment: This implies that there are only 120 automorphisms.)

1.1.44. () The Petersen graph has even more symmetry than vertex-transitivity. Let
P = (ug, uy, uz,u3) and Q = (v, vy, vg, v3) be paths with three edges in the Petersen
graph. Prove that there is exactly one automorphism of the Petersen graph that maps
u; intov; fori =0, 1, 2, 3. (Hint: Use the disjointness description.)

1.1.45. () Construct a graph with 12 vertices in which every vertex has degree 3 and
the only automorphism is the identity.

1.1.46. (x) Edge-transitivity. A graph G is edge-transitive if for all e, f € E(G) there
is an automorphism of G that maps the endpoints of e to the endpoints of f (in either or-
der). Prove that the graphs of Exercise 1.1.21 are vertex-transitive and edge-transitive.
(Comment: Complete graphs, bicliques, and the Petersen graph are edge-transitive.)

1.1.47. (%) Edge-transitive versus vertex-transitive.

a) Let G be obtained from K, with n > 4 by replacing each edge of K, with a path
of two edges through a new vertex of degree 2. Prove that G is edge-transitive but not
vertex-transitive.

b) Suppose that G is edge-transitive but not vertex-transitive and has no vertices
of degree 0. Prove that G is bipartite.

¢) Prove that the graph in Exercise 1.1.6 is vertex-transitive but not edge-transitive.



