University of Toronto Department of Mathematics Faculty of arts and science

MAT 1300, Topology I Midterm, October 15, 2019

> Instructor: Kasra Rafi Duration: 2 hours

First

Last

Student Number

Instructions: No aids allowed. This exam has 6 questions and 40 points. All maps are always assumed to be smooth.

Problem #	Grade
Total	

- (15 points) Mark True of False. Justify your answer with a brief argument or a counter example.
 (a) If f: X → Y is one-to-one and onto then it is a diffeomorphism.
 (b) For any f: ℝ³ → ℝ, the set {x ∈ ℝ³ | f(x) ≥ 0} is a manifold with boundary.
 (c) For f: X → Y, if deg₂(f) = 1, then f is onto.
 (d) The set of critical points of a map f: X → Y has measure zero.
- 2. (7 points) (a) Find all the critical values of the function $f: \mathbb{R}^3 \to \mathbb{R}$ given by

$$f(x, y, z) = x^{2} + y^{2} + xz - 4z + 3.$$

(b) Let

$$X = \left\{ (x, y, z) \,|\, f(x, y, z) \ge 0 \right\} \subset \mathbb{R}^3.$$

Use part (a) to show that X is a manifold with boundary. (State any theorems you use.)

- (c) What is the dimension of $T_x(\partial X)$ for $x \in \partial X$?
- (d) Verify that $(0,1,1) \in \partial X$ and find a basis for $T_x(\partial X)$ at x = (0,1,1).
- 3. (6 points) Let W be a sub-manifold of Y with boundary and let $\partial W = X \sqcup Z$. Let C be any closed sub-manifold of Y with dimension complementary to X and Z. Show that

$$I_2(X,C) = I_2(Z,C).$$

- 4. (6 points) Let $M_2(\mathbb{R})$ be the space of 2×2 matrices identified with \mathbb{R}^4 . Let $SL(2, \mathbb{R})$ be the subspace of $M_2(\mathbb{R})$ consisting of matrices of determinant 1. Show that $SL(2, \mathbb{R})$ is a sub-manifold of $M_2(\mathbb{R})$. What is the dimension of $SL(2, \mathbb{R})$?
- 5. (6 points) Let S^1 be the unit circle in \mathbb{R}^2 , S^2 be the unit sphere in \mathbb{R}^3 and B^2 be the unit ball in \mathbb{R}^3 . For a point $a \in S^1$, consider the map

$$f\colon S^2\to S^2\times S^1,\qquad f(x)=(x,a).$$

Show that f does not extend to a map $F: B^2 \to S^2 \times S^1$.

6. (Extra Credit) Consider

$$S^{3} = \left\{ (z_{1}, z_{2}) \in \mathbb{C}^{2} \mid |z_{1}|^{2} + |z_{2}|^{2} = 1 \right\}$$

and

$$S^2 = \Big\{ (z, x) \in \mathbb{C} \times \mathbb{R} \ \Big| \ |z|^2 + x^2 = 1 \Big\}.$$

Define a map

$$f: S^3 \to S^2$$
 $f(z_1, z_2) = (2z_1\overline{z_2}, |z_1|^2 - |z_2|^2).$

- (a) Verify that the image of f is in fact S^2 and show that f is a submersion.
- (b) Show that the pre-image of every point in S^2 is a (great) circle in S^3 .