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Abstract. In this paper, we study random walks on groups that contain superlinear-divergent

geodesics, in the line of thoughts of Goldsborough-Sisto. The existence of a superlinear-divergent

geodesic is a quasi-isometry invariant which allows us to execute Gouëzel’s pivoting technique.
We develop the theory of superlinear divergence and establish a central limit theorem for random

walks on these groups.

1. Introduction

Classical limit laws in probability theory concern the asymptotic behaviour of the random
variable

Zn = ξ1 + ξ2 + · · ·+ ξn.

for i.i.d. random variables ξ1, ξ2, . . . on R. As a non-commuting counterpart, Bellman, Furstenberg
and Kesten initated the study of random walks on a matrix group G ([Bel54], [Kes59], [FK60],
[Fur63]). Given a probability measure µ on G, the random walk generated by µ is a Markov chain
on G with transition probabilities p(x, y) := µ(x−1y). Our goal is to understand the n-th step
distribution

Zn = g1 · · · gn

where gi are independent random variables distributed according to µ.
There are several generalizations of Bellman, Furstenberg and Kesten’s theory of non-commuting

random walks: random walks on Lie groups (cf. [BQ16] and the references therein); random
conformal dynamics ([DK07]); subadditive and multiplicative ergodic theorems due to Kingman
[Kin68] and Oseledec [Ose68], respectively (see their generalizations [KL06], [GK20] that incor-
porates random processes on isometries and non-expanding maps on a space) to name a few. In
geometric group theory, there is a strong analogy between rank-1 Lie groups and groups with a
non-elementary action on a Gromov hyperbolic space X ([MT18]). Given a basepoint o ∈ X,
the sample path (Zno)n≥0 on X tracks a geodesic and the displacement d(o, Zno) at step n
grows like a sum of i.i.d. random variables with positive expectation. From this one can de-
rive a number of consequences, such as exponential bounds on the drift ([BMSS22, Gou22]),
limit laws ([KM99, Bjö10, GS21, Gou17, Hor18]), and identification of the Poisson boundary
([MT18, Kai00, CFFT22]). If the G-action on X is compatible with the geometry of G in a suit-
able sense, one can transfer these results on X to G. One of the most successful results in this
direction is due to Mathieu and Sisto [MS20], who proved a central limit theorem for random walks
on acylindrically hyperbolic groups. We refer the readers to [Osi16] and [BHS19] for examples of
acylindrically hyperbolic groups and hierarchically hyperbolic groups.

Although the notion of acylindrical hyperbolicity captures a wide range of discrete groups,
acylindrical hyperbolicity of a group is not known to be quasi-isometry invariant or even com-
mensurability invariant. This is because there is no known natural way to transfer a group action
through a quasi-isometry. To overcome this, the second author proposed a theory for random

1



2 KUNAL CHAWLA, INHYEOK CHOI, VIVIAN HE, AND KASRA RAFI

walks using a group-theoretic property that does not involve hyperbolic actions, namely, possess-
ing a strongly contracting element [Cho22]. Nevertheless, this theory is still not invariant under
quasi-isometry.

Meanwhile, certain hyperbolic-like properties are known to be quasi-isometry invariant, such as
existence of a Morse quasi-geodesic. Hence one can expect that many consequences of hyperbolicity
should hold under quasi-isometry invariant assumptions. To address this, Goldsborough and Sisto
[GS21] developed a QI-invariant random walk theory for groups. Given a bijective quasi-isometry f
from a group G to a group H, the pushforward of the random walk from G to H is not necessarily a
random walk, but only an inhomogeneous Markov chain. Nonetheless, if one—equivalently both—
groups are non-amenable, the induced Markov chain satisfies some sort of irreducibility, which
the authors call tameness. At this moment, Goldsborough and Sisto require that G acts on a
hyperbolic space X and contains what they call a ‘superlinear-divergent’ element g, that is, any
path must spend a superlinear amount of time to deviate from the axis of g (see section 2 for
the definition). Goldsborough and Sisto observed that along a random path arising from a tame
Markov chain on G, some translates of the superlinear-divergent axis are aligned on X, and such
alignment is also realized on the Cayley graph of G. As a consequence, they established a central
limit theorem for random walks on H, which is only quasi-isometric to G.

In the setting of Goldsborough and Sisto, still, G is required to possess an action on a hyperbolic
space. Our purpose is to remove this assumption and establish a central limit theorem for groups
satisfying a QI-invariant property, without referring to a hyperbolic space.

Theorem A. Let G be a finitely generated group with exponential growth, and suppose that G has
a superlinear-divergent quasi-geodesic γ : Z → G. Let (Zn)n≥1 be a simple random walk on G.
Then there exist constants λ, σ ≥ 0 such that

dX(o, Zno)− λn

σ
√
n

→ N (0, 1) in distribution.

Note that we only assume existence of a superlinear-divergent quasi-geodesic, as opposed to a
superlinear-divergent element. This makes our setting invariant under quasi-isometry; see Lemma
2.2. In addition, our proof only uses the classical theory of random walks and does not refer to
tame Markov chains.

This theorem applies to groups that are not flat but not of rank 1 either. For example, we can
construct a superlinear-divergent element in any right-angled Coxeter group (RACG) that contains
a periodic geodesic with geodesic divergence at least r3:

Proposition 1.1. Let WΓ be a Right-angled Coxeter group of thickness k ≥ 2. Then any Cayley
graph of Γ contains a periodic geodesic σ which is (f, θ)–divergent for some θ > 0 and f(r) ≳ rk.
In particular, simple random walks on WΓ satisfy the central limit theorem.

By f ≳ rk we mean that f ≥ crk for some sufficiently small c > 0. The proof of this lemma is
Appendix A. Such RACGs can be produced following the method in [Lev22], and [BHS17] shows
that there is an abundance of such groups.

Lastly, let us mention the relationship between superlinear-divergence and the strongly contract-
ing property, which is a core ingredient of the second author’s previous work [Cho22]. In general,
a superlinear-divergent axis need not be strongly contracting and vice versa. Hence, the present
theory and the theory in [Cho22] are logically independent. We elaborate this independence in
Appendix B.

Outline of the paper. Our main idea is to bring Gouëzel’s recent theory of pivotal time con-
struction for random walks [Gou22]. Here, the key ingredient is a local-to-global principle for
alignments between quasigeodesics. Lacking Gromov hyperbolicity of the ambient group, we es-
tablish such a principle among sufficiently long superlinear-divergent geodesics (Proposition 3.3).
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For this purpose, in Section 2 we continue to develop the theory of superlinear-divergent sets af-
ter Goldsborough and Sisto [GS21]. In Section 3, we discuss alignment of superlinear-divergent
geodesics. In Section 4, we estimate the probability for alignment to happen during a random walk.
This yields a deviation inequality (Lemma 4.7) that leads to the desired central limit theorem.
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2. Superlinear-Divergence

For this section, let X be a geodesic metric space. For points x, y ∈ X, we will use the notation
[x, y] to mean an arbitrary geodesic between x and y (note: not unique in general). If α is a
quasi-geodesic, and x, y ∈ α, we use [x, y]|α to denote the quasi-geodesic segment from x to y
along α. Throughout, all paths are continuous maps from an interval into X.

We adopt the definition in [GS21]. For a set Z ⊆ X and constants A,B > 0, we say a map
π = πZ : X → Z is an (A,B)–coarsely Lipschitz projection if

∀x, y ∈ X, d(π(x), π(y)) ≤ Ad(x, y) +B

and
∀z ∈ Z, d(π(z), z) ≤ B.

We say that a map π is coarsely Lipschitz if it is (A,B)-coarsely Lipschitz for some A,B > 0. Note
that a coarsely Lipschitz projection is comparable to the closest point projection: for any x ∈ X
we have

d(x, π(x)) ≤ inf
z∈Z

(
d(x, z) + d(z, π(z)) + d(π(z), π(x))

)
≤ inf

z∈Z

(
d(x, z) +B + (Ad(x, z) +B)

)
≤ (A+ 1)d(x, Z) + 2B.

We say a function f : R+ → R+ is superlinear if it is concave, increasing, and

lim
x→∞

f(x)

x
= ∞.

Definition 2.1 (cf. [GS21, Definition 3.1]). Let Z be a closed subset of a geodesic metric space X,
let θ > 0 and let f : R+ → R+ be superlinear. We say that Z is (f, θ)–divergent if there exists an
(A,B)–coarsely Lipschitz projection πZ : X → Z such that for any R > 0 and any path p outside
of the R–neighborhood of Z, if the endpoints p− and p+ of the path p satisfy

d(πZ(p−), πZ(p+)) > θ

then the length of p is at least f(R).
We say that Z is superlinear-divergent if it is (f, θ)–divergent for some constant θ > 0 and a

superlinear function f : R+ → R+.

The following lemma shows that the existence of a superlinear-divergent quasi-geodesic in a
group G is a quasi-isometry invariance.
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Lemma 2.2. Let X be a geodesic metric space containing a superlinear-divergent subset Z, and
let ϕ : X → Y be a quasi-isometry. Then ϕ(Z) is also superlinear-divergent.

Proof. Let Z ⊂ X be (f, θ)–divergent with a coarsely Lipschitz projection πZ . Let ϕ : X → Y
be a (q,Q)–quasi-isometry. Then πZ pushes forward to a coarsely Lipschitz projection πϕ(Z) =

ϕ ◦ πZ ◦ ϕ−1.
Note that the pullback under ϕ of a continuous path in Y may not be a continuous path in X.

But by the taming quasi-geodesics lemma (Lemma III.H.1.11 of [BH99]), we can find a continuous
path within the (q +Q)–neighborhood of ϕ−1(p) with the same endpoints.

Fix R > 0. Suppose p is a path in Y outside of a R–neighborhood of ϕ(Z), and suppose the
endpoints p− and p+ satisfy

d(πϕ(Z)(p−), πϕ(Z)(p+)) > θ′,

where θ′ = qθ +Q. Then let p′ be a continuous path in the (q +Q)–neighborhood of ϕ−1(p) with

endpoints p′− ∈ ϕ−1(p−)and p′+ ∈ ϕ−1(p+). It follows that p′ is outside of the
(

R
q − q − 2Q

)
–

neighborhood of Z. Moreover, the endpoints have projections bounded by

dZ(πZ(p
′
−), π(p

′
+)) > θ.

Superlinear divergence of Z lets us conclude that

lX(p′) > f

(
R

q
− q − 2Q

)
,

so lY (p) > g(d) where

g(x) =
1

q
f

(
x

q
− q − 2Q

)
−Q

is a superlinear function. □

Corollary 2.3. Suppose a finitely generated group G contains a superlinear-divergent bi-infinite
quasi-geodesic γ : R → G. Let H be a finitely generated group quasi-isometric to G. Then H also
contains a superlinear-divergent bi-infinite quasi-geodesic.

We now establish basic consequences of superlinear divergence of a geodesic. In part, superlinear-
divergent geodesics are “constricting” (in the sense of [ACT15] and [Sis18]) up to a logarithmic
error. This will be formulated more precisely in Lemma 2.6.

Lemma 2.4. For each superlinear function f and positive constants A,B,K, θ, q,Q, there exists
a constant K0 > 1 such that the following holds.

Let Z be an (f, θ)–divergent subset of X with respect to an (A,B)–coarsely Lipschitz projection
πZ , and let α : [0,M ] → X be a geodesic in X such that

d
(
πZα(0), πZα(M)

)
≥ θ and d(α(0), Z) > K0.

Then there exists t ∈ [0,M ] such that

d
(
πZα(0), πZα(t)

)
≤ θ +B,

and either

d(α(t), Z) ≥ K · d(α(0), Z) or d(α(t), Z) ≤ 1

K
· d(α(0), Z).

Proof. Let A,B be the coarsely Lipschitz constants of πZ . Choose K ′ > 1 large enough such that
for all t > K ′,

f(t)

t
≥ K(K + 5B + θ + 1)(A+ 1).

Let

τ := inf
{
t ∈ [0,M ] : d(πZα(0), πZα(t)) ≥ θ

}
.
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By the (A,B)-coarse Lipschitzness of πZ , we have

d(πZα(0), πZα(t)) ≤ θ +B

for all t ∈ [0, τ ]. We now take K0 = K ′K. For convenience, let dt := d(α(t), Z) for each t.
The desired conclusion holds if dt ≤ d0/K = K ′ for some t ∈ [0, τ ]; suppose not. Under this
assumption, we show that dτ > Kd0. By superlinear-divergence of Z,

l(α([0, τ ])) ≥ f

(
d0
K

)
≥ K(K + 5B + θ + 1)(A+ 1) ·

(
d0
K

)
≥ (K + 5B + θ + 1)(A+ 1)d0.

Note also, since α is a geodesic,

l(α([0, τ ])) ≤ d(α(0), πZ(α(0))) + d(πZ(α(0)), πZ(α(τ))) + d(πZ(α(τ)), α(τ))

≤ ((A+ 1)d0 + 2B) + (θ +B) + [(A+ 1)dτ + 2B].

Combining these, we have

dτ ≥ 1

A+ 1
[(K + 5B + θ + 1)(A+ 1)d0 − 5B − (A+ 1)d0 − θ]

≥ Kd0 + (5B + θ)

(
d0 −

1

A+ 1

)
≥ Kd0,

where the final inequality is due to d0 ≥ K0 = KK ′ > 1 > 1/(A+ 1). □

The following lemma is a technical calculation that will be used in the proof of Lemma 2.6
to examine the behaviour of a sequence of points along a geodesic whose projections are making
steady progress.

Lemma 2.5. Let πZ : X → Z be an (A,B)–coarsely Lipschitz projection onto a subset Z of X
and let K > 0. Suppose x, z ∈ X, y ∈ [x, z] satisty

d
(
πZ(x), πZ(y)

)
< K,

d
(
πZ(y), πZ(z)

)
< K, and

d(x, Z), d(z, Z) ≤ 1

8(A+ 1)
d(y, Z).

Then we have d(y, Z) ≤ 2K + 16B.

Proof. Suppose to the contrary that d(y, Z) > 2K + 16B. First, the assumption tells us that

(A+ 1)d(x, Z) + 2B ≤ 1

8
d(y, Z) + 2B ≤ 1

4
d(y, Z).

This forces

d(x, y) ≥ d(y, πZ(x))− d(x, πZ(x)) ≥ d(y, Z)− (A+ 1)d(x, Z)− 2B ≥ 3

4
d(y, Z)

and similarly d(y, z) ≥ 3
4d(y, Z), which leads to

d(x, z) = d(x, y) + d(y, z) ≥ 3

2
d(y, Z).

Meanwhile, note that

d(x, z) ≤ d(x, πZ(x)) + d(πZ(x), πZ(z)) + d(πZ(z), z) ≤
1

2
d(y, Z) + 2K.

Hence, we have
3

2
d(y, Z) ≤ 1

2
d(y, Z) + 2K,

which contradicts the assumption. □
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Figure 1. A geodesics whose endpoints project sufficiently far apart onto a
superlinear-divergent set Z must enter and exit a small neighborhood of Z near
the projections.

The following is the main lemma.

Lemma 2.6. Let Z be an (f, θ)–divergent subset of X. Then, for any δ > 0, there exists K1 > 0
such that the following holds. For any x, y ∈ X, if

d(πZ(x), πZ(y)) > δ(log d(x, Z) + log d(y, Z)) +K1,

then there exist a subsegment [px, py] of [x, y] and points qx, qy ∈ Z such that:

(1) d(px, qx), d(py, qy) < K1

(2) d(qx, πZ(x)) ≤ δ log d(x, Z) +K1,
(3) d(qy, πZ(y)) ≤ δ log d(y, Z) +K1,
(4) the segment [px, py] is in the K1–neighbourhood of Z.

Roughly speaking, parts (1), (2) and (3) state that the geodesic [x, y] will enter the K1–
neighbourhood of Z exponentially quickly from both sides and part (4) states that it stays near Z
in the middle (See Figure 1).

Proof. Let (A,B) be the coarsely Lipschitz constants for πZ . Let K ′ = 8(A+ 1) + exp( θ+B
δ ), let

K ′′ = K0(K
′) be as in Lemma 2.4, and let

K1 = (2A+ 3)(K ′′ + 2θ + 4B) + 5B + θ + logK ′.

If [x, y] entirely lies in the (K ′′ + 2θ + 4B)–neighborhood of Z, we can take px = x, py = y,
qx = πZ(x) and qy = πZ(y).

If not, we analyze the subsegments of [x, y] outside of the (K ′′ + 2θ + 4B)–neighborhood of Z.
Let [x′, y′] be an arbitrary connected component of

[x, y] \NK′′+2θ+4B(Z) :=
{
p ∈ [x, y] : d(p, Z) ≥ K ′′ + 2θ + 4B

}
.
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We will take a sequence of points {xi}i=0,...,M on [x′, y′], associated with a sequence of real numbers
{ri := d(xi, Z)}i=0,...,M (Figure 1). We construct the sequence recursively. Start by choosing
x0 := x′, then recursively choose xi+1 ∈ [xi, y

′] such that

d
(
πZ(xi), πZ(xi+1)

)
≤ θ +B.

and either

ri+1 ≥ K ′ri or ri+1 ≤ ri/K
′.

Such xi+1 must exist when d(πZ(xi), πZ(y
′)) ≥ θ+B, due to Lemma 2.4. The process terminates

at step M when

d(πZ(xM ), πZ(y
′)) ≤ θ +B or rM ≤ K ′′ + 2θ + 4B.

We first observe that, by Lemma 2.5, for any i, we cannot simultaneously have

ri ≥ K ′ri−1 and ri ≥ K ′ri+1.

Hence, the only possibilities for the sequence is either:

(i) ri keeps decreasing,
(ii) ri keeps increasing, or
(iii) ri decreases at first and then keeps increasing.

We will apply this observation in two cases depending on the endpoints of [x′, y′].
Case 1. One (or both) of the endpoints is x or y.
WLOG, consider the case x′ = x. We will show that these segments enter theK1–neighbourhood

of Z exponentially quickly. Then we will choose px to be the entrance point.
We first see that the sequence will not persist until y. Choose index j such that

rj = min
i=0,...,M

ri.

If the minimum satisfies

rj > K ′′ + 2θ + 4B,

then the sequence persists until y. In this case, the sequence decreases until the minimum, then
keeps increasing until the end. It terminates when

d(πZ(xM ), πZ(y)) ≤ θ +B,

and the index satisfies

M ≥ 1

θ +B
d(πZ(x), πZ(y))− 1.

Moreover,
rM
rj

· r0
rj

≥ K ′M .

Combining the three inequalities above we have

log d(y, Z) + log d(x, Z)− 2 log rj ≥ d(πZ(x), πZ(y)) ·
logK2

θ +B
− logK ′.

Hence,

d
(
πZ(x), πZ(y)

)
≤ δ
(
log d(x, Z) + log d(y, Z)

)
+ logK ′,

a contradiction. Hence, the sequence {ri}i keeps decreasing as in Figure 1, and it terminates when

rM ≤ K ′′ + 2θ + 4B.

Choose px = xM and take qx ∈ Z such that

d(px, qx) ≤ K ′′ + 2θ + 4B.
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This choice of px and qx guarantees that

d(πZ(px), qx) ≤ d(πZ(px), πZ(qx)) + d(πZ(qx), qx)

≤
(
Ad(px, qx) +B

)
+B

≤ K1.

Moreover, we have
K ′M ≤ r0/rM ,

which implies

M ≤ log r0 − log rM
logK ′ .

So
d(πZ(px), πZ(x)) ≤ (θ +B)M ≤ δ log d(x, Z),

and consequently
d(qx, πZ(x)) ≤ δ log d(x, Z) +K1

as desired. We may apply the same argument to choose py ∈ [x, y] and qy ∈ Z such that

d(py, qy) ≤ K1 and d(qy, πZ(y)) ≤ δ log d(y, Z) +K1.

Case 2. The endpoints x′ and y′ both belong to the closure of NK′′+2θ+4B(Z).
These are segments between our choice of px and py. We show that they are within the K1–

neighbourhood of Z.
In this case,

d(x′, Z) = d(y′, Z) = K ′′ + 2θ + 4B ≤ d(p, Z)
(
∀p ∈ [x′, y′]

)
.

Observe that ri cannot decrease as first since [x
′, y′] lies outside the (K ′′+2θ+4B)–neighbourhood

of Z. But ri also cannot keep increasing, because d(x′, Z) = d(y′, Z). So the process must stop at
the very beginning, that is,

M = 0 and d(πZ(x
′), πZ(y

′)) ≤ θ +B.

Then we have

d(x′, y′) ≤ d
(
x′, πZ(x

′)
)
+ (θ +B) + d

(
πZ(y

′), y′
)

≤
(
(A+ 1)d(x′, Z) + 2B

)
+ (θ +B) +

(
(A+ 1)d(y′, Z) + 2B

)
= 2(A+ 1)(K ′′ + 2θ + 4B) + 4B + (θ +B).

From this, we deduce that [x′, y′] lies in the K1–neighborhood of Z. □

The next lemma helps us strengthen Lemma 2.6 to a statement about Hausdorff distance.

Lemma 2.7. Let K,M,M ′ be positive constants and α : [0,M ] → X and β : [0,M ′] → X be
(q,Q)–quasi-geodesics. Suppose that α is contained in a K–neighborhood of β and

d(α(0), β(m)) < K, d(α(M), β(n)) < K

hold for some 0 ≤ m < n ≤ M ′. Then we have

dHaus(α, β|[m,n]) ≤ K +Q+ 6q6Q+ 2Kq5.

Proof. Let us define a map h from [0,M ] to [0,M ′]. For each t ∈ [0,M ] let h(t) ∈ [0,M ′] be such
that d(α(t), β(h(t))) ≤ K. Without loss of generality, set s0 := m and sM := n. This map is
well-defined, and is a (q2,K+2qQ)–quasi-isometric embedding of [0,M ] into R. Indeed, note that

|h(t)− h(t′)| ≤ qd(β(h(t)), β(h(t′))) + qQ

≤ qd(α(t), α(t′)) + 2K + qQ

≤ q2|t− t′|+K + 2qQ



RANDOM WALKS ON GROUPS AND SUPERLINEAR-DIVERGENT GEODESICS 9

and

|t− t′| ≤ qd(α(t), α(t′)) + qQ

≤ qd(β(h(t)), β(h(t′))) + 2K + qQ

≤ q2|h(t)− h(t′)|+K + 2qQ.

From the very definition, it is clear that α and β(h([0,M ])) are within Hausdorff distance K.
Next, as h is a QI-embedding of [0,M ] into R that sends 0 and M to m and n, its image h([0,M ])
is 2qQ-connected and h([0,M ]) is contained in

[s− 6q5Q− 2Kq4, t+ 6q5Q+ 2Kq4].

In particular, h([0,M ]) and [m,n] are within Hausdorff distance 6q5Q+2Kq4. By applying β, we
deduce that β(h([0,M ])) and β|[m,n] are within Hausdorff distance 6q6Q+ 2Kq5 +Q. Combining
all these, we conclude that

dHaus(α, β|[m,n]) ≤ K +Q+ 6q6Q+ 2Kq5. □

Corollary 2.8. In the setting of Lemma 2.6, assume that Z is a (q,Q)–quasi-geodesic. Then for
some constant K2 depending on f, θ, q,Q, δ,

dHaus([px, py], [qx, qy]|Z) ≤ K2.

As another corollary of Lemma 2.6, we can replace a superlinear-divergent quasigeodesic on X
with a superlinear-divergent geodesic.

Corollary 2.9. Let γ be a bi-infinite (f, θ)–divergent quasigeodesic on a proper space X. Then
there exists a bi-infinite (f ′, θ′)–divergent geodesic γ′ such that dHaus(γ, γ

′) is finite. Specifically,
f ′(x) = f(x− C), θ′ = θ + 2C where C is the constant Hausdorff distance between γ and γ′.

Proof. Let γ : Z → X be an (f, θ)–divergent (q,Q)–quasigeodesic on X. Let K1 be the constant
given by Lemma 2.6 for Z = γ and δ = 0. For each sufficiently large n, we note that

d(πγ(γ(n)), πγ(γ(−n))) ≥ d(γ(n), γ(−n))− 2B >
2n

q
−Q− 2B > K1.

Lemma 2.6 tells us that there exists a subsegment [p−n, pn] of [γ(−n), γ(n)] and j−n, jn ∈ Z such
that

d(p−n, γ(j−n)) ≤ K1, d(pn, γ(jn)) ≤ K1,

d(γ(j−n), γ(−n)) ≤ d(γ(j−n), πγ(γ(−n))) + d(πγ(γ(−n)), γ(−n)) ≤ K1 +B,

d(γ(jn), γ(n)) ≤ d(γ(jn), πγ(γ(n))) + d(πγ(γ(n)), γ(n)) ≤ K1 +B,

and such that [p−n, pn] ⊆ NK1
(γ). By Lemma 2.7, [p−n, pn] and γ([j−n, jn]) are within Hausdorff

distance K1 +Q+ 6q6Q+ 2Kq5. For simplicity, let C = K1 +Q+ 6q6Q+ 2Kq5. Note also that

j−n < −n+ q(K1 +B) +Q < 0 < n− q(K1 +B)−Q < jn

for large enough n. In conclusion, [p−n, pn] contains a point p that is C–close to γ(0). Moreover,
the distance

d(γ(0), pn) > d(γ(0), γ(jn))− 2K1 −B

grows linearly, and likewise so does d(γ(0), p−n). Using the properness of X and Arzela-Ascoli,
we conclude that the sequence {[p−n, pn]}n>1 converges to a bi-infinite geodesic γ′, within a K1–
neighborhood of γ. By Lemma 2.7 again, we have dHaus(γ, γ

′) ≤ C.
It remains to declare a coarsely Lipschitz projection πγ′ onto γ′ and show that γ′ is (f ′, θ′)–

divergent with respect to πγ′ . Since dHaus(γ, γ
′) ≤ C, we can define πγ′(z) to be a point on γ′ such

that

d(πγ′(z), πγ(z)) < C.
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Any path p outside of the R–neighborhood of γ′ is outside of the (R − C)–neighborhood of γ.
Moreover, if the endpoints p− and p+ of p satisfy that

d
(
πγ′(p−), πγ′(p+)

)
> θ + 2C,

then by the construction of πγ′ ,
d
(
πγ(p−), πγ(p+)

)
> θ.

Superlinear divergence of γ implies that the length of p is at least f(R− 2C). This concludes the
proof. □

2.1. Convention. From now on, we fix a finitely generated group G with exponential growth
which contains a superlinear-divergent bi-infinite geodesic γ : R → G: this is a QI-invariant
property thanks to Corollary 2.3 and Corollary 2.9.

3. Alignment

In this section, we define the alignment of sequences of (subsegments of) superlinear-divergent
geodeiscs. The key lemma is Lemma 3.3, which promotes alignment between consecutive pairs to
global alignment of a sequence.

Definition 3.1. Given paths γ1, . . . , γN : Z → G, integers mi ≤ ni and subpaths γ′
i := γi([mi, ni]),

we say that (γ′
1, . . . , γ

′
N ) is K–aligned if:

(1) πγi(γ
′
i−1) lies in γi

(
(−∞,mi +K]

)
, and

(2) πγi
(γ′

i+1) lies in γi
(
[ni −K,+∞)

)
.

Note that γi can be a single point. We will construct linkage words using K–aligned paths,
starting with the following lemma.

Lemma 3.2. Given a superlinear function f , positive constants θ,A,B and 0 < ϵ, η < 0.1, there
exists a constant K3 = K3(f, θ, A,B, ϵ, η) such that the following holds.

For i = 1, 2, let γi be an (f, θ)–divergent geodesic with respect to a (A,B)–coarsely Lipschitz
projection πγi

: X → γi, and let γ′
i = γi([mi, ni]) be a subpath of γi. Let z ∈ X, and let D > K3

be a constant such that:

(1) diam(γ′
1 ∪ γ′

2 ∪ z) ≤ D ;
(2) |n2 −m2| ≥ ϵ logD;
(3) (γ′

1, γ
′
2) is (ηϵ logD)–aligned and (γ′

2, z) is (2ηϵ logD)–aligned.

Then (γ′
1, z) is (2ηϵ logD)–aligned.

Proof. We will assume that D is much larger than the constants K1 and K2 that appears during
the argument. For i = 1, 2, denote xi = γ(mi) and yi = γ(ni). Suppose for contradiction that
πγ1

(z) lies in γ1
(
(−∞, n1 − 2ηϵ logD)

)
as in Figure 3. This implies that

d(πγ1
(y2), πγ1

(z)) ≥ ηϵ logD >
ηϵ

3
(log d(y2, γ1) + log d(z, γ1)) +K1,

where K1 is the constant given in Lemma 2.6 taking δ = ηϵ/3. By Lemma 2.6, there exist a subseg-
ment [p1, p2] of [z, y2] and time parameters s, t of γ1 such that d(p1, γ1(s)) < K1, d(p2, γ1(t)) < K1

and
d(γ1(s), πγ1

(z)) <
ηϵ

3
log d(z, γ1) +K1,

d(γ1(t), πγ1
(y2)) <

ηϵ

3
log d(y2, γ1) +K1.

In particular, we have

s < γ−1
1 (πγ1(z)) +

(ηϵ
3

log d(y2, γ1) +K1

)
≤ n1 −

5

3
ηϵ logD.



RANDOM WALKS ON GROUPS AND SUPERLINEAR-DIVERGENT GEODESICS 11

Figure 2. The segments satisfy (γ′
1, γ

′
2) is (ηϵ log n)–aligned and (γ′

2, γ
′
3) is

(2ηϵ log n)–aligned.

Figure 3. If πγ1
(z) lies in γ1((−∞, n1 − 2ηϵ log(n))), then the geodesic [y2, z]

would fellow travel γ′
1 then γ′

2, causing a contradiction.

A similar calculation shows that t > n1 − 4
3ηϵ logD. Now let K2 be the constant in Corollary

2.8 so that γ1([s, t]) and [p1, p2] are within Hausdorff distance K2 of each other. In particular, for
p′ := γ1(n1 − 1.5ηϵ logD) ∈ γ1([s, t]), we have a point p ∈ [p1, p2] ⊆ [z, y2] such that d(p, p′) ≤ K2.
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Let us now investigate the relationship between [p, y2] and γ′
2. First, the coarse Lipschitzness

of πγ2
tells us that

d(πγ2
(p), πγ2

(y2)) ≥ d(πγ2
(p′), y2)− d(πγ2

(p′), πγ2
(p))− d(y2, πγ2

(y2))

≥ d(πγ2(p
′), y2)−AK2 − 2B.

Since πγ2
(p′) ∈ πγ2

(γ′
1) is contained in γ2

(
(−∞,m2 + ηϵ logD)

)
, we deduce that

d(πγ2
(p), πγ2

(y2)) > (n2 −m2)− ηϵ logD −AK2 − 2B >
ηϵ

3
(log d(p, γ2)) +K1.

Again, by Lemma 2.6 there exist a subsegment [p′1, p
′
2] ⊆ [p, z] and time parameters s′, t′ of γ2 with

d(p′1, γ2(s
′)) < K1, d(p

′
2, γ2(t

′)) < K1 and

d(γ2(s
′), πγ2

(p)) <
ηϵ

3q
log d(p, γ2) +K1,

d(γ2(t
′), πγ2

(y2)) < K1.

This means that

d(p′1, p
′
2) ≥ d(πγ2(p), πγ2(y2))− d(γ2(t

′), πγ2(y2))− d(γ2(s
′), πγ2(p))

− d(p′1, γ2(s
′))− d(p′2, γ2(t

′))

≥ (n2 −m2)− ηϵ logD

q
−Q− 1

3
ηϵ logD − 4K1

≥ 2

3
ηϵ logD.

Hence, [y2, p
′
2] is longer than

2
3ηϵ logD. But on the other hand,

d(p′2, y2) ≤ d(p′2, γ2(t
′)) + d(γ2(t

′), πγ2(y2)) + d(y2, πγ2(y2)) ≤ 2K1 +B.

This is a contradiction for sufficiently large D. □

Proposition 3.3. Let f be a superlinear function, θ,A,B > 0, 0 < ϵ, η < 0.1 and let K3 be the
constant given in Lemma 3.2. Let x, y ∈ X, and for i = 1, . . . , N , γi be an (f, θ)–divergent geodesic
with respect to a (A,B)–coarse-Lipschitz projection and let γ′

i = γi([mi, ni]) be a subpath of γi. Let
D > K3 be a constant such that:

(1) diam(γ′
1 ∪ . . . ∪ γ′

N ) ≤ D;
(2) |ni −mi| ≥ ϵ logD for each i, and
(3) (x, γ′

1, . . . , γ
′
N , y) is (ηϵ logD)–aligned.

Then for each i, (x, γ′
i, y) is (2ηϵ logD)–aligned.

Proof. This follows inductively from lemma 3.2. Fixing i < j, we show that

πγi
(γ′

j) ∈ γi((−∞,mi + 2ηϵ logD]).

If i = j − 1, immediately by assumption we have

πγi
(γ′

j) ∈ γi((−∞,mi + ηϵ logD]) ⊂ γi((−∞,mi + 2ηϵ logD]).

Now assuming

πγi+1
(γj) ∈ γi+1((−∞,mi+1 + 2ηϵ logD]),

since (γi, γi+1) are (ηϵ logD)–aligned, the triple (γi, γi+1, γj) satisfies the assumptions in lemma
3.2. We conclude that

πγi
(γj) ∈ γi((−∞,mi + 2ηϵ logD]).
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Applying the same argument to πγj
(γi), πγj

(γk), and πγk
(γj) shows that

πγj (γi) ∈ γj([nj − 2ηϵ logD,+∞))

πγj
(γk) ∈ γj((−∞,mj + 2ηϵ logD]), and

πγk
(γj) ∈ γk([nk − 2ηϵ logD,+∞)). □

Lemma 3.4. Given a superlinear function f , positive constants θ,A,B and 0 < ϵ, η < 0.1, there
exists constants K4 = K4(f, θ, A,B, ϵ, η) and C = C(A) such that the following holds.

Let α and β be (f, θ)–divergent geodesics with respect to (A,B)–coarsely Lipschitz projections.
Let α′ and β′ be their subsegments with beginning points x1 and x2, respectively, such that:

(1) D := diam(α′ ∪ β′) ≥ K4;
(2) diam(α′) ≥ ϵ logD, and
(3) (α′, x2) and (x1, β

′) are ηϵ logD–aligned.

Then (α′, β′) is (Cηϵ logD)–aligned.

Proof. Let α′ = α([m1, n1]) and β′ = β([m2, n2]). Denote x1 = α(m1), y1 = α(n1), x2 = β(m2),
y2 = β(n2). Let C

′ = 16(A+ 1) + 1 and C = (C ′)2 + 2. We first show that

πβ(α
′) ⊂ β((−∞,m2 + C ′ϵ logD]) ⊂ β((−∞,m2 + Cϵ logD]).

Suppose to the contrary that for some point a ∈ α′, the projection

πβ(a) ∈ β([m2 + C ′ϵ logD,+∞)).

Then we have

d(πβ(x1), πβ(a)) ≥ (C ′ − 1)ηϵ logD

≥ 1

16A
(C ′ − 1)ηϵ(log d(x1, β) + log d(a, β)) +K1,

where K1 > 0 is the constant as in Lemma 2.6 taking δ = 1
16A (C ′ − 1)ηϵ. Then there exists a

subsegment [px1 , pa]|α ⊂ [x1, a]|α ⊂ [x1, y1]|α, and points qx1 , qa on β such that

d(px1
, qx1

), d(pa, qa) < K1

d(qx1
, πβ(x1)) ≤

(
1

16A
(C ′ − 1)ηϵ

)
log d(x1, β) +K1

d(qa, πβ(a)) ≤
(

1

16A
(C ′ − 1)ηϵ

)
log d(a, β) +K1.

Then by Corollary 2.8, there is a point p′x1
∈ [px1 , pa]|α close to x2. The point p

′
x1

is chosen to be px1

if qx1 ∈ β((m2,∞)), or the point where the Hausdorff distance K2 is attained if qx1 ∈ β((−∞,m2]).
The distance is bounded by

d(x2, p
′
x1
) ≤ max

((
1

16A
(C ′ − 1)ηϵ

)
log d(x1, β) + 2K1,K2

)
≤
(

1

16A
(C ′ − 1)

)
ηϵ logD +O(1)

=

(
A+ 1

A

)
ηϵ logD +O(1),

where K2 is the constant in Corollary 2.8, and O(1) is the implied constant. Projecting to α gives
that

d(πα(x2), p
′
x1
) ≤ d(πα(x2), πα(p

′
x1
)) +B ≤ (A+ 1)qηϵ logD +O(1).
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On the other hand, since (α′, x2) is (ηϵ logD)–aligned,

d(πα(x2), p
′
x1
) ≥ d(y1, p

′
x1
)− ηϵ logD

≥ d(pa, p
′
x1
)− ηϵ logD

≥ d(x2, πβ(a))− d(x2, p
′
x1
)− d(πβ(a), pa)− ηϵ logD

≥
(
1

q
C ′ηϵ logD

)
− 2

(
C ′ − 1

16A
ηϵ logD

)
− ηϵ logD −O(1)

≥
(
14(A+ 1)− 1

)
ηϵ logD −O(1)

contradicting the previous inequality when D is sufficiently large.
We now show that

πα(β
′) ⊂ α((n1 − Cϵ logD,∞)).

Suppose the contrary that for some point b ∈ β′ the projection

πα(b) ∈ α((−∞, n1 − Cϵ logD)).

We will discuss in two cases. If

πα(b) ∈ α((m1, n1 − Cϵ logD)) ⊂ α′,

then the previous calculation shows that

πβ(πα(b)) ∈ β((−∞,m2 + C ′ηϵ logD]).

This shows that (πα(b), [x2, b]|β , ) and (b, [πα(b), y1]|α) are (C ′ηϵ logD)–aligned. Moreover, diam([x2, b]|β∪
[πα(b), y1]|α) < D. So the exact same calculation as before shows that

πα([x2, b]|β) ⊂ α
(
(−∞, πα(b) + C ′2ϵ logD)

)
⊂ α

(
(−∞, n1 − 2ϵ logD)

)
.

This contradicts that

πα(x2) ∈ α
(
(n1 − ηϵ logD,∞)

)
.

The remainder case is when πα(b) ∈ α
(
(−∞,m1)

)
. We will show that this is impossible assuming

η < min
(

1
q+2q2 ,

A+2
A+q+2

)
and α′ is long. In this case,

d(πα(b), πα(x2)) ≥
1

q
(1− η)ϵ logD

≥ 1

(2 +A)
ηϵ log d(b, α) + log d(x2, α)−K1,

where K1 is the constant in Lemma 2.6 choosing δ = 1
(2+A)ηϵ. Then by Lemma 2.6, there are

points px2
, pb ∈ [x2, b] such that

d(px2
, y1) ≤

1

2 +A
ηϵ logD +K1, and

d(pb, x1) ≤
1

2 +A
ηϵ logD +K1.

Then

d(πβ(x1), pb) ≤
A

2 +A
ηϵ logD +O(1).
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But on the other hand, πβ(x1) ∈ β((−∞,m2 + ηϵ logD]) implies that

d(πβ(x1), pb) ≥ d(x2, pb)− ηϵ logD

≥ d(px2
, pb)− ηϵ logD

≥ d(x1, y1)− d(x1, pb)− d(y1, px2)ηϵ logD

≥ ϵ logD − 2

2 +A
ηϵ logD − ηϵ logD −O(1)

>
A

2 +A
ηϵ log n+O(1).

The last step is due to η < 1/3. This is a contradiction. □

We now construct linkage words. These play the role of Schottky sets in [BMSS22, Gou22] We
use the notation B(g,R) := {h ∈ G : d(g, h) ≤ R} to mean the ball of radius R around g, and
S(g,R) := {h ∈ G : d(g, h) = R} to mean the sphere of radius R around g.

Lemma 3.5. Let γ : R → G be a (f, θ)–divergent quasi-geodesic and let ϵ > 0. For K sufficiently
large, the following holds. For each m ∈ Z, there exists a subset S ⊆ G with 100 elements such
that for each pair of distinct elements a, b ∈ S, we have

(1) |a|, |b| = K and |ba−1|, |a−1b| ≥ 0.5K;
(2) πγ(γ(0)a

−1) and πγ(γ(0)a
−1b) ∈ B(γ(0), ϵK), and

(3) πγ(γ(m)a) and πγ(γ(m)ab−1) ∈ B(γ(m), ϵK).

Proof. Let K0 = K0(0.1ϵ, f) be as in Lemma 2.6.
Let λ > 1 be the growth rate of G. For n large enough, we have

λn ≤ #S(id, n) ≤ λ(1+0.1ϵ)n.

We consider the sets

O1 := {g ∈ S(id,K) : d(γ(0), πγ(γ(0)g)) ≥ 0.5ϵK} ,
O2 := {g ∈ S(id,K) : d(γ(m), πγ(γ(m)g)) ≥ 0.5ϵK},

We will argue that both of these sets are much smaller than S(id,K), and use a certain subset
of S(id,K) \ (O1 ∪O2) to construct our set S.

To show that O1, O2 are relatively small, let us now consider a word a with |a| = K and
d(πγ(γ(0)a

−1), γ(0)) ≥ 0.5ϵK. Then since

d(πγ(γ(0)a
−1), πγ(γ(0))) ≥ 0.5ϵK −B ≥ K0 + 0.1ϵ logB + 0.1ϵ logK,

Lemma 2.6 asserts that there exist p ∈ [γ(0), γ(0)a−1] and q ∈ γ such that d(p, q) ≤ K2 and
d(p, πγ(γ(0)a

−1)) ≤ log |a|+K1. In this case, we have

d(p, γ(0)a−1) = d(γ(0), γ(0)a−1)− d(γ(0), p)

≤ |a| − d(γ(0), πγ(γ(0)a
−1)) + d(p, πγ(γ(0)a

−1))

≤ K − 0.5ϵK + logK +K0.

In summary,

a−1 = (γ(0)−1q) · (q−1p) · (p−1γ(0)a−1)

where, as in figure 4,

• γ(0)−1q = γ(0)−1γ(k) for some k between −2qK −Q and 2qK +Q;
• |q−1p| ≤ K0, and
• |p−1γ(0)a−1| ≤ (1− 0.5ϵ)K + log(1.5K) +K0.
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Figure 4. Decomposing a−1 as a concatenation of well-controlled paths.

For large enough K, the number of such elements is at most

5QK · λ(1+0.1ϵ)(1−0.4ϵ)K ≤ 5QKλ(1−0.3ϵ)K

.
Hence, the cardinality of

A := {(g1, . . . , g100) ∈ S(id,K)100 : gi ∈ O1 for some i ∈ [1, 100]}
is at most 100 · (#S0)

99 · 3QKλ(1+0.3)ϵK—we pick some index i which satisfies the given condi-
tion and draw the rest of the elements from S(id,K). This is exponentially small compared to

(#S(id,K))
100

.
By a similar logic,

B := {(g1, . . . , g100) ∈ S(id,K)100 : gi ∈ O2 for some i ∈ [1, 100]}
is exponentially small compared to S(id,K)100.

Finally, we observe that for each h ∈ S(id,K), there are at most

#B(h, 0.5K) ≤ λ(1+ϵ)0.5K

elements g such that |g−1h| ≥ 0.5K.
Hence, we deduce that the cardinality of

C :=
{
(g1, . . . , g100) ∈ S100

0 : d(gi, gj) ≤ 0.5Kfor some i ̸= j
}

is at most 100·99·2·λ0.6K ·(#S(id,K)99, which is exponentially small compared to (#S(id,K))
100

.
Given these estimates, we conclude that for sufficiently large K,

S(id,K)100 \
(
A ∪ B ∪ C

)
is nonempty.

Letting (g1, . . . , g100) be one of its elements, we claim that the choice S = {gi, i = 1, ..., 100}
satisfies the conditions of the lemma.

Note in particular that g−1
i gj ̸= id since its norm is at least 0.5K. We observe that:

(1) gi’s are all distinct;
(2) |gi| = K for all 1 ≤ i ≤ 100;
(3) |gig−1

j |, |g−1
i gj | ≥ 0.5K for each i ̸= j;
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(4) πγ(γ(0)g
−1
i ) ∈ B(γ(0), 0.5ϵK) and πγ(γ(m)gi) ∈ B(γ(m), 0.5ϵK) for each 1 ≤ i ≤ 100.

It remains to show that d(γ(0), πγ(γ(0)g
−1
i gj)) < ϵK for each i ̸= j. Suppose not; then for large

enough K we have

d(πγ(γ(0)g
−1
i ), πγ(γ(0)g

−1
i gj)) ≥ ϵK − 0.5ϵK

> 2ϵ logK > ϵ log |gi|+ ϵ log(|gi|+ |gj |) +K0

≥ ϵ log d(γ, γ(0)g−1
i ) + ϵ log d(γ, γ(0)g−1

i gj) +K0

By Lemma 2.6, there exists p ∈ [γ(0)g−1
i , γ(0)g−1

i gj ] such that

d(p, πγ(γ(0)g
−1
i )) < ϵ log d(γ, γ(0)g−1

i ) + 2K2 ≤ ϵ logK + 2K0,

and d(γ(0), p) < 0.6ϵK. Here, we have

d(p, γ(0)g−1
i ) ≥ d(γ(0), γ(0)g−1

i )− d(γ(0), p) ≥ K − 0.6ϵK,

and
d(γ(0), γ(0)g−1

i gj) ≤ d(γ(0), p) + d(p, γ(0)g−1
i (gj)

≤ 0.6ϵK + [d(γ(0)g−1
i , γ(0)g−1

i gj)− d(γ(0)g−1
i , p)]

≤ 0.6ϵK + 0.6ϵK.

But this contradicts |g−1
i gj | ≥ 0.5K. □

Given a translate of γ, we can naturally define the projection

πgγ(x) := gπγ(g
−1x).

Since G acts by isometries, this is an (A,B)–coarse Lipschitz projection so long as πγ is as
well. The following lemma describes projections between translates of superlinear-divergent quasi-
geodesics.

Lemma 3.6. Let α and β be (f, θ)–divergent quasi-geodesics and let 0 < ϵ < 1
10(A+1) . Then there

exists K6 > 0 such that the following holds. Suppose a ∈ G and i ∈ Z satisfy that

(i) |a| > K6;
(ii) πβ(β(0)a

−1) ∈ B(β(0), ϵ|a|); and
(iii) πα(α(i)a) ∈ B(α(i), ϵ|a|).

Then for each j ∈ Z, πα(α(i)aβ(0)
−1β(j)) is within distance ϵ log |j|+ 2|a| from α(i).

Proof. For simplicity, we denote and parameterize the translate of β

β′(j) = α(i)aβ(0)−1β(j).

Let γ : [0,M ] → G be a geodesic connecting α(i) and β′(j), see Figure 5. The projection of α(i)
onto β′ is near α(i)a:

d
(
α(i)a, πβ′(α(i))

)
= d
(
β(0), πβ(β(0)a

−1)
)
≤ ϵ|a|.

Then there exists t ∈ [0,M ] such that γ(t) ∈ B(α(i)a, 2ϵ|a|). If d(β′(j), α(i)a) < 2ϵ|a|, simply
take t = M so that γ(t) = β′(j). And if d(β′(j), α(i)a) ≥ 2ϵ|a|, we obtain such t by applying
Lemma 2.6. Notice

d(πβ′(α(i)a), πβ′(β′(j)))

≥d(α(i)a, β′(j))− d(α(i)a, πβ′(α(i)a))− d(πβ′(β′(j)), β′(j)))

≥2ϵ|a| − ϵ|a| −B

≥ϵ(log d(β′(j), β′) + log d(α(i), β′)) +K1,
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α(i)

β′(0) = α(i)a

β′(j) = α(i)aβ(0)−1β(j)

γ(t)

a

α

β′ := α(i)aβ(0)−1β

Figure 5. The geodesic [α(i), β′(j)] comes near β′(0).

where K1 is the constant from Lemma 2.6 taking δ = ϵ. The last inequality holds when |a| is
sufficiently large. Then Lemma 2.6 implies that for some t,

d(γ(t), α(i)a) ≤ d(γ(t), πβ′(α(i))) + d(πβ′(α(i)), α(i)a)

≤ (ϵ log |a|+K1) + ϵ|a|
≤ 2ϵ|a|

for sufficiently large |a|. Note that

t = d(γ(0), γ(t)) ≤ d(α(i), α(i)a) + 2ϵ|a| ≤ 3

2
|a|.

Now if

d(πα(γ(0)), πα(γ(M))) > ϵ log(|j|+ |a|)
≥ ϵ(log d(γ(0), α) + log d(γ(M), α))−K1,

where K1 is the constant from 2.6 taking δ = ϵ. Then there exists τ ∈ [0,M ] such that

d(γ(τ), πα(γ(M))) ≤ ϵ log(|j|+ |a|) +K1

and γ|[0,τ ] is contained in the K1–neighborhood of α. Notice that τ cannot be larger than t,
otherwise γ(t) is K1–close to α; let p ∈ α be the point such that d(γ(t), p) ≤ K1. Then when |a|
is sufficiently large,

d(α(i), πα(α(i)a)) ≥ d(α(i), p)− d(πα(α(i)a), p)

≥ d(α(i)a, α(i)))− d(α(i)a, q)− (Ad(p, α(i)a) + 2B)

≥ |a| − (A+ 1)(2ϵ|a|+K1)− 2B > ϵ|a|.
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This is a contradiction, so we must have τ ≤ t. We then have

d(πα(α(i)aβ(0)
−1β(j)), α(i)) ≤ d(πα(γ(M)), γ(τ)) + d(γ(τ), γ(0))

≤ ϵ log(|j|+ |a|) +K1 +
3

2
|a|

≤ ϵ log |j|+ 2|a|.

□

4. Probabilistic part

In this section, fixing a small enough ϵ > 0, we study the situation where a random path (id =:
Z0, Z1, . . . , Zn) is seen by a superlinear-divergent direction, or to be precise, where (Zi, . . . , Zi+ϵ logn)
is (a part of) an (f, θ)–divergent quasigeodesic and

(id, (Zi, Zi+1, . . . , Zi+ϵ logn), Zn)

is ϵ2–aligned for some i ≪ n. We will prove in Corollary 4.6 and Lemma 4.7 that this happens for
an overwhelming probability.

To make an analogy, consider a random path (id =: Z0, Z1, . . . , Zn) arising from a simple random
walk on the Cayley graph of a free group F2 ≃ ⟨a, b⟩. Here, we similarly expect that Zn = id is not
desirable and (id, (Zi, Zi+1), Zn) is aligned for some i ≪ n. In fact, the alignment happens for all
but exponentially decaying probability. A classical argument using martingales can be described
as follows:

(1) construct a ‘score’ that marks the progress made till step i;
(2) prove that at each step i, it is more probable to earn a score rather than losing one.
(3) sum up the difference at each step and use concentration inequalities to deduce an expo-

nential bound.

Here, the score at step i should be determined by information up to time i. Moreover, when the
score grows, the recorded local progresses should also pile up. To realize these features on a general
Cayley graph other than tree-like ones, we employ the concatenation lemma proven in Section 3.

4.1. Combinatorial model. In the sequel, let γ be an (f, θ)–divergent geodesic on G with γ(0) =
id and ϵ > 0 be a small enough constant. Let us fix some constants:

• K3 = K3

(
f, θ, q,Q,A,B, ϵ3, ϵ

)
be as in Lemma 3.2;

• K is larger than K5 = K5

(
1

10q ϵ
4
)
and the twice of K6 = K6

(
0.1ϵ4

)
given by Lemma 3.5

and 3.6, respectively;
• N0 is a threshold such that

ϵ4n > 10(K +K3 + log n)

for all n > N0.

After multiple applications of our alignment lemmas, the power on ϵ will weaken, which is why we
start with ϵ4.

Throughout this section, we will consider the following combinatorial model. Fix w0, w1, · · · ∈ G.
Now given a sequence of 3–tuples si = (ai, bi, ci) ∈ S3, we consider a word of the form

Wk = w0 · a1γ(ϵ log n)b1γ(ϵ log n)c1 · w1 · · · akγ(ϵ log n)bkγ(ϵ log n)ck · wk.

To ease the notation, let us also define

Vk = Wk−1ak, Uk = Wk−1akγ(ϵ log n)bk

We also denote

s = (a1, b1, c1, ..., ak, bk, ck).
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We will argue that for most choices of s ∈ S3k, a certain subsequence of(
id, V1γ|[0,ϵ logn], U1γ|[0,ϵ logn] . . . , Uk−1γ|[0,ϵ logn],Wk

)
is well-aligned. In section 4.2, we will derive from this a deviation inequality (Lemma 4.7), and
deduce a central limit theorem.

To show well-alignment, we argue analogously to [BMSS22, Gou22, Cho22], by keeping track
of times in which the random walk may travel along different translates of γ|[0,ϵ logn], and arguing
that at most of these times, most directions of the random walk do not backtrack. To implement
we need the following lemma 4.1. We remark that for the rest of the paper, whenever we discuss
alignment of a sequence of points and geodesic segments, the only segments used are translates of
γ|[0,ϵ logn].

Proposition 4.1. Let g ∈ G and let n be an integer greater than N0 and |g|. Let S be the subset
of S(id,K) described in Lemma 3.5 for m = ϵ log n. Then for any distinct a, b ∈ S, at least one of(

γ|[0,ϵ logn], γ(ϵ log n)ag
)

and
(
γ|[0,ϵ logn], γ(ϵ log n)bg

)
is ϵ4 log n–aligned. Likewise, at least one of(

a−1g, γ|[0,ϵ logn]

)
, and

(
b−1g, γ|[0,ϵ logn]

)
is ϵ4 log n–aligned.

Proof. We prove the first claim only. Let t ∈ Z be such that γ(t) = πγ(γ(ϵ log n)ag). If t is greater
than ϵ(1− ϵ3) log n, we deduce that

(
γ|[0,ϵ logn], γ(ϵ log n)ag

)
is ϵ4 log n-aligned as desired. Let us

deal with the remaining case: we assume

(4.1) t ∈ (−∞, ϵ log n− ϵ4 log n].

Consider two translates of γ:

γ1 = a−1γ(ϵ log n)−1γ and γ2 = b−1γ(ϵ log n)−1γ,

and their subpaths

γ′
1 := γ1|[t,ϵ logn] and γ′

2 := γ2|[0,ϵ logn].

Let γ̄′
2 be the reversal of γ′

2.
By the definition of t,

(
γ(ϵ log n)ag, γ|[t,ϵ logn]

)
is automatically 0–aligned, or equivalently, (g, γ′

1)
is 0–aligned. Next, since a and b are chosen from S, the subset of S(id,K) as described in Lemma
3.5, we have that

πγ

(
γ(ϵ log n)ab−1

)
is within B

(
γ(ϵ log n), 0.1ϵ4|ab−1|

)
and

πγ

(
γ(ϵ log n)ba−1

)
is within B

(
γ(ϵ log n), 0.1ϵ4|ab−1|

)
.

Moreover, we have

|ba−1| ≥ 0.5K ≥ K6.

By plugging in α = γ and β = γ̄ (i.e., β(t) = γ(ϵ log n − t) for each t ∈ Z), we can apply Lemma
3.6. The required assumptions are

πβ

(
β(0)(ba−1)−1

)
= πγ

(
γ(ϵ log n)ab−1

)
∈ B

(
γ(ϵ log n), 0.1ϵ4|ab−1|

)
= B

(
β(0), 0.1ϵ4

∣∣ab−1
∣∣) ,

and

πα

(
α(ϵ log n), ba−1

)
= πγ

(
γ(ϵ log n), ba−1

)
∈ B

(
γ(ϵ log n), 0.1ϵ4

∣∣ab−1
∣∣) .

As a result, for each j ∈ Z we have

d
(
πγ(γ(ϵ log n)ab

−1γ(ϵ log n)−1γ(j)), γ(ϵ log n)
)
≤ 0.1ϵ4 log |j − ϵ log n|+ 2|ab−1|.
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In other words, we have

πγ1
(γ′

2) ∈ γ1
(
(ϵ log n− 0.1ϵ4 log(ϵ log n)− 2K,+∞)

)
.

Similarly we deduce that

πγ2
(γ′

1) ∈ γ2
(
(ϵ log n− 0.1ϵ4 log(ϵ log n)− 2K,+∞)

)
.

We conclude that (γ′
1, γ̄

′
2) is (0.1ϵ

4 log(ϵ log n) + 2K)–aligned.
We now let D = |g|+ 2ϵ log n+ 2K +K3; note that

D > diam(g−1 ∪ γ′
1 ∪ γ′

2).

Moreover, the lengths of γ′
1 and γ′

2 are at least ϵ4 log n and we have

ϵ4 log n ≥ ϵ3 logD.

Finally, (g, γ′
1, γ̄

′
2) is (0.1ϵ

4 logm+2K)–aligned, hence 0.2ϵ4 logD–aligned. Lemma 3.2 now tells us
that (g−1, γ̄′

2) is ϵ
4 logD–aligned. This implies that (γ|[0,m], γ(m)bg) is ϵ4 log n–aligned as desired.

□

Following Boulanger-Mathieu-Sert-Sisto [BMSS22] and Gouëzel [Gou22], we define the set of
pivotal times Pk(s) inductively. We will suppress the notation Pk := Pk(s) when it is unambiguous,
and the remaining notation follows from the beginning of this section. First set P0 = ∅ and z0 = id.
Given Pk−1 ⊆ {1, . . . , k − 1} and zk−1 ∈ G, Pk and zk are determined by the following criteria.

(A) When
(
zk−1, Vkγ|[0,ϵ logn], Ukγ|[0,ϵ logn],Wk

)
is ϵ3 log n–aligned, we set Pk = Pk−1 ∪ {k}

and zk = Uk.
(B) Otherwise, we find the maximal index m ∈ Pk−1 such that (Vmγ|[0.ϵ logn],Wk) is ϵ

3 log n–
aligned and let Pk = Pk−1∩{1, . . . ,m−1} (i.e., we gather all pivotal times in Pk−1 smaller
than m) and zk = Vm. If such an m does not exist, then we set Pk = ∅ and zk = id.

Given input w0, w1, . . . , wk ∈ G and s ∈ S3k, this algorithm outputs a subset Pk(s) of {1, . . . , k}.
Our first lemma tells us that Pk(s) effectively records the alignment.

Lemma 4.2. The following holds for all n > N0.
Let Pk = {i(1) < . . . < i(M)} and suppose that ϵ log (|w0|+ · · ·+ |wk|+ kϵ log n) ≤ log n. Then

there exist g1, . . . , gN = zk such that
(
Vi(1), Ui(1), . . . , Vi(M), Ui(M)

)
is a subsequence of (g1, . . . , gN )

and

(id, g1γ|[0,ϵ logn], . . . , gNγ|[0,ϵ logn],Wk)

is ϵ2 log n–aligned.

Proof. We induct on k. If we added a pivot, Pk = Pk−1 ∪ {k}, there are two cases:

(1) Pk−1 = ∅. Then (id, Vkγ|[0,ϵ logn], Ukγ|[0,ϵ logn],Wk) is (ϵ
3 log n)–aligned, with zk = Uk, as

desired.
(2) Pk−1 = {i(1) < . . . < i(M − 1)} is nonempty. Then there exist g1, . . . , gN such that(

Vi(1), . . . , Vi(M−1)

)
is a subsequence of (g1, . . . , gN ), gN = zk−1 and

(id, g1γ|[0,ϵ logn], . . . , gNγ|[0,ϵ logn],Wk−1)

is ϵ2 log n–aligned. Moreover,

(zk−1, Vkγ|[0,ϵ logn], Ukγ|[0,ϵ logn],Wk)

is (ϵ3 log n)–aligned. Here, since (zk−1γ|[0,ϵ logn],Wk−1) is ϵ
3 log n–aligned,

(zk−1γ|[0,ϵ logn],Wk−1ak) = (zk−1γ|[0,ϵ logn], Vk)

is also (ϵ3 log n + AK + B)–aligned. Now Lemma 3.4 asserts that for large enough n,
(zk−1γ|[0,ϵ logn], Vkγ|[0,ϵ logn]) is ϵ

2 log n–aligned. As a result,

(id, g1γ|[0,ϵ logn], . . . , gNγ|[0,ϵ logn], Vkγ|[0,ϵ logn], Ukγ|[0,ϵ logn],Wk)
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is ϵ2 log n–aligned, with zk = Uk.

Now suppose we backtracked: Pk = Pk−1 ∩ {1, . . . ,m − 1} for some m ∈ Pk−1. Letting M =
#Pk−1, so that #Pk = M + 1, our induction hypothesis tells us that there exist g1, . . . , gN such
that (Vi(1), Ui(1), . . . , Vi(M+1), Ui(M+1)) is a subsequence of (g1, . . . , gN ) and

(id, g1γ|[0,ϵ logn], . . . , gNγ|[0,ϵ logn],Wk−1)

is ϵ2 log n–aligned. Moreover, we have that (Vi(M+1)γ|[0,ϵ logn],Wk) is ϵ3 log n–aligned by the cri-
terion. It follows that

(id, g1γ|[0,ϵ logn], . . . , Vi(M+1)γ|[0,ϵ logn],Wk)

is ϵ2 log n–aligned, with zk = Vm = Vi(M+1), as desired. □

Next, we have

Lemma 4.3. Let us fix a1, b1, c1, . . . , ak, bk, ck and draw ak+1, bk+1, ck+1 in S3 according to the
uniform measure. For n ∈ N sufficiently large, the probability that #Pk+1 = #Pk + 1 is at least
9/10.

Proof. We need to choose ak+1, bk+1, ck+1 in S3 such that(
zk, Vk+1γ|[0,ϵ logn], Uk+1γ|[0,ϵ logn],Wk+1

)
is ϵ3 log n–aligned. By Proposition 4.1, there are at least 99 choices of ak+1 such that(

zk, Vk+1γ|[0,ϵ logn]

)
is ϵ3 log n–aligned.

Likewise, there are at least 98 choices of bk+1 such that both

(Vk, Uk+1γ|[0,ϵ logn]) and (Vk+1γ|[0,ϵ logn], Uk+1)

are ϵ4 log n–aligned. From lemma 3.4, for sufficiently large n, this tells us there are at least 98
choices of bk+1 such that (Vk+1γ|[0,ϵ logn], Uk+1γ|[0,ϵ logn]) is ϵ

4 log n–aligned.

Finally, there are at least 99 choices of ck+1 such that
(
Uk+1γ|[0,ϵ logn],Wk+1

)
is ϵ3 log n–aligned.

We are done as 99
100 · 98

100 · 99
100 > 9

10 . □

Given a sequence s = (ai, bi, ci)
k
i=1, we say that another sequence s′ = (a′i, b

′
i, c

′
i)

k
i=1 is pivoted

from s if they have the same pivotal times, (al, cl) = (a′l, c
′
l) for all l = 1, . . . , k, and bl = b′l for all

l except for l ∈ Pk(s). We observe that being pivoted is an equivalence relation.

Lemma 4.4. Given s = (ai, bi, ci)
k
i=1 and a pivotal time ℓ ∈ Pk(s), construct a new sequence s′

by replacing bℓ with another b′ℓ ∈ S such that(
zℓ−1, Vℓγ|[0,ϵ logn], Uℓγ|[0,ϵ logn],Wℓ

)
is ϵ3 log n–aligned. Then s′ is pivoted from s.

Proof. We need to show that both sequences s and s′ have the same set of pivotal times. Before
time ℓ, the sequences are identical, so that Pj(s) = Pj(s

′) for j < ℓ. By our choice of b′ℓ, we know
that the time ℓ is added as a pivot, and so z′ℓ = U ′

ℓ. Now we induct on j > ℓ: suppose that all
pivotal times in Pj−1(s) are still in Pj−1(s

′).
To determine Pj(s), either we added a new pivotal time j or we backtracked. In the former

case, we have that
(
zj−1, Vjγ|[0,ϵ logn], Ujγ|[0,ϵ logn],Wj

)
is ϵ3 log n–aligned. Since G acts on itself

by isometries, this happens if and only if the sequence(
z′ℓ(z

−1
ℓ )zj−1, z

′
ℓ(z

−1
ℓ )Vjγ|[0,ϵ logn], z

′
ℓ(z

−1
ℓ )Ujγ|[0,ϵ logn], z

′
ℓ(z

−1
ℓ )Wj

)
is ϵ3 log n–aligned. But this is the same as requiring that(

z′j−1, V
′
j γ|[0,ϵ logn], U

′
jγ|[0,ϵ logn],W

′
j

)
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is ϵ3 log n–aligned, so that j ∈ Pj(s
′).

In the latter case, we found the maximum M such that (VMγ|[0.ϵ logn],Wk) is ϵ
3 log n–aligned.

Since ℓ ∈ Pk(s), we know that M > ℓ. Hence this is the same as requiring that(
z′ℓ(z

−1
ℓ )VMγ|[0.ϵ logn], z

′
ℓ(z

−1
ℓ )Wk

)
=
(
V ′
Mγ|[0.ϵ logn],W

′
k

)
is ϵ3 log n–aligned. Therefore j ∈ Pk(s

′). □

Now fixing wi’s, we regard Wk as a random variable depending on the choice of

(a1, b1, c1, . . . , ak, bk, ck),

which are distributed according to the uniform measure on S3k.
Fixing a choice s = (a1, . . . , ck), let Ek(s) be the set of choices s′ that are pivoted from s. Since

being pivoted is an equivalence relation, the collection of Ek(s)’s partitions the space of sequences
S3k. We claim that most of these equivalence class are large: at pivotal times ℓ ∈ Pk, one can
replace bℓ with one of many other b′ℓ’s while remaining pivoted.

Lemma 4.5. Let s = (a1, b1, c1, . . . , ak, bk, ck). We condition on Ek(s) and we draw (ak+1, bk+1, ck+1)
according to the uniform measure on S3. Then for all j ≥ 0,

P
(
#Pk+1(s

′, sk+1) < #Pk(s
′)− j

∣∣ (s′, sk+1) ∈ Ek(s)× S3
)
≤
(

1

10

)j+1

.

We remark that the conditional measure P(·|Ek(s)× S3) on S3(k+1) is the same as the uniform
measure on Ek(s)× S3 ⊂ S3(k+1), because P(·) is the uniform measure on a finite set.

Proof. We induct on j ≥ 0. The j = 0 case is lemma 4.3. We prove it for j = 1. Suppose that we
made some choice of sk+1 := (ak+1, bk+1, ck+1) that lead to backtracking. We must show that for
such an sk+1,

P
(
#Pn+1(s

′, sk+1) < #Pn(s
′)− 1

∣∣ s′ ∈ Ek(s)
)
≤ 1

10
.

To this end, we examine the final pivot sℓ. By Lemma 4.4, we can replace bℓ with any distinct
b′ℓ ∈ S such that (

zℓ−1, Vℓγ|[0,ϵ logn], Uℓγ|[0,ϵ logn],Wℓ

)
is ϵ4 log n–aligned. There are at least 98 choices of such a b′ℓ, by Proposition 4.1.

Likewise, there are at least 98 choices of b′ℓ ̸= bℓ such that (Uℓγ[0,ϵ logn],Wk) is ϵ
4 log n–aligned.

From Lemma 3.2, we know that

(
Vℓγ|[0,ϵ logn], Wk

)
is ϵ3 log n–aligned. For this choice of s′, we have Pk+1(s

′) = Pk(s
′) ∩ {0, ..., ℓ − 1}. In particular,

#Pk+1 = #Pk − 1. Hence

P
(
#Pk+1 < #Pk − 1

∣∣ Ek(s), sk+1

)
≤
(

4

100

)
<

(
1

10

)
.

To handle the induction step for j ≥ 2, the same argument works, except we condition not only
on sk+1 but also on the final j pivotal increments which resulted in backtracking. □

Corollary 4.6.

P (#Pk ≤ k/2) < (1/10)k.
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4.2. Random walks. Recall that G contains an (f, θ)–superdivergent (q,Q)–quasigeodesic γ :
Z → G with γ(0) = id.

Let µ be a probability measure on G whose support generates G as a semigroup. Passing to a
convolution power if necessary, assume that µ(a) > 0 for all a in our finite generating set A ⊂ G.
Let (Zn)n≥1 be the simple random walk generated by µ, and let α ∈ (0, 1). We can define

p = min{µ(a), a ∈ A},

ϵ =
α/100

log(1/p)
.

so that pϵ logn = n−α/100. Then for any path η of length 100ϵ log n and any k ∈ Z, we have

P((gk+1, . . . , gk+100ϵ logn) = η) ≥ n−α.

Also recall that for any three points o, x, y ∈ G we can define the Gromov product, given by

(x, y)o =
1

2
(d(o, x) + d(o, y)− d(x, y)) .

We now have:

Lemma 4.7. For any 0 < α < 1, there exist K > 0 such that for each x ∈ B(id, 2n) we have

P
[
(x, Zn)id ≥ n3α)

]
≤ Ke−nα/K .

Proof. First, we would like to find a nice decomposition of our random walk, which will allow us
to analyze the sample paths using our combinatorial model in section 4.1.

Let λi be i.i.d. distributed according to the uniform measure on the subset S′ ⊂ G5 defined by

S′ := {(a, γ′, b, γ′, c) : a, b, c ∈ S, γ′ = γ(ϵ log n)}.
Then the evaluation λi = a·γ′ ·b·γ′ ·c is distributed according to the measure µS ∗γ′∗µS ∗γ′∗µS ,

where µS is uniform over S.
Let N = 3K + 2ϵ log n. By our choice of p, for each a, b, c ∈ S we have µ∗N (aγ′bγ′c) ≥ pN .

Then we can decompose

µ∗N = 106pN (µS ∗ γ′ ∗ µS ∗ γ′ ∗ µS) + (1− 106pN )ν,

for some probability measure ν.
Now we consider the following coin-toss model, Let ρi be independent 0-1 valued random vari-

ables, each with probability 106 · pN of being equal to 1. Also let ξi be i.i.d. distributed according
to ν. We set

gi =

{
λi if ρi = 1
ξi otherwise.

Then (g1 · · · gn)n has the same distribution as (ZNn), because each gi is distributed according
to µ∗N .

Hoeffding’s inequality tells us that

P

n3α∑
i=1

ρi ≥ 0.5n3α · n−α

 ≥ 1− 2exp

(
−2(0.5n2α)2

n3α

)
≥ 1− 2 exp(−0.5nα).

After tossing away an event of probability at most 2 exp(−0.5nα), we assume
∑n3α

i=1 ρi ≥ 0.5n2α.
To apply the analysis of our combinatorial model, we condition on the values of ρi, ξi and only

keep the randomness coming from the ηi’s. Let

i(1) < i(2) < . . . < i(M)

be the indices in [1, n3α] where ρi = 1. Then we can write

x−1 · Zn = w0 · a1γ(ϵ log n)b1γ(ϵ log n)c1 · w1 · · · aMγ(ϵ log n)bMγ(ϵ log n)cM · wM ,
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where
w0 = x−1g1 · · · gN(i(1)−1)−1,

w1 = gNi(1)+1 · · · gN(i(2)−1)−1,

...

wM = gNi(M)+1 · · · gn
and ai, bi, ci are i.i.d.s distributed according to the uniform measure on S. As in the previous
section, we set s = (a1, b1, c1, . . . , aM , bM , cM ). By Lemma 4.6, the set of pivots PM (s) is nonempty

with probability at least 1 − (1/10)M ≥ 1 − (1/10)0.5n
2α

. By Lemma 3.3, for any pivotal time
i ∈ PM (s) we have(

id, x−1ZN(i−1)γ|ϵ logn, x
−1Zn

)
=
(
id, (x−1ZN(i−1), . . . , x

−1ZN(i−1)+ϵ logn), x
−1Zn

)
is ϵ log n–aligned. Lemma 2.6 implies that [id, x−1Zn] passes through the K1–neighborhood of
(x−1ZN(i−1), . . . , x

−1ZN ). In other words, [x, Zn] passes through the (Ni+K0)–neighborhood of

id, which is within the n3α–neighborhood of id when n is large. □

Corollary 4.8. For any α > 0, there exists K ′ such that for each 0 ≤ m ≤ n we have

E
[
(id, Zn)

2
Zm

]
≤ n6α +Ke−nα/K · n ≤ n6α +K ′.

The following lemma states that our deviation inequality (Corollary 4.8) implies a rate of con-
vergence in the subadditive ergodic theorem.

Lemma 4.9. Let

L := lim
n→∞

1

n
E[d(id, Zn)].

Then

L− 1

n
E[d(id, Zn)] = o

(
1√
n

)
.

Proof. Note that by the definition of the Gromov product, we have

E[d(id, Zn2k)] =

2k∑
i=1

E
[
d(Zn(i−1), Zni)

]
− 2

k∑
i=1

2k−i∑
t=1

E
[
(Zn2i(t−1)), Zn2it)Zn(2it−1)

]
.

Also by corollary 4.8

E
[
(Zn2i(t−1)), Zn2it)Zn(2it−1)

]
≤ 2(n2i−1)6α +K ′

and we also know that E[d(Zn(i−1), Zni)] = E[d(id, Zn)] for any i ∈ N. Hence for any sufficiently
small α > 0, we have∣∣∣∣ 12k E[d(id, Zn2k)]− E[d(id, Zn)]

∣∣∣∣ ≤ 2

2k

k∑
i=1

2k−i · (2(n2i−1)6α +K ′)

≲ n6α
k∑

i=1

2−i/2.

As k → ∞ the quantity 2−k E[d(id, Zn2k)] converges to L. Picking α < 1/12, we can send k → ∞
and divide by n to conclude. □

We now prove the CLT (Theorem A). It is essentially the same argument as [MS20], but with
a different deviation inequality as input.
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Proof. We claim that for any ϵ > 0, there exists N sufficiently large, such that the sequence

1√
Nk

(
d(id, ZNk)− E[d(id, ZNk)]

)
converges to a Gaussian distribution up to an error at most ϵ in the Lévy distance.

Indeed, the sequence {
1√
k

(
d(id, Zk)− E[d(id, Zk)]

)}
k>0

is eventually ϵ–close to a distribution X (in the Lévy distance) if and only if its N–jump subse-
quence

{
1√
Nk

(
d(id, ZNk) − E[d(id, ZNk)]

)}
k>0

is as well. Moreover, from Lemma 4.9, we know

that

E[d(id, ZNk) = LNk + o(1/
√
Nk).

To show the claim, we first take a sequence

0 = i(0) < i(1) < . . . < i(2⌊log2 k⌋) = k

such that i(t+ 1)− i(t) = 1 or 2 for each t. The easiest way is to keep halving the numbers, i.e.,

i(2tk) :=

⌊
i(2t(k − 1)) + i(2t(k + 1))

2

⌋
for each t and odd k. Let T be the collection of i(t)’s such that i(t+ 1)− i(t) = 2.

Then,
1√
Nk

(
d(id, ZNk)− E[d(id, Znk)]

)
= I1 − I2 − I3

where

I1 =

k∑
i=1

1√
k

[
d(ZN(i−1), ZNi)− E[d(ZN(i−1), ZNi)]√

N

]
I2 =

2√
Nk

∑
t∈T

(
(ZNi(t), ZN(i(t)+2)ZN(i(t)+1) − E[(ZNi(t), ZN(i(t)+2)ZN(i(t)+1)]

)
,

and

I3 =
2√
Nk

⌊log2 k−1⌋∑
t=1

2⌊log2 k⌋−t−1∑
l=1

(
(ZN2tl, ZN2t(l+2))ZN2t(l+1)

− E
[
(ZN2tl, ZN2t(l+2))ZN2t(l+1)

] )
.

We claim that for sufficiently large N ∈ N, I2 and I3 are small (in terms of the Lévy distance).
Then the only non-negligible term I1 is a sum of i.i.d random variables, normalized to converge to
a Gaussian as k → ∞.

The second summation I2 is the sum of at most k independent RVs whose variance is bounded
by

4

Nk
· 3N6α.

Hence, the second summation has variance at most 12N6α−1 and

P(|I2| ≥ N−α) ≤ 12N8α−1

by Chebyshev.
Now for each t,

I3;t :=
2√
Nk

2⌊log2 k⌋−t−1∑
l=1

(
(ZN2tl, ZN2t(l+2))ZN2t(l+1)

− E[(ZN2tl, ZN2t(l+2))ZN2t(l+1)
]
)
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is the sum of at most k/2t independent RVs whose variance is bounded by 4
Nk · 3(N2t)6α. This

means that I3;t has variance at most 12N6α−1 · 2(6α−1)t, and

P(|I3;t| ≥ N−α2−αt) ≤ 12N8α−12(8α−1)t

by Chebyshev.
Summing them up, we have

|I2 +
∑
t

I3;t| ≤ N−α
∑
t

2−αt

outside a set of probability N8α−1
∑

t 2
(8α−1)t. These are small, regardless of the range of t. More

precisely, by setting α = 1/10, we deduce that

|I2 + I3| = O(N−1/10)

outside a set of probability O(N−1/10), ending the proof. □

We now prove the CLT for random walks with finite p-th moment for some p > 2. It suffices to
show that Corollary 4.8 holds for such random walks.

For some q > 0, let E be the event that
∑n

i=1 |gi| is at least nq. We note the following inequality

E

nq(p−2)

(
n∑

i=1

|gi|

)2

1∑n
i=1 |gi|≥nq

 ≤ E

[(
n∑

i=1

|gi|

)p]

≤ E
[(

n
n

max
i=1

|gi|
)p]

≤ np E

[
n∑

i=1

|gi|p
]

≤ np+1 E |g|p.

This implies that

E

( n∑
i=1

|gi|

)2

1E

 ≤ Cn(p+1)−q(p−2).

By taking q > p+1
p+2 , we can keep this bounded.

Now on the event Ec, we argue as in Lemma 4.7. We remark that the only place we used the
finite support assumption was to invoke Lemma 4.2. In particular, we needed

ϵ log (|w0|+ · · ·+ |wk|+ kϵ log n) ≤ log n,

where wi. However, on the event Ec, this assumption is still met, replacing ϵ with ϵ/q if necessary.
Then we may still apply lemma 4.2. Hence, we get

E[(id, Zn)
2
Zm

] ≤ n6α +Ke−nα/K ≤ 2n6α +K ′.

Given this estimate, we get:

Theorem 4.10. Let µ be an admissible measure on G with finite p–moment for some p > 2, and
(Zn)n be the random walk on G generated by µ. Then there exist constants λ, σ such that

dX(o, Zno)− Ln

σ
√
n

→ N (0, 1).
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Appendix A. Right-angled Coxeter Groups

Let Γ = (V,E) be a finite simple graph. We can define the Right-angled Coxeter group by the
presentation

WΓ = ⟨v ∈ V |v2, [v, w], (v, w) ∈ E⟩.

In this appendix we show the following

Lemma A.1. Let WΓ be a Right-angled Coxeter group of thickness k ≥ 2. Then any Cayley graph
of Γ contains a periodic geodesic σ which is (f, θ)–divergent for some θ > 0 and f(r) ≳ rk.

We only need to slightly modify the proof of Theorem C given in [Lev22]. They show that
a RACG of thickness at least k has divergence at least polynomial of degree k + 1. To do this,
they construct a periodic geodesic γ such that for any path κ with endpoints on γ and avoiding
an r-neighbourhood of γ’s midpoint, any segment of κ with projection at least some constant has
to have length at least rk. By integrating they get rk+1. For completeness, we include the proof
below.

Proof. Since the claim is quasi-isometry invariant, we work on the Davis complex ΣΓ. We modify
the proof of Theorem C of [Lev22], borrowing their notation and terminology. Take the word w
in the proof, so that σ is a bi-infinite geodesic which is the axis of w, and set pi = wi. Since the
Davis complex is a CAT(0) cube complex, the nearest point projection π : ΣΓ → σ is well-defined
and 1–Lipschitz.

Let κ : [0, t] → ΣΓ be a path whose projection has diameter at least 2|w|, which is disjoint from
the |w|r-neighbourhood around some wi. As the projection of κ has length at least 2|w|, we can
find some points pj , pk such that

π(κ(0)) < pj < pk < π(κ(t))

in the orientation on σ. Here pj , pk = wj , wk.
For the rest of the proof, we follow [Lev22]. For some j ≤ i < k, let Hi (resp. Ki) be the

hyperplane dual to the edge of σ which is adjacent to pi (resp. pi+1) and is labeled by s0 (resp.
sn). As hyperplanes separate ΣΓ and do not intersect geodesics twice, it follows that Hi (resp.
Ki) intersects κ. Let ei (resp. fi) be the last (resp. first) edge of κ dual to Hi (resp. Ki). Let γi
(resp. ηi) be a minimal length geodesic in the carrier N(Hi) (resp. N(Ki)) with starting point pi
(resp. pi+1) and endpoint on ei (resp. fi). Let αi be the subpath of κ between γi ∩ κ and ηi ∩ κ.
As w is a Γ–complete word, no pair of hyperplanes dual to σ intersect. By our choices, αi ∩ αj

is either empty or a single vertex for all i ̸= j. Let Di be the disk diagram with boundary path
γiαiη

−1
i βi where βi has label w

−1. For each 0 ≤ i ≤ r − 2, we observe the following:

(1) The path γi is reduced.
(2) By Lemma 7.2, no (k − 1)–fence connects γi to η−1

i in any disk diagram with boundary

path γiαiη
−1
i βi.

(3) The path αi does not intersect the ball Bpi(|w|(r)).
Thus we can apply [Lev22, Theorem 6.2] to Di by setting, in that theorem,

γ = γi, α = αi, η = η−1
i , β = βi, and L = k − 1R = |w|(r − i).

We conclude that for r large enough

|αi| ≥ C ′(|w|(r)k).

As αi is a subsegment of p, we are done. □
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Appendix B. Superlinear-divergence and strongly contracting axis

In this section, we give two constructions that illustrates the logical independence between
superlinear divergence and strongly contracting property. We first recall the notion of strongly
contracting geodesics.

Definition B.1 (Strongly contracting sets). For a subset A ⊆ X of a metric space X and ϵ > 0,
we define the closest point projection of x ∈ X to A by

πA(x) :=
{
a ∈ A : dX(x, a) = dX(x,A)

}
.

A is said to be K-strongly contracting if:

(1) πA(z) ̸= ∅ for all z ∈ X and
(2) for any geodesic η such that η ∩NK(A) = ∅, we have diam(πA(η)) ≤ K.

Lemma B.2. There exists a finitely generated group G containing an element whose axis is strongly
contracting but not superlinear-divergent.

Proof. Let G be the group constructed by Gersten in [Ger94]:

G = ⟨x, y, t | txt−1 = y, xy = yx⟩.
The group G naturally acts on the universal cover of its presentation complex, which is a CAT(0)
cube complex. Recall that the presentation complex of G is defined as follows: start with a single
0-cell, attach a 1-cell for each of the three generators x, y, t, and attach a 2–cell for each of the
relations [x, y] and txt−1y−1. Let X be the universal cover of this complex, which Gersten shows
is CAT(0) [Ger94, Prop. 3.1].

The induced combinatorial metric on X is isometric to the word metric with respect to {x, y, t}.
Let g = tx and γ be a path connecting (. . . , id, t, tx, txt, (tx)2, . . .). Then γ is a g–invariant

geodesic, and γ does not bound a flat half-plane (the cone angle of γ at its each vertex is 3π/2).
Hence, γ is rank-1 and we can conclude that g is strongly contracting.

Meanwhile, by [Ger94, Theorem 4.3], G has quadratic divergence. Given an appropriate action
of G on a hyperbolic space, we would be able to conclude from [GS21, Lemma 3.6] that γ is
not superlinear-divergent. Since we do not assume a hyperbolic action, we instead present a
modification of Goldborough-Sisto’s argument.

Suppose that there exists an (A,B)–coarsely Lipschitz projection πγ : G → γ, a constant θ > 0
and a superlinear function f such that γ is (f, θ)–divergent with respect to πγ . Up to a finite
additive error, we may assume that πγ takes the values {(zx)i : i ∈ Z}.

Let ϵ = 1
2(A+3) and let n be a sufficiently large integer. We claim:

Claim B.3. If a point p ∈ G\B(id, n) satisfies d(p, γ) ≤ ϵn, then πγ(p) = (tx)i for some |i| > 0.5n.

Proof of Claim B.3. First, from d(p, γ) ≤ ϵn and the coarse Lipschitzness of πγ , we deduce

d(p, πγ(p)) ≤ (A+ 1)ϵn+ 2B.

Hence, we have

d(id, πγ(p)) ≥ d(id, p)− d(p, πγ(n)) ≥ n− (A+ 1)ϵn− 2B > 0.5n

and the claim follows. □

Next, we let
an = (tx)(1−ϵ)ny−⌊ϵn⌋, bn = (tx)−(1−ϵ)ny−⌊ϵn⌋

and let η be an arbitrary path in G \ B(id, n) connecting an and bn. Let m,m′ ∈ Z be such that

πγ(an) = (tx)m and πγ(bn) = (tx)m
′
. We then have

d((tx)n, πγ(an)) ≤ d((tx)n, an) + d(an, πγ(an)) ≤ (A+ 2)ϵn+ 2B < 0.5n.

It follows that m > n− 0.5n ≥ 0.5n. Similarly, we deduce m′ < −0.5n.
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We examine the two connected components of η\Nϵn(γ) as well as η∩Nϵn(γ). Each component
of η ∩Nϵn(γ) attains values of πγ(·) in

{(tx)i : i < −0.5n} or {(tx)i : i > 0.5n},

by Claim B.3, but not in both (by the coarse Lipschitzness of πγ). Meanwhile, the endpoints of η
attain values of πγ(·) in {(tx)i : i < −0.5n} and {(tx)i : i > 0.5n}, respectively. As a result, there
exists a subsegment η′ of η, as a component of η \Nϵn(γ), such that

πγ(η
′+) ∈ {(tx)i : i > 0.5n} and πγ(η

′−) ∈ {(tx)i : i < −0.5n}.

It follows that the length of η′ is at least (n/θ) · f(ϵn). Since η is longer than η′, we deduce
that an arbitrary path in G \ B(id, n) connecting an, bn ∈ B(id, n) is longer than (n/θ) · f(ϵn).
When n increases, this contradicts the quadratic divergence of G. Hence, we deduce that γ is not
superlinear-divergent. □

Lemma B.4. There exists a proper geodesic metric space X that contains a superlinear-divergent
geodesic γ that is not strongly contracting.

Proof. Let X = H2 and γ be a bi-infinite geodesic γ on X with respect to the standard Poincaré
metric ds20. Let o ∈ γ be a reference point on γ and let projγ be the closest point projection onto γ

with respect to ds20. For each x ∈ X, let r be the (directed) distance from x to γ and let τ be the
(directed) distance from o to projγ(x). Since (r, τ) is an orthogonal parametrization of X, there
exists a continuous coefficient F0 such that

ds20 = dr2 + F0(x)dτ
2

holds at each point x ∈ X. We note that F0(x) ∼ eκr(x) for some κ > 0 (due to the Gromov
hyperbolicity of (X, ds20)) and F0(x) ≥ 1.

We will now define a new metric ds2 as follows. For each i > 0 and j ∈ Z let

Ii,j = {(r, τ) : r = 42
i

, 2j + i ≤ τ ≤ 2j + i+ 1},

and let

S :=
⋃

i>0, j∈Z
Ii,j .

Let χ : R2 → [0, 1] be a smooth function that takes value 0 on S and 1 on R2 \N0.1(S). We finally
define

F (x) := F0(x) · χ(r(x), τ(x)) + (1− χ(r(x), τ(x)))

and

ds2 := dr2 + F (x)dτ2.

First, projγ is still the closest point projection with respect to ds2. Indeed, the shortest path from
x ∈ X to γ is the one that does not change in the value of τ . As a corollary, the K-neighborhoods
of γ with respect to the two metrics coincide.

Let i be a positive integer and let x, y ∈ X be such that r(x) = r(x) = 42
4i

and τ(x) = 0,
τ(y) = 2i. We first consider a path η connecting x to y while passing through NK(γ). Then the

total length is at least 2 · (424i −K). Next, we take a piecewise geodesic path η′ that goes like:

(r, τ) = (42
4i

, 0)− (42
4i

, 1)− (42
4i−1

, 1)− (42
4i−1

, 2)− · · ·

− (42
3i+1

, i)− (42
3i

, i)− (42
3i

, i+ 1)− (42
3i+1

, i+ 1)− · · · − (42
i

, 2i).

Then the total length is 2(42
4i−42

3i

)+2i. Note also that η′ does not intersect NK(γ). We conclude
that the geodesic connecting x to y does not touch NK(γ). Note also that the projection is larger
than 2i. By increasing i, we conclude that γ is not K–strongly contracting for any K > 0.
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Meanwhile, it is superlinear-divergent. To see this, suppose a path η lies in X \ NR(γ) and
satisfies πγ(η) > 4. Then πγ(η) contains [2k, 2k+2] for some integer k, and by restricting the path
if necessary, we may assume πγ(η) = γ([2k, 2k + 2]).

If r(η) ever takes two values among {42i : i > 0}∩ [R,+∞), say 42
m

and 42
m′

for some m < m′,
then the total variation of r(η(t)) is at least

42
m+1

− 42
m

= 42
m

(42
m

− 1) ≥ R2/2.

Consequently, we have l(η) ≥ 0.5R2.

If not, r(η) takes at most one value 42
i

among {42j : j > 0}. If i is even, then

F (η(t)) = F0(η(t))

for t such that τ(η(t)) ∈ [2k + 1.1, 2k + 1.9]. Since

F0(η(t)) ≥ eκr(η(t)) ≥ eκR,

we have

l(η) ≥
∫

F (η) dτ(η) ≥ eκR × 0.8 = 0.8κR.

Similarly, we have l(η) ≥ 0.8eκR when i is odd. This concludes that γ is superlinear-divergent. □

Finally, we remark that superlinear divergence is invariant under quasi-isometry but the notion
of strongly contracting is not. For example, let X be the Cayley graph of a group G equipped with
the word metric associated to some finite generating set S and let Z be a superlinear-divergent set
in X. Then changing the generating set changes the metric in X by a quasi-isometry, and hence,
Z is still a superlinear-divergent set. But if γ is a strongly contracting geodesic in X it may not
be strongly contracting with respect to the new metric.

As an explicit example, it was shown in [SZ22, Theorem C] that each mapping class group
admits a proper cobounded action on a metric space X such that all pseudo-Anosov elements have
strongly contracting quasi-axes in X. To contrast, it was shown in [RV21, Theorem 1.4] that the
the mapping class group of the five-times punctured sphere can be equipped with a word metric
such that the axis of a certain pseudo-Anosov map in the Cayley graph is not strongly contracting.
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