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Fibered 3-manifolds and Veech groups
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We study Veech groups associated to the pseudo-Anosov monodromies of fibers and foliations of a fixed
hyperbolic 3-manifold. Assuming Lehmer’s conjecture, we prove that the Veech groups associated to
fibers generically contain no parabolic elements. For foliations, we prove that the Veech groups are always
elementary.

57K32; 57K20

1 Introduction

A pseudo-Anosov homeomorphism f W S ! S on an orientable surface determines a complex structure
and holomorphic quadratic differential, .X; q/, up to Teichmüller deformation, for which the vertical and
horizontal foliations are the stable and unstable foliations of f . The pseudo-Anosov generates an infinite
cyclic subgroup of the full group of orientation preserving affine homeomorphisms, AffC.X; q/.

For a finite type surface S , we say that the pseudo-Anosov homeomorphism f is lonely if hf i<AffC.S; q/
has finite index. The motivation for this paper is the following; see eg Hubert, Masur, Schmidt and
Zorich [11] and Lanneau [15]

Conjecture 1.1 (lonely pseudo-Anosov) There exist lonely pseudo-Anosov homeomorphisms. In fact ,
lonely pseudo-Anosov homeomorphisms are generic.

There is not an agreed upon notion of “generic”, and some care must be taken: work of Calta [2] and
McMullen [19; 20] shows that no pseudo-Anosov homeomorphism on a surface of genus 2, with orientable
stable/unstable foliation is lonely. In fact, in this case, not only are the pseudo-Anosov homeomorphisms
not lonely, but their Veech groups always contain parabolic elements.

In this paper, we consider infinite families of pseudo-Anosov homeomorphisms arising as follows; see
Section 2.1. Suppose f W S ! S is a pseudo-Anosov homeomorphism of a finite type surface S and
Mf is the mapping torus (which is hyperbolic by Thurston’s hyperbolization theorem; see Otal [21]).
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The connected cross sections of the suspension flow are organized by their cohomology classes (up to
isotopy), which are primitive integral classes in the cone on the open fibered face F �H 1.M;R/ of the
Thurston norm ball containing the Poincaré–Lefschetz dual of the fiber S . Given such an integral class ˛,
the first return map to the cross section S˛ is a pseudo-Anosov homeomorphism f˛ W S˛! S˛. When
b1.M/ > 1, there are infinitely many such pseudo-Anosov homeomorphisms; in fact, j�.S˛/j is a linear
function of ˛, and hence tends to infinity with ˛.

We let N̨ 2 F denote the projection of the primitive integral class ˛ in the cone over F , and let FQ be the
set of all such projections, which is precisely the (dense) set of rational points in F .

Question 1.2 Given a fibered hyperbolic 3-manifold and fibered face F , are the pseudo-Anosov homeo-
morphisms f˛ for N̨ 2 FQ generically lonely?

We will provide two pieces of evidence that the answer to this question is “yes”. Write AffC.X˛; q˛/ for
the orientation preserving affine group containing f˛; see Section 2.3 for more details.

Theorem 1.3 Suppose F is the fibered face of an orientable, fibered, hyperbolic 3-manifold. Assuming
Lehmer’s conjecture, the set of N̨ 2 FQ such that AffC.X˛; q˛/ contains a parabolic element is discrete
in F .

In certain examples, the set of classes whose associated Veech group contains parabolics is actually
finite (again, assuming Lehmer’s conjecture); see Theorem 4.2. In Section 3 we describe some explicit
computations that illustrate this finite set. If M is the orientation cover of a nonorientable, fibered
3-manifold, then the conclusion of Theorem 1.3 holds on the invariant cohomology of the covering
involution without assuming the validity of Lehmer’s conjecture; see Theorem 4.3.

Much of the defining structure survives for nonintegral classes ˛ 2 F �FQ; see Section 2.2 for details.
Briefly, we first recall that every ˛ 2F �FQ is represented by a closed 1-form !˛ which is positive on the
vector field generating the suspension flow. The kernel of !˛ is tangent to a foliation F˛ , and the flow can
be reparameterized to send leaves of F˛ to other leaves. There is no longer a first return time, but rather
a higher rank abelian group of return times, H˛, to any given leaf S˛ of F˛. Work of McMullen [18]
associates a leafwise complex structure and quadratic differential .X˛; q˛/ to each ˛ 2 F �FQ such that
the leaf-to-leaf maps of the flow are all Teichmüller maps. For every leaf S˛ of F˛, the return maps to
S˛ thus determine an isomorphism from H˛ < R to a subgroup we denote by HAff

˛ < AffC.X˛; q˛/,
an abelian group of pseudo-Anosov elements. Our second piece of evidence for a positive answer to
Question 1.2 is the following.

Theorem 1.4 If F is a fibered face of a closed, orientable, fibered, hyperbolic 3-manifold, then for all
˛ 2 F �FQ, and any leaf S˛ of F˛, the abelian group HAff

˛ < AffC.X˛; q˛/ has finite index.

For ˛ 2 F �FQ, the leaves S˛ are infinite type surfaces. In general, there is much more flexibility in
constructing affine groups for infinite type surfaces, and exotic groups abound. Indeed, work of Przytycki,
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Schmithüsen and Valdez [22] and Ramírez Maluendas and Valdez [23] proves that any countable subgroup
of GL2.R/ without contractions is the derivative-image of some affine group. (See also Bowman [1] for
a “naturally occurring” lonely pseudo-Anosov homeomorphism on an infinite type surface of finite area.)
Theorem 1.4 says that for the leaves S˛ of the foliations and their associated quadratic differentials, the
situation is much more rigid.
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2 Definitions and background

2.1 Fibered 3-manifolds

Here we explain the set up and background for our work in more detail. For a pseudo-Anosov homeo-
morphism f W S! S of an orientable, finite type surface S , let �.f / denote its stretch factor (also called
its dilatation); see [3]. We write

M DMf D S � Œ0; 1�=.x; 1/� .f .x/; 0/

to denote the mapping torus of the pseudo-Anosov homeomorphism f . The suspension flow  s of f is
generated by the vector field � D @

@t
, where t is the coordinate on the Œ0; 1� factor. Alternatively, we have

the local flow of the same name  s.x; t/D .x; t C s/ on S � Œ0; 1�, defined for t; sC t 2 Œ0; 1�, which
descends to the suspension flow.

A cross section (or just section) of the flow is a surface S˛ �M transverse to � , such that for all x 2 S˛ ,
 s.x/ 2 S˛ for some s > 0. If s.x/ > 0 is the smallest such number, then the first return map of  s is the
map f˛ W S˛! S˛ defined by f˛.x/D  s.x/.x/ for x 2 S˛. Note that S.D S � f0g/�M is a section,
and the first return map to S is precisely the map f D  1jS .

Cutting open along an arbitrary section S˛ we get a product S˛ � Œ0; 1� where the slices fxg � Œ0; 1� are
arcs of flow lines. Thus, M can also be expressed as the mapping torus of f˛ , or alternatively, M fibers
over the circle with monodromy f˛ . Up to isotopy, the fiber S˛ is determined by its Poincaré–Lefschetz
dual cohomology class ˛ D ŒS˛� 2H 1.M IZ/�H 1.M IR/DH 1.M/. To see how these are organized,
we first recall the following theorem of Thurston [27]

Theorem 2.1 For M D Mf as above , there is a finite union of open , convex , polyhedral cones
C1; : : : ;Ck � H

1.M/ such that ˛ 2 H 1.M IZ/ is dual to a fiber in a fibration over S1 if and only

Algebraic & Geometric Topology, Volume 25 (2025)
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if ˛ 2 Cj for some j . Moreover , there is a norm k � kT on H 1.M/ so that for each Cj , k � kT restricted to
Cj is linear , and if ˛ 2 Cj \H

1.M IZ/ then k˛kT is the negative of the Euler characteristic of the fiber
dual to ˛.

The unit ball B of k � kT is a polyhedron, and each Cj is the cone over the interior of a top dimensional
face Fj of B.

The cones in the theorem are called the fibered cones of M and the Fj the fibered faces of B. It follows
from Thurston’s proof of Theorem 2.1 that each of the sections S˛ of . s/ described above must lie
in a single one of the fibered cones C over a fibered face F . The following theorem elaborates on this,
combining results of Fried from [5; 6].

Theorem 2.2 For M DMf as above , there is a fibered cone C � H 1.M/ such that ˛ 2 H 1.M IZ/

is dual to a section of . s/ if and only if ˛ 2 C. Moreover , there is a function h W C! RC which is
continuous , convex, and homogenous of degree �1, with the following properties.

� For any ˛ 2 C\H 1.M IZ/, f˛ is pseudo-Anosov and h.˛/D log.�.f˛//.

� For any f˛ng � C with ˛n! @C, we have h.˛n/!1.

We let CZ � C denote the primitive integral classes in the fibered cone C; that is, the integral points
which are not nontrivial multiples of another element of H 1.M IZ/. These correspond precisely to the
connected sections of . s/.

McMullen [18] refined the analysis of h, proving for example that it is actually real-analytic. For this, he
computed the stretch factors using his Teichmüller polynomial ‚C. This polynomial

‚C D

X
g2G

agg

is an element of the group ring ZŒG� where G DH1.M IZ/=torsion. For ˛ 2 CZ, the specialization of
the Teichmüller polynomial is

‚˛C.t/D
X
g2G

ag t
˛.g/
2 ZŒt˙1�

where we view ˛2H 1.M IZ/ŠHom.GIZ/. Further,GŠH˚Z whereHDHom.H 1.S;Z/f;Z/ŠZm

and H 1.S;Z/f are the f -invariant cohomology classes. So we can regard ‚C as a Laurent polynomial
on the generators x1; x2; : : : ; xm of H and the generator u of Z. Then specialization to the dual of an
element .a1; a2; : : : ; am; b/ 2 C\H 1.M IZ/ amounts to setting xi D tai for 1 � i � m and u D tb .
McMullen proves that the specializations and the pseudo-Anosov first return maps are related by the
following.

Theorem 2.3 For any ˛ 2 CZ, the stretch factor �.f˛/ is a root of ‚˛C with the largest modulus.

Combining the linearity of k � kT on C together with the homogeneity of h, we have the following
observation of McMullen; see [18].

Algebraic & Geometric Topology, Volume 25 (2025)
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Corollary 2.4 The function ˛ 7! k˛kT h.˛/ is continuous and constant on rays from 0. In particular , if
K � C is any compact subset , then k � kT h. � / is bounded on RCK.

The key corollary for us is the following, also observed by McMullen in the same paper.

Corollary 2.5 If f˛ngn � CZ is any infinite sequence of distinct elements , then j�.S˛n/j !1, and if
the rays RC˛n do not accumulate on @C, then

log.�.f˛n//�
1

j�.S˛n/j
:

In particular , �.f˛n/! 1.

Remark 2.6 One can sometimes promote the final conclusion to any infinite sequence of distinct
elements, without the assumption about nonaccumulation to @C; see the examples in Section 3. This is
not always the case, and the accumulation set of stretch factors can be fairly complicated, as described by
work of Landry, Minsky and Taylor [14].

2.2 Foliations in the fibered cone

Fried’s work described above [5; 6] implies that any ˛ 2 C may be represented by a closed 1-form !˛ for
which !˛.�/ > 0 at every point of M . For integral classes, !˛ is the pull-back of the volume form from
the fibration over the circle R=Z, and in general, !˛ is a convex combination of such 1-forms. The kernel
of !˛ defines a foliation F˛ transverse to � whose leaves are injectively immersed surfaces S˛ �M .
We consider the reparameterized flow f ˛s g defined by scaling the generating vector field � by �=!˛.�/.
Then for every leaf S˛ �M of F˛ and for every s 2 R, the image by the flow  ˛s .S˛/ is another leaf
of F˛. The subgroup H˛ <R mentioned in the introduction is precisely the set of return times of  ˛s
to S˛. As such, H˛ acts on S˛ so that s 2H˛ acts by s � x D  ˛s .x/, for all x 2 S˛.

The group H˛ Š Zn for some nD n˛ � b1.M/, and can alternatively be defined as the set of periods
of ˛ (ie the ˛-homomorphic image of H1.M IZ/). A leaf S˛ is a closed surface, and in fact a fiber as
above if and only if n˛ D 1 in which case H˛ is a discrete subgroup of R and N̨ 2 FQ. On the other hand,
n˛ � 2 if and only if the group of return times H˛ is indiscrete, and so S˛ is dense in M .

2.3 Teichmüller flows and Veech groups

In [18], McMullen defines a conformal structure and quadratic differential, .X˛; q˛/, on the leaves S˛ of
the foliation F˛ , for all ˛ 2 C, with the following properties. For each s 2R and leaf S˛ , the leaf-to-leaf
map  ˛s W S˛!  ˛s .S˛/ is a Teichmüller map with initial/terminal quadratic differentials given by q˛
on the respective leaves. In fact, there exists some K˛ > 1 such that  ˛s is a K jsj˛ -Teichmüller map, and
hence K2jsj˛ -quasiconformal.

Remark 2.7 The notation .X˛; q˛/ is somewhat ambiguous: this really denotes a family of structures,
one on every leaf, though we abuse notation and also use this same notation to denote the restriction to
any given leaf.
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The vertical and horizontal foliations of q˛ on the leaves S˛ of F˛ are obtained by intersecting with
a fixed singular foliation on the 3-manifold; namely, the suspension of the unstable/stable foliations
for the original pseudo-Anosov homeomorphism f . In particular, the cone points (ie zeros) of q˛ are
precisely the intersections of S˛ with the  s-flowlines through the cone points on the original surface S .
Consequently, the cone points are isolated, and the cone angles are bounded by those of the original
surface, and are hence bounded independent of ˛.

For s 2H˛,  ˛s W S˛! S˛ is (a remarking) of the Teichmüller map, and thus an affine pseudo-Anosov
homeomorphism with respect to q˛. In this way, we obtain an isomorphism from H˛ to a subgroup
HAff
˛ < AffC.X˛; q˛/, the group of orientation preserving affine homeomorphisms of the leaf S˛ with

respect to .X˛; q˛/. The derivative with respect to the preferred coordinates defines a map

D˛ W AffC.X˛; q˛/! GLC2 .R/=˙ I;

which is called the Veech group of .X˛; q˛/. A parabolic element of AffC.X˛; q˛/ is one whose image
by D˛ is parabolic.

Remark 2.8 The preferred coordinates for a quadratic differential are only defined up to translation and
rotation through angle � , so the derivative is only defined up to sign. If all affine homeomorphisms are
area preserving (eg if the surface has finite area) then the derivative maps to PSL2.R/D SL2.R/=˙ I .

Since the vertical/horizontal foliations are the stable/unstable foliations, the image of HAff
˛ , which we

denote by HD
˛ DD˛.H

Aff
˛ / is contained in the diagonal subgroup of PSL2.R/,

HD
˛ <�D

��
a 0

0 1
a

�
2 SL2.R/

ˇ̌̌
a > 0

�ı
˙I:

Define SAff.X˛; q˛/ < AffC.X˛; q˛/ to be the area preserving subgroup of orientation preserving affine
homeomorphisms; this is the preimage of PSL2.R/ under D˛. In particular, HAff

˛ < SAff.X˛; q˛/.

2.4 Trace fields

A number field is totally real if the image of every embedding into C lies in R. Hubert and Lanneau [9]
proved the following.

Theorem 2.9 If a nonelementary Veech group contains a parabolic element , then the trace field is totally
real.

A pseudo-Anosov f being lonely implies that there are no parabolic elements in the Veech group, but not
conversely; see [10].

McMullen [20, Corollary 9.6] proved the following fact about the trace field of a Veech group; see also
Kenyon and Smillie [12].

Theorem 2.10 The trace field of a Veech group containing a pseudo-Anosov is generated by the trace of
that pseudo-Anosov. That is , the trace field is given by Q.�.f /C�.f /�1/.
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Thus, this trace field is totally real precisely when the trace of the pseudo-Anosov has only real Galois
conjugates.

Remark 2.11 Theorems 2.9 and 2.10 are proved for complex structures with an abelian differential,
rather than a quadratic differential. The proof of Theorem 2.9 for the more general case of quadratic
differentials follows verbatim since the key ingredient is the so-called Thurston–Veech construction,
which works for both quadratic differentials and abelian differentials (see [28, Section 6]). Theorem 2.10
for quadratic differentials follows from the case of abelian differentials since every affine homeomorphism
lifts to the canonical 2-fold cover where a quadratic differential pulls back to a square of an abelian
differential, and thus the preimage of the Veech group of the original surface in SL2.R/ is contained in
the Veech group for the abelian differential.

2.5 Lehmer’s conjecture

Theorem 1.3 is dependent on the validity of what is known as Lehmer’s conjecture [16] though Lehmer
did not actually conjecture the statement we will use. See [26]. To state this conjecture, we need the
following.

Definition 2.12 Let p.x/ 2CŒx� with factorization over C,

p.x/D a0

mY
iD1

.x� i /:

The Mahler measure of p is

M.p/D ja0j

mY
iD1

.max 1; ji j/:

With this definition, we state the conjecture we assume.

Conjecture 2.13 (Lehmer) There is a constant � > 1 such that for every p.x/ 2 ZŒx� with a root not
equal to a root of unity, M.p/� �.

Lehmer’s conjecture is known in some special cases, including the following result of Schinzel [25] which
will be important in the proof of Theorem 4.3.

Theorem 2.14 If p.t/ is the minimal polynomial for an algebraic integer not equal to 0 or ˙1, all of
whose roots are real , then

M.p/�
�
1C
p
5

2

�deg.p/=2
:

3 Examples

Here we provide examples of fibered faces of fibered 3-manifolds and examine arithmetic features of the
Veech groups of the corresponding pseudo-Anosov homeomorphisms.
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3.1 Example 1

Let ˇ D �1��12 be an element of the braid group B3 on three strands (viewed as the mapping class
group of a four-punctured sphere, S ), where �1 and �2 denote the standard generators. Let M denote the
mapping torus of ˇ. McMullen computes the Teichmüller polynomial for this manifold in detail in [18].
See also Hironaka [7].

Since ˇ permutes the strands of the braid cyclically, b1.M/D 2. Choosing appropriate bases, we obtain
an isomorphism H 1.M IZ/Š Z2 such that the starting fiber surface S is dual to .0; 1/, the fibered cone
is

CD f.a; b/ 2R2 j b > 0;�b < a < bg

and the Teichmüller polynomial for this cone is

‚C.x; u/D u
2
�u.xC 1C x�1/� 1:

Specialization to an integral class .a; b/ 2 CZ equates to setting x D ta and uD tb and yields

‚
.a;b/
C .t/D‚C.t

a; tb/D t2b � tbCa � tb � tb�aC 1:

We used the mathematics software system SageMath [24] to factor‚.a;b/C .t/ for all primitive integral pairs
.a; b/2C with b < 50, to determine the stretch factors �.a;b/ of the corresponding monodromies and their
minimal polynomials. We then computed the conjugates of the corresponding traces, �.a;b/C 1=�.a;b/,
to determine whether the trace field of each associated Veech group is totally real. The results are shown
in Figure 1. Recall that by Theorem 2.9, when this trace field is not totally real, the Veech group has no
parabolic elements.

These computations suggest that there are only finitely many pairs .a; b/ where the trace field is not
totally real. This is not a coincidence as we will see below. For this, we record the following improvement
on Corollary 2.5 for the cone C for this example.

Lemma 3.1 For any sequence ˛n D .an; bn/ 2 CZ of distinct elements , we have �.f˛n/! 1.

Proof Since h is convex, the maximum value of h.a; b/D log.�.f.a;b///, for points .a; b/ 2 CZ and a
fixed b, occurs at either .b� 1; b/ or .1� b; b/.

First we consider the points of the form .b� 1; b/. The specialization of ‚C in this case takes the form

‚
.b�1;b/
C .t/D t2b � t2b�1� tb � t C 1:

Recall that �b D �.f.b�1;b// > 1. As b!1, we claim that �b! 1. Suppose instead that the sequence
is bounded below by 1C �, for � > 0 on some subsequence. Then in this subsequence we have

‚
.b�1;b/
C .�b/D �

2b
b .1��

�1
b ��

�b
b ��

1�2b
b /C 1

� .1C �/2b
�
1� .1C �/�1� .1C �/�b � .1C �/1�2b

�
:
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b

50

40

30

20

10

0

�10

�40 �20 0 20 40

a

Veech group trace field is totally real

Veech group trace field is not totally real

Figure 1: Primitive integral elements in a fibered cone for the mapping torus of the three-strand
braid �1��12 . Elements marked with green triangles have corresponding Veech group with trace
field that is not totally real.

The first factor on the right hand side tends to infinity when b does, while the second factor tends toward
1� .1C �/�1 D �=.1C �/ > 0. This implies that ‚.b�1;b/C .�b/ approaches infinity, whereas instead it is
identically equal to 0. This contradiction proves the claim.

For points of the form .1� b; b/, the specialization takes the form

‚
.1�b;b/
C .t/D t2b � t � tb � t2b�1C 1D‚

.b�1;b/
C .t/:

Therefore, �.f.1�b;b//D �.f.b�1;b//D �b and as b!1; these both tend to 1.

One of the difficulties in the proof of Theorem 1.3 is understanding the degrees of the trace field. This is
complicated by the fact that the Teichmüller polynomial need not be irreducible in general. For example,
when specialized to .a; b/D .9; 14/, the Teichmüller polynomial in this example splits into the cyclotomic
polynomials t2� t C 1 and t4� t2C 1, plus the minimal polynomial of the corresponding stretch factor.
However, in other cases, such as the specialization to .a; b/D .5; 14/, the Teichmüller polynomial remains
irreducible. We refer the reader to [4] for more on the factorizations of the specialized polynomials in the
example above. As we will see in the example below, the Teichmüller polynomial also sometimes admits
additional noncyclotomic factors aside from the minimal polynomial of the corresponding stretch factor.
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3.2 Example 2

Let ˇ0 D ˇ2, for ˇ from the preceding example. Let M 0 denote the mapping torus on ˇ0 and � 0C0 the
Teichmüller polynomial of the fibered cone C0 containing the dual of ˇ0. Here we will observe three
different splitting behaviors of specializations of the Teichmüller polynomial. In particular, we see that
certain specializations of � 0C0 split into multiple noncyclotomic factors, limiting what information can be
derived about conjugates of the corresponding stretch factors and their traces by looking at the collection
of all roots of � 0C0 .

The Teichmüller polynomial here is

� 0C0.x; u/D u2�u.x2C 2xC 1C 2x�1C x�2/C 1

over the cone
CD

˚
.a; b/ 2R2 j b > 0;�1

2
b < a < 1

2
b
	
:

The specialization to .a; b/D .6; 17/ is irreducible over Z,

t34� t29� 2t23� t17� 2t11� t5C 1;

while the specialization to .a; b/D .7; 17/ splits as a cyclotomic and noncyclotomic factor,

.t4C t3C t2C t C 1/
�
t30� t29� t27C t26C t25� t24� t22C t21� t20C t19� t17C t16

� t15C t14� t13C t11� t10C t9� t8� t6C t5C t4� t3� t C 1
�
;

and the specialization to .a; b/D .7; 18/ has multiple noncyclotomic factors,

.t2� t C 1/.t4C t3C t2C t C 1/.t12� t9� t8C t7C t6C t5� t4� t3C 1/.t18� t16� t9� t2C 1/:

Figure 2 shows whether the Veech groups corresponding to elements of C0 have totally real trace field.
For all three specializations described in this example, the corresponding Veech group trace field is not
totally real.

The analog to Lemma 3.1 holds in this example as well. M 0 is a 2-fold cover of M so the stretch factors
in C0Z are at most squares of the stretch factors in CZ.

4 Most Veech groups have no parabolics

We are now ready for the proof of the first theorem from the introduction.

Theorem 1.3 Suppose F is the fibered face of an orientable, fibered, hyperbolic 3-manifold. Assuming
Lehmer’s conjecture, the set of N̨ 2 FQ such that AffC.X˛; q˛/ contains a parabolic element is discrete
in F .

Proof Consider any sequence of distinct elements ˛n in CZ such that N̨n does not accumulate on @F .
We need to show that Aff.X˛; q˛n/ contains a parabolic for at most finitely many n. According to
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Figure 2: Primitive integral elements in a fibered cone for the mapping torus of the three-strand
braid .�1��12 /2. Elements marked with green triangles have a not totally real corresponding Veech
group.

Theorem 2.9, it suffices to prove that the trace field is totally real for at most finitely many n. Setting
�n D �.f˛n/, Theorem 2.10 implies that the trace field of Aff.X˛n ; q˛n/ is Q.�nC��1n /.

Next, let N be the number of terms of the Teichmüller polynomial, ‚C for C. The stretch factor �n is the
largest modulus root of the specialization ‚˛nC .t/ by Theorem 2.3. We observe that this polynomial has
no more nonzero terms than ‚C, and thus has at most N terms. Descartes’s rule of signs implies that the
number of real roots of ‚˛nC is at most 2N � 2.

Suppose that pn.t/ is the minimal polynomial of �n, which is thus a factor of ‚˛nC .t/ (up to powers
of t , which we will ignore). In particular, note that �n bounds the modulus of all other roots of pn.t/.
The stretch factors are always algebraic integers, and hence pn.t/ is monic. The Mahler measure is
therefore the product of the moduli of the roots outside the unit circle. There are at most 2N � 2 real
roots of ‚˛nC .t/, and hence the same is true of pn.t/. Write

M.pn/D AnBn

where An is the product of the moduli of the real roots and Bn is the product of the moduli of the nonreal
roots outside the unit circle (and 1 if there are none). Thus, we have

(1) An � �
2N�2
n :
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Now, as n!1, we have j�.S˛n/j D k˛nkT !1 as n!1. Since N̨n does not accumulate on @F ,
Corollary 2.5 implies �nD�.f˛n/! 1. By (1), it follows that An! 1 as n!1. Since we are assuming
Lehmer’s conjecture, it follows that Bn > 1 for all but finitely many n. That is, there is at least one
nonreal root �n of pn.t/ outside the unit circle. (In fact, the number of such roots tends to infinity linearly
with j�.S˛n/j since �n has the maximum modulus of any root of pn.t/).

Therefore, for all but finitely many n, the embedding of Q.�nC��1n / to C sending �nC��1n to �nC��1n
has nonreal image, since �n is nonreal and lies off the unit circle. Therefore, Q.�nC��1n / is totally real
for at most finitely many n, as required.

Remark 4.1 The proof of Theorem 1.3 follows a strategy of Craig Hodgson [8] for understanding trace
fields under hyperbolic Dehn filling.

The key ingredient is that for sequences f˛ng in CZ, we have �.f˛n/! 1. Sometimes this happens for
any sequence of distinct elements in the cone, and then one obtains the following stronger result.

Theorem 4.2 Suppose F is the fibered face of an orientable , fibered , hyperbolic 3-manifold and that 1 is
the only accumulation point of the set

f�.f˛/ j N̨ 2 FQg:

Assuming Lehmer’s conjecture , the set of N̨ 2 FQ such that AffC.X˛; q˛/ contains a parabolic element is
finite.

Proof This is exactly the same as the proof of Theorem 1.3, except that the assumption that 1 is the only
accumulation point of f�.f˛/ j N̨ 2 FQg replaces the references to Corollary 2.5, and does away with the
requirement that N̨n does not accumulate on @F .

Returning to the examples from Section 3, Lemma 3.1 and the discussion in both examples implies that
the hypotheses of Theorem 4.2 are satisfied. Thus only finitely many elements ˛ 2 CZ are such that
AffC.X˛; q˛/ can contain parabolics. We refer the reader to [14] for more on the accumulation set of
f�.f˛/ j ˛ 2 CZg

If p WM ! N is the orientation double cover of a nonorientable fibered 3-manifold N with covering
involution � W M ! M , then p� W H 1.N /! H 1.M/ is an isomorphism onto the ��-fixed subspace.
There is a well-defined Thurston norm on H 1.N /, and the induced homomorphism �1N ! �1S

1 D Z

determines an element ˛ 2H 1.N / which lies in an open cone of a fibered face. Indeed, the p�-image of
this cone is the intersection of p�.H 1.N // with an open cone on a fibered face F for M , or equivalently,
the cone over the ��-fixed set F � � F ; see [13, Theorem 2.11]. In this setting, and appealing to work of
Liechti and Strenner [17] we can remove the assumption that Lehmer’s conjecture holds, at the expense
of restricting to F � .
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Theorem 4.3 With the assumptions above on M ! N D M=h�i, the set of N̨ 2 F �Q such that
AffC.X˛; q˛/ contains a parabolic element is discrete in F � .

Proof For every N̨ � F �Q, the associated monodromy f˛ W S˛ ! S˛ is the lift of the monodromy for
some fibration of N . Then either S˛ covers a nonorientable surface S 0˛ and f˛ is the lift of a pseudo-
Anosov homeomorphism on S 0˛, or else f˛ is the square of an orientation reversing pseudo-Anosov
homeomorphism. In either case, [17, Theorem 1.10] implies that if p.t/ is the minimal polynomial
for �.f˛/, then p.t/ has no roots on the unit circle.

Now suppose f N̨ng � F �Q is any infinite sequence of distinct elements not accumulating on the boundary
of F and �n D �.f˛n/. As in the proof of Theorem 1.3, write pn.t/ for the minimal polynomial and
M.pn/D AnBn. Again, An! 1, and thus by Theorem 2.14, there is a nonreal root �n of pn.t/ for all
n sufficiently large (regardless of the behavior of Bn). By the previous paragraph �n is not on the unit
circle, and thus �nC ��1n …C; hence Q.�nC��1n / is not totally real, proving our result.

5 Veech groups of leaves

We now turn our attention to the nonintegral points in the cone and the second theorem from the
introduction.

Theorem 1.4 If F is a fibered face of a closed, orientable, fibered, hyperbolic 3-manifold, then for all
˛ 2 F �FQ, and any leaf S˛ of F˛, the abelian group HAff

˛ < AffC.X˛; q˛/ has finite index.

For the rest of the paper, we assume M is a closed, fibered, hyperbolic 3-manifold. The results of this
section are only nontrivial if b1.M/ > 1, since otherwise F �FQ D∅ for any fibered face F (since in
that case F DFQ is a point). Given ˛ 2F , we recall that  ˛s is the reparameterized flow as in Section 2.2,
that sends leaves of F˛ to leaves. Furthermore, .X˛; q˛/ is the leafwise conformal structure and quadratic
differential, and there is K˛ > 1 such that  ˛s is the K jsj˛ -Teichmüller map; hence K2jsj˛ -quasiconformal
and K jsj˛ -bi-Lipschitz.

Lemma 5.1 For any ˛ 2 F �FQ there exists a compact subsurface Z � S˛ such that

M D
[

s2Œ0;1�

 ˛s .Z/:

Proof Choose an exhaustion of S˛ by a sequence of compact subsurfaces,

Z1 ¨Z2 ¨Z3 ¨ � � �¨ S˛ and
1[
nD1

Zn D S˛;

and observe that � [
s2.0;1/

 ˛s .int.Zn//
�1
nD1
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is an open cover of M since every leaf is dense. Since M is compact, the open cover admits a finite
subcover of M . As the compact surfaces Zn are nested, there exists an index N such that for Z DZN
we have

M D
[

s2Œ0;1�

 ˛s .Z/:

The isomorphism H˛ ŠH
Aff
˛ is given by s 7!  ˛s jS˛ . We write

HAff
˛ Œ0; 1��HAff

˛

for the image ofH˛\Œ0; 1� under this isomorphism. Note that every element ofHAff
˛ isK2˛-quasiconformal

and K˛-bi-Lipschitz since s � 1. As a consequence of Lemma 5.1, we have the following.

Corollary 5.2 For ˛ 2 F �FQ and Z � S˛ as in Lemma 5.1 we have

S˛ D
[

h2HAff
˛ Œ0;1�

h.Z/:

Proof Let Z � S˛ be the compact subsurface from Lemma 5.1, so that for every x 2 S˛ �M , we have
x 2  ˛s .Z/ for some s 2 Œ0; 1�. Since x 2 S˛, this implies that s 2H˛. Therefore,

S˛ D
[

s2H˛\Œ0;1�

 ˛s .Z/D
[

h2HAff
˛ Œ0;1�

h.Z/:

Corollary 5.3 For any ˛ 2 F �FQ there exists C > 0 such that for any leaf S˛ of F˛, the geometry of
q˛ is bounded. Specifically,

(1) there is a lower bound on the length of any saddle connection , in particular a lower bound on the
distance between any two cone points ,

(2) all cone points have finite (uniformly bounded ) cone angle , and

(3) .X˛; q˛/ is complete.

Proof Let S˛ be any leaf, and consider the compact surface Z from Corollary 5.2. By making Z slightly
larger, we can assume that no singular points of q˛ lie on the boundary of Z. Denote the set of all
singularities of q˛ by A. Let d@Z.a/ denote the distance of a singularity a 2A to the boundary of Z, and
let dZ.a; b/ denote the minimal length of a saddle connection in Z between two (not necessarily distinct)
singularities a; b 2 A\Z. Since Z is compact, we have that

� Dmin
˚

min
a;b2A\Z

dZ.a; b/;min
a2A

d@Z.a/
	
> 0:

Pick a saddle connection ! connecting any singularity a to any singularity b. There exists an h2HAff
˛ Œ0; 1�

such that h.Z/ contains a. Since h is K˛-bi-Lipschitz, either ! is contained in h.Z/ and has length
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at least �K�1˛ , or it leaves h.Z/ and we again deduce that ! has length at least the distance from a to
@h.Z/, which is at least �K�1˛ . In either case, we obtain a uniform lower bound �K�1˛ to the length of !,
proving (1).

As was noted in Section 2.3, we have that all cone points have finite cone angle which proves (2).
Since Z is compact, there is an �0 so that the �0-neighborhood of Z also has compact closure, which
is thus complete. Any Cauchy sequence has a tail that is contained in the h-image of the closure of
this neighborhood for some h 2HAff

˛ Œ0; 1�. Since this h-image is also complete, the Cauchy sequence
converges, and we have that .X˛; q˛/ is complete which proves (3).

Remark 5.4 Note that Corollary 5.3 implies that our surfaces are tame in the sense of [22, Definition 2.1].

An important observation is the following: for any element of g 2 AffC.X˛; q˛/, we can choose some
element h 2HAff

˛ Œ0; 1� so that h ıg.Z/\Z ¤∅, and furthermore, if g is K-quasiconformal, then h ıg
is .KK2˛/-quasiconformal.

Proposition 5.5 Suppose ˛ 2 F �FQ, K0 > 1, and fgng1nD1 �AffC.X˛; q˛/ is a sequence of elements
with K.gn/�K0. Then there is a subsequence fgnkg

1
kD0

and fhnkg
1
kD0
�HAff

˛ Œ0; 1� such that

hnk ıgnk D hn0 ıgn0

for all k � 0.

Proof From the observation before the statement, we can find hn2HAff
˛ Œ0;1� such that hnıgn.Z/\Z¤∅.

Next, observe that hn ıgn is .K0K2˛/-quasiconformal, so by compactness of quasiconformal maps, after
passing to a subsequence, hnk ıgnk converges uniformly on compact sets to a map f . The maps hnk ıgnk
are affine, so they must map cone points to cone points. Since the cone points are uniformly separated
by Corollary 5.3, there is a pair of cone points a; b such that for k sufficiently large hnk ı gnk .a/D b.
Moreover, if we pick a pair of saddle connections in linearly independent directions emanating from a,
then for n sufficiently large hnk ıgnk all agree on this pair, again by Corollary 5.3. But these conditions
uniquely determines the affine homeomorphism, and hence hnk ıgnk is eventually constant, and passing
to a tail-subsequence of this subsequence completes the proof.

From this we can prove a special case of Theorem 1.4:

Proposition 5.6 If ˛ 2 F �FQ, then HAff
˛ has finite index in SAff.X˛; q˛/.

Proof Suppose HAff
˛ is not finite index and consider the closure of the D˛-image in PSL2.R/,

G DD˛.SAff.X˛; q˛//:

Since ˛ 2 F �FQ, every leaf S˛ of F˛ is dense in M . Therefore HD
˛ <�ŠR is an abelian subgroup

with rank at least 2, and hence is dense in �. Consequently, �<G.

Algebraic & Geometric Topology, Volume 25 (2025)



1912 Christopher J Leininger, Kasra Rafi, Nicholas Rouse, Emily Shinkle and Yvon Verberne

By the classification of Lie subalgebras of sl2.R/ (or a direct calculations) we observe that, after replacing
G with a finite index subgroup, we must be in one of the following situations:

(1) G D PSL2.R/,

(2) G is the subgroup of upper triangular matrices, or

(3) G D�.

In any case, we claim that there is a sequence of elements fgng � SAff.X˛; q˛/ such that D˛.gn/! I in
PSL2.R/ and so that HAff

˛ gn are distinct cosets of HAff
˛ . Assuming the claim, we prove the proposition.

For this, we simply apply Proposition 5.5, pass to a subsequence (of the same name) so that hnıgnDh0ıg0
for all n� 0. This contradicts the fact that fHAff

˛ gng are all distinct cosets.

To prove the claim, notice that in the first two cases, a finite index subgroup of D˛.SAff.X˛; q˛// is
dense in the Lie subgroup G � PSL2.R/, and � < G is a 1-dimensional submanifold of G, which
itself has dimension 3 or 2 in cases (1) and (2), respectively. This implies that there exists a sequence
fgng2SAff.X˛; q˛/ such thatD˛.gn/! I as n!1 butD˛.gn/…�. By way of contradiction, suppose
that there exists a subsequence fgni g such that gni are in the same coset HAff

˛ g where D˛.g/ …�. This
implies that D˛.gni /��D˛.g/, which is a 1-manifold parallel to � and does not accumulate to I . This
contradicts the fact that D˛.gni /! I . Therefore, there exists a subsequence of fgng such that fHAff

˛ gng

are all distinct cosets.

To prove the claim in the final case, we note that by assumption there exists a sequence of distinct cosets
HAff
˛ bAff

n of HAff
˛ in SAff.X˛; q˛/. Since both HD

˛ and D˛.SAff.X˛; q˛// are dense in �, so is every
coset of HD

˛ . Therefore, we can find a sequence faAff
n g �H

Aff
˛ so that D˛.aAff

n /D˛.b
Aff
n /! I as n!1.

Let gn D aAff
n bAff

n , so that D˛.aAff
n / ! I and HAff

˛ gn are distinct cosets of HAff
˛ , as required. This

completes the proof of the claim. Since we already proved the proposition assuming the claim, we are
done.

To complete the proof of Theorem 1.4, we need only prove the following.

Proposition 5.7 AffC.X˛; q˛/D SAff.X˛; q˛/.

Proof First, observe that SAffC.X˛; q˛/ is a normal subgroup of AffC.X˛; q˛/ since it is precisely the
kernel of the homomorphism given by the determinant of the derivative. In fact, from this homomorphism,
either AffC.X˛; q˛/D SAff.X˛; q˛/ or else the index is infinite; ŒAffC.X˛; q˛/ W SAff.X˛; q˛/�D1.

After passing to a finite index subgroup, � < AffC.X˛; q˛/, if necessary, the conjugation action of � on
SAffC.X˛; q˛/ preserves the finite index subgroup HAff

˛ (and without loss of generality, HAff
˛ < �). It

thus suffices to prove � < SAffC.X˛; q˛/, or equivalently, D˛.�/ < PSL2.R/.

Consider any element

g D

�
a b

c d

�
2D˛.�/ and hD

�
� 0

0 ��1

�
2HD

˛ ;
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with �¤˙1. Then ghg�1 2HD
˛ , and is given by

ghg�1 D
1

det.g/

�
a b

c d

��
� 0

0 ��1

��
d �b

�c a

�
D

1

det.g/

�
ad�� bc��1 ab.����1/

cd.����1/ ad��1� bc�

�
:

In order for this element to be in HD
˛ (hence diagonal), we must have that ab D 0 and cd D 0. Suppose

that aD 0. If c D 0, then we have the zero matrix, so we must have that c ¤ 0 and instead that d D 0.
This gives us that g is a matrix of the form

g D

�
0 b

c 0

�
:

We note that the square of a matrix of this form is a diagonal matrix. Similarly, if b D 0, we must have
that c D 0 and we have that g is a matrix of the form

g D

�
a 0

0 d

�
:

Together, these two conclusions imply that either g or g2 is diagonal.

Now we show that D˛.�/ < PSL2.R/. If not, then there exists g 2D˛.�/ with 0 < det.g/¤ 1. After
squaring and inverting if necessary, we may assume that g is diagonal,

g D

�
� 0

0 �

�
;

and 0 < det.g/D �� < 1. Without loss of generality, suppose � < 1. Notice that there exists an element
h 2HD

˛ such that

hD

�
� 0

0 ��1

�
and there exist n; k 2 Z such that

mD gnhk D

�
r 0

0 s

�
where 0 < r; s < 1. Therefore, mj is a contraction for all j > 0, which implies that it is contracting in
both directions. Fixing a saddle connection ! of q˛, it follows that the length of mj .!/ tends to 0 as
j !1. This contradicts Corollary 5.3, part (1), and thus proves that g 2 PSL2.R/, as required.

Remark 5.8 The final contradiction in the above proof also follows from [22, Theorem 1.1], since
D˛.AffC.X˛; q˛// is necessarily of type (i) in that theorem.
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