Appendix A
Mathematical Background

This appendix summarizes aspects of language and mathematics that are
not directly part of graph theory but provide useful background for learning
graph theory. Where appropriate, we mention examples in the context of
graphs, so it is best to read this appendix in conjunction with Chapter 1. This
presentation is modeled on material in the first half of Mathematical Thinking,
by John P. D’Angelo and Douglas B. West (Prentice—Hall, second edition, 2000).

SETS

Our most primitive mathematical notion is that of a set. It is so funda-
mental that we cannot define it in terms of simpler concepts. We think of a set
as a collection of distinct objects with a precise description that provides a way
of deciding (in principle) whether a given object is in it.

A.1. Definition. The objects in a set are its elements or members. When x
is an element of A, we write x € A and say “x belongs to A”. When x is
not in A, we write x ¢ A. If every element of a set B belongs to A, then B
is a subset of A, and A contains B; we write B C A or A D B.

For example, we may speak of the set A of graphs with n vertices. When
we impose an additional restriction, such as requiring that the graphs also be
connected, we obtain a subset of A.

When we list the elements of a set explicitly, we put braces around the list;
“A = {—1, 1)” specifies the set A consisting of the elements —1 and 1. Writing
the elements in a different order does not change a set. We write x,y € S to
mean that both x and y are elements of S.

A.2. Example. We use the characters N, Z, Q, and R to name the sets of natu-
ral numbers, integers, rational numbers, and real numbers, respectively.
Each set in this list is contained in the next, sowe write NCZ C QC R.
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We treat these sets and their elements as familiar objects. By conven-
tion, 0 is not a natural number, so N = {1,2,3,...}. The set of integers is
Z =1{...,-2,-1,0,1,2,...}. The set Q of rational numbers is the set of real
numbers expressible as a/b with a, b € Z and b # 0.

We also take as familiar the elementary arithmetic properties of these
number systems. These include the rules that permit algebraic manipulation
of expressions, equalities, and inequalities. They also include elementary prop-
erties about divisibility of integers. [ ]

A.3. Definition. Sets A and B are equal, written A = B, if they have the same
elements. The empty set, written @, is the unique set with no elements.
A proper subset of a set A is a subset that is not A itself.

The empty set is a subset of every set, and every set is a subset of itself. The
definition of subgraph (Definition 1.1.16) is similar. Every graph is a subgraph
of itself, but something must be discarded to obtain a proper subgraph.

“Solving a mathematical problem” often means describing a given set more
simply. We must show that the set of objects satisfying the new description is
equal to the given set.

A.4. Remark. Equality of sets. To prove that A = B, we prove that every
element of A is in B and that every element of B is in A; in other words, A C B
and B C A. It also suffices to turn the description of one set into the description
of the other by operations that do not change membership.

This book proves many characterization theorems for classes of graphs.
Such a theorem states that two sets are the same (example: the set of bipartite
graphs is equal to the set of graphs without odd cycles—Theorem 1.2.18).

Often, a mathematical model defines a set S of solutions; these are the
objects that satisfy the conditions of the problem. We want to list or describe
the solutions explicitly; this specifies a set 7. The problem is to show that
S =T. Proving § C T means showing that every solution belongs to 7. Proving
T C S means showing that every member of T is a solution. ]

A.5. Remark. Specifying a set. Given a set A, we may want to specify a subset
S consisting of the elements of A that satisfy a given condition. To do so, we
write “S = {x € A: condition(x)}”. We read this as “S is the set of elements x in A
such that x satisfies ‘condition’”. For example, the expression {n € N : n? < 25}
is another way to name the set {1, 2, 3, 4, 5}.

In this format, the set A is the universe for x; we can drop this part of the
notation when the context makes it clear. For example, {n2: n € N} is the set of
positive integers squares. [ |

Many special sets have common names and/or notation.

A.6. Definition. Whena, b € Z,we write {a, ..., b} for{i € Z:a <i < b}. When
n € N, we write [n] for {1, ..., n}; also [0] = @. The set of even numbers
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is {2k: k € Z}. The set of odd numbers is {2k + 1: k € Z}. The parity of
an integer states whether it is even or odd.

Note that 0 is an even number. We say “even” and “odd” for numbers only
when discussing integers. Every integer is even or odd; none is both.

A.7. Definition. A partition of aset A is alist Ay, ..., A; of subsets of A such
that each element of A appears in exactly one subset in the list.

The set of even numbers and the set of odd numbers partition Z. In a par-
tition of A into Ay, ..., A, the sets Ay, ..., A; in the list are called “blocks” or
“classes” or “parts” or “partite sets”. The use of “blocks” is common in combi-
natorics, but graph theory has another definition for the word “block”, so we
usually use “classes” or “sets”. “Partite sets” is used only for the sets in a
partition of the vertex set of a graph into independent sets.

A.8. Remark. Conventions about universes. When we write “[n]”, it is under-
stood that » is a nonnegative integer. When we speak of n as the number of
vertices in a graph, by context we know that n is a natural number. When we
say only that a number is positive without specifying the number system con-
taining it, we mean that it is a positive real number. Thus, “consider x > 0”
means “let x be a positive real number”, but in “For n > 2, let G be a n-vertex
graph” our convention is that n € N. |

A.9. Definition. A set A is finite if there is a one-to-one correspondence be-
tween A and [n] for some n € NU {0}. This n is the size of A, written |A|.

Another elementary property of number systems is that a set A cannotbe in
one-to-one correspondence with both [n] and [n] when m # n. Thus the size of a
finite set is a well-defined integer. Counting a set means determining its size.

A.10. Remark. “If” in definitions. It is a common convention in definining
mathematical properties to say that an object has a certain property if it sat-
isfies a certain condition. Subsequently, the condition can be substituted for
the property and vice versa, so the “if” really means “if and only if”. This con-
ventional usage in definitions reflects the notion that the concept being defined
does not exist until the definition is complete. ]

There are several natural ways to obtain new sets from old sets.

A.11. Definition. Let A and B be sets. Their union A U B consists of all
elements in A or in B (or both). Their intersection A N B consists of all
elements in both A and B. Their difference A — B consists of the elements
of A that are not in B. Their symmetric difference AsB is the set of
elements belonging to exactly one of A and B.

Two sets are disjoint if their intersection is the empty set @. If a set A
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is contained in some universe U under discussion, then the complement
A of A is the set of elements of U not in A.

When we speak of taking the “complement” of a simple graph, we are keep-
ing the vertex set unchanged and taking the complement of the edge set (viewed
as pairs of vertices) within the universe of vertex pairs. Other times we speak of
the complement S of a set of vertices S in G; in this case we mean S = V(G) — S

A.12. Remark. In a Venn diagram, an outer box represents the universe
under consideration, and regions within the box correspond to sets. Non-
overlapping regions correspond to disjoint sets. The four regions in the Venn
diagram for two sets A and B represent AN B, (AU B), A— B,and B — A. Note
that AAB=(A— B)U (B — A),

Since A— B consists of the elementsin A and notin B, we have A—B = ANB.
Similarly, the diagram suggests that B is the union of A — B and (A U B), which
are disjoint. It also suggests that the symmetric difference AaB is obtained
from the union by deleting the intersection. ]

(AU B)*°

A.13. Remark. When A and B are sets, AaB = (AU B) — (AN B). The union
starts with all elements in at least one of A and B; we delete those in both.
When A and B are finite sets, |A U B|+|A N B| = |A| +|B|. Each element of
the intersection is counted twice on both sides, each element of the symmetric
difference is counted once on both sides, and no other elements are counted. B

A.14. Definition. A list with entries in A consists of elements of A in a spec-
ified order, with repetition allowed. A k-tuple is a list with k entries. We
write A* for the set of k-tuples with entries in A. When A = {0 1}, Ak is
the set of binary k-tuples

An ordered pair (x, y) is a list with two entries. The cartesian
product of sets S and T, written § x T, is the set {(x,y): x € S,y € T}.

Note that A2 = A x A and A* = {(x1, ..., x): x; € A}). Weread “x;” as “x sub
i”. When § = T = Z, the cartesian product S x T is the integer lattlce, the
set of points in the plane with integer coordinates.



Appendices 475

QUANTIFIERS AND PROOFS

Roughly speaking, a mathematical statement is a statement that can be
determined to be true or false. This requires correct mathematical grammar,
and it requires that variables be “quantified”.

For example, the sentence x> — 4 = 0 cannot be determined to be true
or false because we do not know the value of x. It becomes a mathematical
statement if we precede it with “When x = 3,” or “For x € {2, —2},” or “For some
integer x,”.

If a sentence P(x) becomes a mathematical statement whenever the vari-
able x takes a value in the set S, then the two sentences below are mathematical
statements.

“For all x in S, the sentence P(x) is true.”
“For some x in S, the sentence P(x) is true.”

A.15. Definition. In the statement “For all x in S, P(x) is true”, the variable x
is universally quantified. We write this as (Vx € S)P(x) and say that V
is a universal quantifier. In “For some ¥ in S, P(x) is true”, the variable
x is existentially quantified. We write this as (3x € S) P(x) and say that
3 is an existential quantifier. The set of allowed values for a variable is
its universe.

A.16. Remark. English words that express quantification. Typically, “every”
and “for all” represent universal quantifiers, while “some” and “there is” rep-
resent existential quantifiers. We can also express universal quantification by
referring to an arbitrary element of the universe, as in “Let x be an integer”,
or “A student failing the exam will fail the course”. Below we list common
indicators of quantification.

Universal (V) (helpers) Existential (3) (helpers)
for [all], for every for some

if then there exists such-that
whenever, for, given at least one for which
every, any satisfies some satisfies
a, arbitrary must, is has a such that
let be

The “helpers” may be absent. Consider “The square of a real number is non-
negative”. This means x? > 0 for every x € R; it is not a statement about one
real number and cannot be verified by an example. When we write “A bipartite
graph has no odd cycle”, we mean “in every bipartite graph there is no odd cy-
cle”. When we write “Let G be a bipartite graph”, we mean that every bipartite
graph is under consideration. When we take an “arbitrary” vertex in a graph,
we are considering each one individually. When we discus an “arbitrary” pair
of vertices in a graph, we are considering each pair, one at a time.

The difference between “for every G” and “for every graph G” is that the
latter specifies the universe for the universally quantified variable G. n
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Existential quantifiers state lower bounds; “there is a” and “there are two”
mean “at least one” and “at least two”. Phrases like “there is a unique” and
“there are exactly two” indicate equality. Sometimes equality is clear from
context, but it does not hurt to make it explicit when it is intended.

A statement may have more than one quantifier. Consider the sentence
“There are triangle-free graphs with arbitrarily large chromatic number”.
Phrased using explicit quantifiers, this means “For every n € N, there ex-
ists a triangle-free graph with chromatic number at least n”. The expression
“arbitrarily large” often conveys an implicit universal quantifier in this way.

In contrast, the expression “sufficiently large” imposes an implicit existen-
tial quantifier. The statement “2" > n1°0 when n is sufficiently large” means
“There exists N € N such that for all n > N, the inequality 2" > n'%% holds”.

A.17. Remark. The meaning of a statement with more than one quantifier
depends on their order. Compare these two sentences:

“For every graph G, there exists m € N such that every v € V(G) has degree at most m”
“There exists m € N such that for every graph G, every v € V(G) has degree at most m”

The first statement is true; the second is false. Every (finite) graph has a max-
imum degree, but there is no maximum over all graphs. We write the two
sentences in logical notation as

(VG)@3m € N)(Yv € V(G))(dg(v) < m).
(3m € N)(VG)(Yv € V(G))(dg(v) < m).

In English, quantifiers often appear at the ends of sentence to enhance
readability, as in “I feel happy every time I learn something new.” In sentences
with abstract concepts and more than one quantifier, we adopt conventions
about order to avoid confusion. Quantifiers apply in the order in which they are
stated. In particular, a variable is chosen in terms of the preceding variables.

For example, in (VG)(Am € N)P(G, m), we have the freedom to choose m
after knowing what G is. In (3m € N)(VG) P(G, m), we must choose a single m
that works for all G. u

A.18. Remark. Negation of quantified statements. The logical symbol for nega-
tion is —. If it is false that all x € S make P(x) true, then there must be some
x € § such that P(x) is false. Similarly, negating an existentially quantified
statement yields a universally quantified negation. In notation,

=[(Vx € §)P(x)] has the same meaning as (Ix € S)(—P(x)).
—[(3x € S)P(x)] has the same meaning as (Vx € S)(—=P(x)).

The universe of quantification does not change when the statement is negated.
For example, the false statement in Remark A.17 was

3m e N(VG)(Vv € V(G))(dg(v) < m).

Its negation is the same as (Vm € N)(3G)[—((Vv € V(G))(dg(v) < m))], which
we further simplify to (Vm € N)(3G)(3v € V(G))(dg(v) > m). This statement is
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“for every natural number m, there is some graph having a vertex with degree
greater than m”, which is true. |

Logical connectives permit us to build compound statements.
A.19. Definition. Logical connectives. In the following table, we define the

operations named in the first column by the truth values specified in the
last column.

Name Symbol Meaning Condition for truth
Negation -P not P P false

Conjunction PAQ PandQ both true

Disjunction PvQ PorQ at least one true
Biconditional P& Q Pif&onlyif 0 same truth value
Conditional P = Q P implies Q Q true whenever P true

A.20. Remark. Conjunction and disjunction are quantifiers over the truth of
their component statements. A conjunction (“and”) is true precisely when all of
its component statements are true. A disjunction (“or”) is true precisely when
there exists a true statement among its components. Our understanding of
negation thus yields logical equivalence between —(P A Q) and (—P) VvV (—Q)
and between —(P v Q) and (—P) A (—Q). [ |

A.21. Definition. In the conditional statement P = Q, we call P the hypoth-
esis and Q the conclusion. The statement Q = P is the converse of
P=Q.

A.22. Remark. Conditionals. Conditional statements are the only type in Def-
inition A.19 whose meaning changes when P and Q are interchanged. There
is no general implication between P = Q and its converse Q = P. Consider
these three statements about a graph G: P is “G is a path”, Q is “G is bipar-
tite”, and R is “G has no odd cycles”. Here P = Q is true but Q = P is false.
On the other hand, both Q = R and R = Q are true.

Note that here G is a variable. We have dropped G from the notation for
the statements because the context is clear. The precise meaning of P = Q
using G is (VG)(P(G) = 0(G)).

A conditional statement is false when and only when the hypothesis is true
and the conclusion is false. Thus the meaning of P = Q is (—P) v Q; the two
are logically equivalent. Every conditional statement with a false hypothesis is
true, regardless of whether the conclusion is true. The meaning of —~(P = Q)
is P A (—Q).

Below we list ways to say P = Q in English. [ |

If P (is true), then Q (is true). P is true only if Q is true.
Q is true whenever P is true. P is a sufficient condition for Q.
Q is true if P is true. Q is a necessary condition for P.
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The business of mathematics is proving implications. Note that univer-
sally quantified statements can be interpreted as conditional statements. The
statement “(VG € G)(P(G))” has the same meaning as “If G € G, then P(G)”
(consider the two statements when G is the family of bipartite graphs and P(G)
is the assertion that G has no odd cycles).

The basic proof methods come from the meaning of conditional statements.

A.23. Remark. Proving implications. The direct method of proving P = Q
is to assume that P is true and then to apply mathematical reasoning to deduce
that Q is true. When P is “x € A” and Q is “Q(x)”, the direct method considers
an arbitrary x € A and deduces Q(x). There is no “proof by example”. The proof
must apply to every member of A as a possible instance of x.

The contrapositive of P = Q is ~Q = -—~P. Each of these statements
fails only when P is true and Q is false. Thus they are equivalent; we can prove
P = Q by proving -Q = —P. This is the contrapositive method.

We have observed that (P = Q) & —[P A (—Q)]. Hence we can prove
P = Q by proving that P and —Q cannot both be true. We do this by obtain-
ing a contradiction after assuming both P and —Q. This is the method of
contradiction.

The two latter methods are indirect proof. When the direct method for
P = Q doesn’t seem to work, we say “Well, suppose not”. At that point we are
starting from the assumption —Q. We need not know in advance whether we
are seeking to derive —P (contrapositive method) or seeking to use P and —Q
to obtain a contradiction. ]

Examples of each of these methods appear in the text. Indirect proof is
promising when the negation of the conclusion provides useful information.
This approach may be easier than finding a direct proof, because both the hy-
pothesis and the negation of the conclusion can be used. If the contradiction
we obtain is the impossibility of our original assumption —Q, then usually we
can rewrite the proof in simpler language as a direct proof. If instead we obtain
- P, then we have proved the contrapositive.

A.24. Remark. Biconditional statements. The biconditional statement “P &
Q” has the same meaning as “(P = Q) A (Q = P)”. We read it as “P if and
only if Q”, where “Q = P”is “P if 0”, and “P = Q”is “P only if Q”.

Although sometimes we can prove a biconditional statement by a chain of
equivalences, usually we prove a conditional statement and its converse; the
latter is also a conditional statement. For each we have the three fundamental
methods above. To prove P & Q, we must prove one statement in each column
in the table below. The lines are the direct method, the contrapositive method,
and the method of contradiction, respectively. Proving two statements in the
same column would amount to proving the same statement twice. ]

P=0 O=P

-Q = -P -P = -0
(P A=Q) —~(Q A—P)
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Students sometimes wonder about the precise meanings of words like “the-
orem”, “lemma”, and “corollary” that are used to designate mathematical re-
sults. In Greek, lemma means “premise” and theorema means “thesis to be
proved”. Thus a theorem is a major result requiring some effort. A lemma is
a lesser statement, usually proved in order to help prove other statements. A
proposition is something “proposed” to be proved; typically this takes less ef-
fort than a theorem. The word corollary comes from Latin, as a modification of
a word meaning “gift”; a corollary follows easily from a theorem or proposition,
without much additional work.

INDUCTION AND RECURRENCE

Many statements having a natural number as a variable can be proved
using the technique of induction. In Theorem 1.2.1, we describe the strong ver-
sion of induction. Here we review the ordinary version that most students learn
when they first encounter induction. It involves the Well Ordering Property for
the natural numbers, which states that every nonempty subset of N has a least
element. We take this as an axiom, as part of our intuitive understanding of
what N is. Although we then state the Principle of Induction as a Theorem, in
reality it is equivalent to the Well Ordering Property for N.

A.25. Theorem. (Principle of Induction) For each natural number n, let P(n)
be a mathematical statement. If properties (a) and (b) below hold, then for
each n € N the statement P(n) is true.

a) P(1) is true.
b) For k € N, if P(k) is true, then P(k + 1) is true.

Proof: If P(n) is not true for all n, then the set of natural numbers where it fails
is nonempty. By the Well Ordering Property, there is a least natural number
in this set. By (a), this number cannot be 1. By (b), it cannot be bigger than 1.
The contradiction implies that P(n) is true for all n. [ |

When applying the method of induction, we prove statement (a) in Theorem
A.25 as the basis step and statement (b) as the induction step. Statement (b)
is a conditional statement, and its hypothesis (“P(k)” is true) is the induction
hypothesis. We present one example in rather formal language.

A.26. Proposition. If S is a set of n lines i: the plane such that every two have
exactly one common point and no three have a common point, then S cuts
the plane into 1 + n(n + 1)/2 regions.

Proof: We use induction on n to prove the claim for all » € N. Let P(n) be the
statement that the claim holds for all such sets of » lines.

Basis step (P(1)). With one line the number of regions is 2, which equals
1+11+1)/2.

Induction step (P(k) = P(k + 1)). The statement P (k) is the induction
hypothesis. Let § be a set of k + 1 lines meeting the conditions. Select a line L
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in S (the dashed line in the figure), and let S’ be the set of & lines obtained by
deleting L from S.

Since S’ meets the conditions, the induction hypothesis states that S’ cuts
the plane into 1+ k(k + 1)/2 regions. When we replace L, some regions are cut.
The increase in the number of regions is the number of regions that L cuts.
It moves from one of these regions to another each time it crosses a line in S'.
Since L crosses each line in S’ once, the lines in S’ cut L into k& + 1 pieces. Each
piece corresponds to a region that L cuts.

Thus the number of regions formed by S is & + 1 more than the number of
regions formed by S’. The number of regions formed by S is

1+kk+1)/24+Gk+1) =14+ *k+D(k+2)/2.

We have proved that P (k) implies P(k + 1).
By the principle of induction, the claim holds for every n € N. |

A.27. Remark. The discussion of Proposition A.26 suggests several comments
about proof by induction. Note first that we could also have used n = 0 as the
basis step to prove the statement for all nonnegative n.

It is not immediately obvious from the statement of the problem that the
number of regions is the same for all sets of n lines, but this follows because we
proved a formula for this number that depends only on #.

In the proof of the induction step, we began with L, an instance of the
larger-sized problem. This approach ensures that we have considered all such
instances; we return to this point shortly.

We proved P(k + 1) from P(k) as suggested by statement (b) of Theorem
A.25. In most examples in this book, we use a different phrasing that is more
consistent with strong induction as introduced in Section 1.2. To prove P(n)
for all n € N, in this example we would write “Basis step: n = 1. . and
then “Induction step: n > 1. . . .”. In the proof of the induction step, we would
consider an arbitrary set S of n lines and apply the induction hypothesis to the
set S’ obtained by deleting one line L.

The content of the proof is the same in both phrasings. The phrasing that
we have just described emphasizes the item about which the claim is proved.
The basis step directly verifies the claim for the smallest value of the induction
parameter. When the parameter has a larger value, the claim about the item
is proved using the hypothesis that it holds for an earlier item; this is the
induction step. Invoking it (repeatedly) yields the claim for each subsequent
value of the parameter. |
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When learning to use induction in graph theory, many students have trou-
ble with two particular aspects. One is when the statement P(n) being proved
by induction is itself a conditional statement A(n) = B(n). The induction hy-
pothesis is the statement A(n — 1) = B(n — 1). A template for the induction
step in this situation is presented in Remark 1.3.25, and there are examples of
this throughout Chapter 1.

The other pitfall we call the “induction trap”, discussed at length in Exam-
ple 1.3.26. Here we provide another example, using the language of proving
P(n + 1) from P(n) that sometimes leads students into the trap.

A.28. Example. The Handshake Problem. Let a handshake party of order
n (henceforth “n-party”) be a party with n married couples where no spouses
shake hands with each other and the 2n — 1 people other than the host shake
hands with different numbers of people. We use induction on » to prove that in
every n-party, the hostess shakes with exactly n — 1 people.

We model the party using a simple graph in which the vertices are the
people at the party and the edges are the pairs who shake hands. The degree
of a vertex is its number of handshaking partners. If no one shakes with his
or her spouse, then each degree is between 0 and 2n — 2. The condition that
the 2n — 1 numbers other than the host’s are distinct implies that the degrees
are 0 through 2n — 2. The figure below shows for n € {1, 2, 3} the graph that is
forced; each circled pair of vertices indicates a married couple, with host and
hostess rightmost in each graph.

Basis step: If n = 1, then the hostess shakes with 0 (which equals n — 1),
because the host and hostess don’t shake.

Induction step (INVALID): The induction hypothesis is that the claim
holds for n-parties. Consider such a party. By the induction hypothesis, the
degree of the hostess is n — 1. By our earlier discussion, the degrees of ver-
tices other than the host are O, ..., 2n — 2. We form an (n + 1)-party by adding
one more couple. Let one member of the new couple shake with everyone in
the first n couples; the other shakes with no one. This increases the degree of
each of the earlier vertices by 1, so those degrees other than the host are now
1,...,2n — 1, and the new couple have degrees 0 and 2n. Hence the larger con-
figuration is an (n + 1)-party. The degree of the hostess has increased by 1, so
it is n.

Induction step (VALID): The induction hypothesis is that the claim holds
for n-parties. Consider an (n + 1)-party. By our earlier discussion, the degrees
other than the host are 0, ..., 2n. Let p; denote the person of degree i among
these. Since pj, shakes with all but one person, the person py who shakes
with no one must be the only person missed by p2,. Hence py is the spouse of
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pon. Furthermore, this married couple S = {po, p2.} is not the host and hostess,
since the host is not in {py, ..., pa,}.

Everyone not in S shakes with exactly one person in S, namely pq,. If we
delete S to obtain a smaller party, then we have n couples remaining (including
the host and hostess), no person shakes with a spouse, and each person shakes
with one fewer person than in the full party. Hence in the smaller party the
people other than the host shake hands with different numbers of people.

By deleting the set S, we thus obtain an n-party (deleting the leftmost
couple in the picture for n = 3 yields the picture for n = 2). Applying the
induction hypothesis to this n-party tells us that, outside of the couple S, the
hostess shakes with n - 1 people. Since she also shakes with py, € S, in the full
(n 4+ 1)-party she shakes with n people. [ ]

The first argument in Example A.28 falls into the induction trap, because
it does not consider all possible (n + 1)-parties. It considers only those obtained
by adding a couple to an r-party in a certain way, without proving that every
(n + 1)-party is obtained in this way.

Starting with an arbitrary (n + 1)-party forces us to prove that every (n +
1)-party arises in this way in order to obtain a configuration where we can
apply the induction hypothesis. We cannot discard just any married couple to
obtain the smaller party. We must find a couple S such that everyone outside
S shakes with exactly one person in S. Only then will the smaller party satisfy
the hypotheses needed to be an n-party.

The need to show that our smaller object satisfies the conditions in the
induction hypothesis replaces the need to prove that all objects of the larger
size were generated by growing from an object of the smaller size.

Sometimes the proof of the induction step uses more than one earlier in-
stance. If we always use both P(n — 2) and-P(n — 1) to prove P(n), then we
must verify beth P(1) and P(2) to get started. The proof of the induction step
is not valid for n = 2, since there is no P(0) to use.

A.29. Example. Let ay, as, ... be defined by a; = 2, ag = 8, and a, = 4(a,_1 —
a,_s) for n > 3. We seek a formula for a, in terms of n.

We may try to guess a formula that fits the data. The definition yields
as = 24, aq = 64, and a5 = 160. All these satisfy a, = n2". Having guessed this
as a possible formula for a,, we can try to use induction to prove it.

Whenn =1,wehavea; =2=1-2!. Whenn =2, wehaveay; =8 =222,
In both cases, the formula is correct.

In the induction step, we prove that the desired formula is correct for n > 3.
We use the hypothesis that the formula is correct for the preceding instances
n — 1 and n — 2. This allows us to compute a, using its expression in terms of
earlier values:

ay =4(ay-1 — ay—2) = 4l(n — 1)2" ! — (n — 2)2"%] = (2n — 2)2" — (n — 2)2" = n2".

The validity of the formula for a, follows from its Validity for a,_; and a,_s,
which completes the proof. ]
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In this proof, we must verify the formula for » = 1 and » = 2 in the basis
step; the proof of the induction step is not valid when n = 2. Example A.29
specifies a1. as. ... by a recurrence relation. The general term q, is specified
using earlier terms. Similarly, the proof of Proposition A.26 yields a recurrence
for the number r, of regions formed by » lines; r, = r,_1 + n, with r; = 2.

If the recurrence relation uses k earlier terms to compute a,, then we must
provide k initial values in order to specify the terms exactly; this is a recurrence
of order k. Statements proved by induction about recurrences of order & typi-
cally require verification of & instances in the basis step. Standard techniques
from enumerative combinatorics yield solutions to many recurrence relations
without guessing formulas or directly using induction.

We also sometimes use recursive computation in graph theory. We may
have a value for each graph instead of just one for each “size” as in a sequence.
If we can express the value for a graph G as a formula in terms of graphs with
fewer edges (and specify the values for graphs with no edges), then again we
have a recurrence. We use this technique to count spanning trees (Section 2.2)
and proper colorings (Section 5.3).

FUNCTIONS

A function transforms elements of one set into elements of another.

A.30. Definition. A function f from a set A to a set B assigns to eacha € A
a single element f(a) in B, called the image of ¢ under f. For a function
f from A to B (written f: A — B), the set A is the domain and the set B
is the target. The image of a function f with domain A is { f(a): a € A}.

We take many elementary functions as familiar, such as the absolute value
function and polynomials (both defined on R). “Size” is a function whose domain
is the set of finite sets and whose target is N U {0}.

A.31. Definition. For x € R, the floor | 1] is the greatest integer that is at most
x. The ceiling [x] is the smallest integer that is at least x. A sequence
is a function f whose domain is N.

The floor function and ceiling function map R to Z. When the target of a se-
quence is A, we have a sequence of elements in A, and we express the sequence
as ap, as, as, ..., where a, = f(n). We have used induction to prove sequences
of statements and to prove formulas specifying sequences of numbers.

We may want to know how fast a function from R to R grows, particularly
when analyzing algorithms. For example, we say that the growth of a function
g is (at most) quadratic if it is bounded by a quadratic polynomial for all
sufficiently large inputs. A more precise discussion of growth rates of functions
appears in Appendix B.
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A.32. Remark. Schematic representation. A function f: A — B is defined on
A and maps A into B. To visualize a function f: A — B, we draw a region
representing A and a region representing B, and from each x € A we draw
an arrow to f(x) in B. In digraph language, this produces an orientation of a
bipartite graph with partite sets A and B in which every element of A is the
tail of exactly one edge.

The image of a function is contained in its target. Thus we draw the region
for the image inside the region for the target. [ |

domain

To describe a function, we must specify f(a) for each a € A. We can list
the pairs (a, f(a)), provide a formula for computing f (a) from a, or describe the
rule for obtaining f(a) from a in words.

A.33. Definition. A function f: A — B is a bijection if for every b € B there
is exactly one a € A such that f(a) = b.

Under a bijection, each element of the target is the image of exactly one
element of the domain. Thus when a bijection is represented as in Remark
A.32, every element of the target is the head of exactly one edge.

A.34. Example. Pairing spouses. Let M be the set of men at a party, and let W
be the set of women. If the attendees consist entirely of married couples, then
we can define a function f: M — W by letting f(x) be the spouse of x. For each
woman w € W, there is exactly one x € M such that f(x) = w. Hence f is a
bijection from M to W. n

Bijections pair up elements from different sets. Thus we also describe a
bijection from A to B as a one-to-one correspondence between A and B.
Occasionally in the text we say informally that elements of one set “correspond”
to elements of another; by this we mean that there is a natural one-to-one
correspondence between the two sets.

When A has n elements, listing them as ay, ..., a, defines a bijection from
[n] to A. Viewing the correspondence in the other direction defines a bijection
from A to [n]. All bijections can be “inverted”.

A.35. Definition. If f is a bijection from A to B, then the inverse of f is the
function g: B — A such that, for each b € B, g(b) is the unique element
x € A such that f(x) = b. We write f~! for the function g.
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When the target of a function is the domain of a second function, we can
create a new function by applying the first and then the second. This yields a
function from the domain of the first function into the target of the second.

A.36. Definition. If f: A - B and g: B — C, then the composition of g with
f is a function 7: A — C defined by h(x) = g(f(x)) for x € A. When 4 is
the composition of g with f, we write h = go f.

From the definitions, it is easy to verify that the composition of two bijec-
tions is a bijection. We use this in Proposition 1.1.24 in verifying for graphs
that a composition of isomorphisms is an isomorphism.

COUNTING AND BINOMIAL COEFFICIENTS

A discussion of counting quickly leads to summations and products. These
can be written concisely using appropriate notation.

A.37. Remark. We express summation using ), the uppercase Greek letter
“sigma”. When a and b are integers, the value of Z,};a f (@) is the sum of the
numbers f (i) over the integers i satisfying a <i < b. Here i is the index of
summation, and the formula f (i) is the summand.

We write } .. f(j) to sum a real-valued function f over the elements of a
set S in its domain. When no subset is specified, as in ), x;, we sum over the
entire domain. When the summand has only one symbol tilat can vary, we may
omit the subscript on the summation symbol, as in )_ x;.

Similar comments apply to indexed products using [[, which is the upper-
case Greek letter “pi”. |

Two simple rules help organizing the counting of finite sets by breaking
problems into subproblems. These rules follow from the definition of size and
properties of bijections.

A.38. Definition. The rule of sum states that if A is a finite set and By, ..., B,
is a partition of A, then |A| =", |B;|:
Let T be a set whose elements can be described using a procedure
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involving steps Si...., Sy such that step S; can be performed in »; ways,

regardless of how steps Sy, .... Si_1 are performed. The rule of product

states that |T| = []'_, r/.

For example, there are g* lists of length k from a set of size ¢. There are
q choices for each position, regardless of the choices in other positions. By the
product rule, there are ¢* ways to form the k-tuple.

A.29. Definition. A permutation of a finite set S is a bijection from S to S.
The word form of a permutation f of [«] is the list f(1),..., f(n) in that
order. An arrangement of elements from a set S is a list of elements of
S (in order). We write n! (read as “n factorial”) to mean []._, /, with the
convention that 0! = 1.

The word form of a permutation of [#] includes the full description of the
permutation. For counting purposes we refer to the word form as the permuta-
tion; thus 614325 is a permutation of [6]. With this viewpoint, a permutation
of [n] is an arrangement of all the elements of [n].

A.40. Theorem. An n-element set has n! permutations (arrangements without
repetition). In general, the number of arrangements of k distinct elements
from aset of sizenisn(n —1)---(n — k + 1).

Proof: We count the lists of k distinct elements from a set S of size n. There is
no such list when &k > n, which agrees with the formula. We construct the lists
one element at a time, specifying the element in position i + 1 after specifying
the elements in earlier positions.

There are n ways to choose the image of 1. For each way we do this, there
are n — 1 ways to choose the image of 2. In general, after we have chosen the
first i images, avoiding them leaves n — i ways to choose the next image, no
matter how we made the first i choices. The rule of product yields nf;ol (n—1i)
for the number of arrangements. [ ]

Often the order of elements in a list is unimportant.

A.41. Definition. A selection of k elements from [n] is a k-element subset of
[n]. The number of such selections is “n choose k”, written as (}).

Ifk < Oork > n, then

(;) = 0; in these cases there are no selections of k
elements from [n]. When 0 < k < n, we obtain a simple formula.

A.42. Theorem. For integers n, k with 0 < k < n, (Z) = % ]—[f.‘;g (n —1i).
Proof: We relate selections to arrangements. We count the arrangements of k
elements from [1] in two ways. Picking elements for positions as in Theorem

A.40 yields n(n — 1) - (n — k + 1) as the number of arrangements.
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Alternatively, we can select the k-element subset first and then write it in
some order. Since by definition there are (Z) selections, the product rule yields

(;)k! for the number of arrangements.
In each case, we are counting the set of arrangements, so we conclude that
n(n —1)---(n — k + 1) = (;)k!. Dividing by k! completes the proof. [ |

The formula for (;) can be written as P(%,;)—,, but the form in the statement
of Theorem A.42 tends to be more useful, especially when k is small. For exam-
ple, (5) = n(n — 1)/2 and (3) = n(n — 1)(n — 2)/6, the former being the number of
edges in a complete graph with n vertices. This form more directly reflects the
counting argument and cancels the (n — k)! appearing in both the numerator
and denominator.

The numbers (',:) are called the binomial coefficients due to their appear-

ance as coefficients in the nth power of a sum of two terms.

A.43. Theorem. (Binomial Theorem) For n € N, (x + y)" = Y _;_, (})x*»"*.

Proof: The proof interprets the process of multiplying out the factors in the
product (x + y)(x +y)--- (x +y). To form a term in the product, we must choose
x or y from each factor. The number of factors that contribute x is some integer
k in {0, ..., n}, and the remaining n — k factors contribute y. The number of
terms of the form x*y"* is the number of ways to choose k of the factors to
contribute x. Summing over k accounts for all the terms. ]

Using the definition of size and the composition of bijections, it follows that
finite sets A and B have the same size if and only if there is a bijection from A
to B. Thus we can compute the size of g set by establishing a bijection from it
to a set of known size.

Simple examples include the statements that a complete graph has (5)

edges and that therefore there are 2(2) simple graphs with vertex set [n]. Propo-
sition 1.3.10 uses a bijection to count 6-cycles in the Petersen graph. Exercise
1.3.32 uses a bijection to count graphs with vertex set [n] and even vertex de-
grees. Theorem 2.2.3 uses a bijection to count trees with vertex set [n].

A.44. Lemma. For n € N, the number of subsets of [n] with even size equals
the number of subsets of [n] with odd size.

-‘Proof: Proof 1 (bijection). For each subset with even size, delete the element n
if it appears, and add » if it does not appear. This always changes the size by
1 and produces a subset with odd size. The map is a bijection, since each add
subset containing »n arises only from one even subset omitting n, and each odd
subset omitting n arises only from one even subset containing n.

Proof 2 (binomial theorem). Setting x = —1 and y = 1 in Theorem A.43.
yields Y}, (Z)(—l)" = (—1+1)" = 0. (Note that we proved Theorem A.43 using
bijections.) ]
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We prove a few identities involving binomial coefficients to illustrate com-
binatorial arguments involving bijections and the idea of counting a set in two
ways. We can prove an equality by showing that both sides count the same set.

A.45.Lemma. (}) = (")

n—k
Proof: Proof 1 (counting two ways). By definition, [r] has (Z) subsets of size
k. Another way to count selections of £ elements is to count selections of n — k
elements to omit, and there are (,”,) of these.
Proof 2 (bijections). The left side counts the k-element subsets of [n], the
right side counts the n — k-element subsets, and the operation of “complemen-
tation” establishes a bijection between the two collections. |

Often, “counting two ways” means grouping the elements in two ways.
Sometimes one of the counts only gives a bound on the size of the set. In this
case the counting argument proves an inequality; there are several instances
of this phenomenon in Chapter 3 (see also Exercise 1.3.31). Here we stick to
equalities.

A.46. Lemma. (The Chairperson Identity) k(}) = n(;_)).

Proof: Each side counts the k-person committees with a designated chairperson
that can be formed from a set of n people. On the left, we select the committee
and then select the chair from it; on the right, we select the chair first and then
fill out the rest of the committee. [ ]

Many students see the next formula as the first application of induction,
but it also is easily proved by counting a set in two ways.

A47.Lemma. Y !_,i = "2t

Proof: The right side is (*}'); we can view this as counting the nontrivial inter-
vals with endpoints in the set {1, ..., n + 1}. On the other hand, we can group
the intervals by length; there is one interval with length »n, two with length
n — 1, and so on up to n intervals with length 1. ]

Lemma A.47 generalizes to Y |, () = (Zﬁ) To prove this by counting in
two ways, partition the set of & + 1-element subsets of [» + 1] into groups so
that the size of the ith group will be ().

Finally, a recursive computation for the binomial coefficients.

A.48. Lemma. (Pascal’s Formula) If n > 1, then (}) = (*;") + ({2})-

n—1

Proof: We count the k-sets in [n]. There are (",
and (Z:i) such sets containing n. [ |

) such sets not containing n

Given the initial conditions for n = 0, which are (g) = 1 and (2) = 0 for
k # 0, Pascal’s Formula can be used to give inductive proofs of many statements
about binomial coefficients, including Theorems A.42-A.43.
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A.49. Remark. Multinomial coefficients. Binomial coefficients and the bino-
mial theorem generalize to multinomials. When ) _n; = n, the multinomial

coefficient ( " ) is the coefficient of [ x;" in the expansion of (Zle x)". It

N1y B

has the value n!/[] n;!. Terms of the form [] x;" arise in the expansion only when
> n; = n. Otherwise, there is nothing to count, and we say that (nl,.'.l.,nk) =0
when ) n; # n.

The contributions to this coefficient correspond to n-tuples that are ar-
rangements of n objects, using n; copies of object i for each ;. Having a copy
of object i in position j corresponds to choosing the term x; from the jth factor
(x1 + -+ x).

The formula n!/[]n;! is derived by counting these arrangements. There
are n! arrangements of n distinct items. If we view these objects as distinct,
then we count each arrangement []n;! times, since permuting the copies of a
single object does not change the arrangement.

In Corollary 2.2.4, these arrangements correspond to trees with vertex set
[#] and specified vertex degrees. When we set x; = 1 for all i, we obtain the
total number of n-tuples formed from & types of letters over all multiplicities of
repetition; the result is £". [

RELATIONS

Given two objects s and 7, not necessarily of the same type, we may ask
whether they satisfy a given relationship. Let S denote the set of objects of the
first type, and let T denote the set of objects of the second type. Some of the
ordered pairs (s, t) may satisfy the relationship, and some may not. The next
definition makes this notion precise.

A.50. Definition. When S and 7T are sets, a relation between S and T is a
subset of the product S x T. A relation on S is a subset of S x S.

We usually specify a relation by a condition on pairs. In Section 1.1, we
define several relations associated with a graph G. The incidence relation be-
tween S = V(G) and T = E(G) is the set of ordered pairs (v, ¢) such that
v € V(G), e € E(G), and v is an endpoint of edge e. The adjacency relation on
the set V(G) is the set of ordered pairs (x, y) of vertices such that x and y are
the endpoints of an edge.

A.51. Remark. Let R be a relation defined on a set S. When discussing several
items from S, we use the adjective pairwise to specify that each pair among
these items satisfies R. Thus we can talk about a family of pairwise disjoint
sets, or a family of pairwise isomorphic graphs. An independent set in a graph
is a set of pairwise nonadjacent vertices. A set of distinct objects is a set of
pairwise unequal objects.

We need the term “pairwise” because the relation is defined for pairs. For
the same reason, we don’t use “pairwise” when discussing only two objects.
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When two graphs are isomorphic, we don’t say they are pairwise isomorphic.
Similarly, we say that the endpoints of an edge are adjacent, not pairwise ad-
jacent; the adjacency relation is satisfied by certain pairs of vertices. ]

To specify a relation between S and T, we can list the ordered pairs sat-
isfying it. Usually it is more convenient to let S index the rows and T the
columns of a grid of positions called a matrix. We can then specify the rela-
tion by recording, in the position for row s and column ¢, a 1 if (s, ¢) satisfies
the relation and a 0 if (s, t) does not satisfy the relation. Thus the adjacency
and incidence matrices of a graph are the matrices recording the adjacency and
incidence relations (see Definition 1.1.17).

The condition “have the same parity” defines a relation on Z. If x, y are
both even or both odd, then (x, y) satisfies this relation; otherwise it does not.
The key properties of parity lead us to an important class of relations.

A.52. Definition. An equivalence relation on a set S is a relation R on §
such that for all choices of distinct x, y,z € S,
a) (x, x) € R (reflexive property).
b) (x, y) € R implies (y, x) € R (symmetric property).
¢) (x,y) € R and (y, z) € R imply (x, z) € R (transitive property).

For every set S, the equality relation R = {(x, x): x € S}is an equivalence
relation on S. In Proposition 1.1.24 we show that the isomorphism relation is an
equivalence relation on graphs. The notation G = H for this relation suggests
“equal in some sense”.

A.53. Definition. Given an equivalence relation on S, the set of elements
equivalent to x € S is the equivalence class containine x.

The equivalence classes of an equivalence relation on S form a partition
of S; elements x and y belong to the same class if and only if (x, y) satisfies
the relation. The converse assertion also holds. If A;,..., A; is a partition of
S, then the condition “x and y are in the same set in the partition” defines an
equivalence relation on S.

Parity partitions the integers into two equivalence classes by their reinain-
der upon division by 2. This notion generalizes to any natural number.

A.54. Definition. Given a natural number n, the integers x and y are congru-
ent modulo » if x — y is divisible by n. We write this as x = y mod n. The
number » is the modulus.

A.55. Theorem. For n € N, congruence mod r is an equivalence relation on Z.

Proof: Reflexive property: x — x equals 0, which is divisible by ».

Symmetric property: If x = y mod n, then by definition n|(x — y). Since
y —x = —(x — ), and since n divides —m if and only if n divides m, we also have
n|(y — x), and hence y = x mod n.
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Transitive property: If n|(x — y) and n|(y — z), then integers a, b exist such
that x —y = an and y — z = bn. Adding these equations yields x —z = an+bn =
(a + b)n, so n|(x — z). Thus the relation is transitive. [ |

A.56. Définition. The equivalence classes of the relation “congruence modulo
n” on Z are the remainder classes or congruence classes modulo n. The
set of congruence classes is written as Z, or Z/nZ.

There are n remainder classes modulo n. For 0 < r < n, the rth class in
Z,1is {kn +r: k € Z}. Numbers a and b lie in the rth class if and only if they
both have remainder » upon division by n. Thus “m = r mod »n” has the same
meaning as “m is r more than a multiple of n”.

THE PIGEONHOLE PRINCIPLE

The pigeonhole principle is a simple notion that leads to elegant proofs
and can reduce case analysis. In every set of numbers, the average is between
the minimum and the maximum. When dealing with integers, the pigeonhole
principle allows us to take the ceiling or floor of the average in the desired
direction.

A.57. Lemma. (Pigeonhole Principle) If a set consisting of more than kn objects
is partitioned into n classes, then some class receives more than k objects.

Proof: The contrapositive states that if every class receives at most k objects,
then in total there are at most kn objects. |

The pigeonhole principle can reduce case analysis by allowing us to use
additional information about an extreme element of a set. This simple idea
can crop up unexpectedly, but its use can be quite effective. When we find that
we need the pigeonhole principle, there is no trouble applying it: we need a
sufficiently big value in our set, and the pigeonhole principle provides it.

Some applications of the pigeonhole principle are rather subtle. Section
8.3 presents several of these. The subtlety arises when it is unclear how to
define the objects and the classes so that the pigeonhole principle will apply.

Proposition 1.3.15 proves the next proposition using Remark A.13. Here
we use the pigeonhole principle instead.

A.58. Proposition. If G is a simple n-vertex graph with 6(G) > (n — 1)/2, then
G is connected.

Proof: Choose u, v € V(G). If u ¥ v, then at least n — 1 edges join {u, v} to the
remaining vertices, since §(G) > (n — 1)/2. There are n — 2 other vertices, so
the pigeonhole principle implies that one of them receives two of these edges.
Since G is simple, this vertex is a common neighbor of 1 and v.

For every two vertices u, v € V(G), we have proved that « and v are adja-
cent or have a common neighbor. Thus G is connected. ]
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The pigeonhole principle can also be useful in statements about trees,
where the number of vertices is one more than the number of edges. If each
vertex selects an edge in some way, then some edge must be selected twice.
The idea is to design the selection so that when an edge is selected twice, the
desired outcome occurs. Applications of this idea occur in Lemma 8.1.10 and
Theorem 8.3.2.

The pigeonhole principle is the discrete version of the statement that- the
average of a set of numbers is between the minimum and the maximum. This
statement is made explicit for vertex degrees in Corollary 1.3.4. Other applica-
tions are sprinkled throughout the book.



