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Abstract
Suppose that X is either the mapping class group equipped with the word metric or
Teichmüller space equipped with either the Teichmüller metric or the Weil–Petersson
metric. We introduce a unified approach to study the coarse geometry of these spaces.
We show that for any large box in Rn there is a standard model of a flat in X such
that the quasi-Lipschitz image of a large sub-box is near the standard flat. As a con-
sequence, we show that, for all these spaces, the geometric rank and the topological
rank are equal. The methods are axiomatic and apply to a larger class of metric
spaces.

1. Introduction
In this article we study the large-scale geometry of several metric spaces: the Teich-
müller space T .S/ equipped with the Teichmüller metric dT , the Teichmüller space
equipped with the Weil–Petersson metric dWP, and the mapping class group Mod.S/
equipped with the word metric dW . (Brock [8] showed that the Weil–Petersson metric
is quasi-isometric to the pants complex.) Even though the definitions of distance in
these spaces are very different, they share a key feature, namely, an inductive struc-
ture. That is, they are a union of product regions associated to lower-complexity sur-
faces with the gluing pattern given by the curve complex.

Let S be a possibly disconnected surface of finite hyperbolic type, and let X D

X.S/ be a metric space that is one of the metric spaces mentioned above. One major
goal in understanding the large-scale geometry of a metric space is to prove the quasi-
isometric rigidity of the space—that any quasi-isometry is a bounded distance from
an isometry. The usual starting point is to understand its flats. By a flat here we mean
a quasi-isometric image of Euclidean space. In a follow-up paper [14], we will use
the description of flats to investigate the quasi-isometric rigidity of T .S/.

In this article, we analyze quasi-Lipschitz maps from a large box B �Rn into X.
A quasi-Lipschitz map is a usual Lipschitz map where one allows an additive error.
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Our goal is to give a description of the image of such a map on a large sub-box
B 0 � B . We show that the image of B 0 looks like a standard flat up to a small linear
error. A standard flat is a product of preferred paths associated to disjoint subsurfaces
of S (see Definitions 4.4 and 7.1). One can think of a preferred path as a generality of
a Teichmüller geodesic. Our main theorem is the following.

THEOREM A (Image of a box is locally standard)
Let X be quasi-isometric to one of the following spaces: Teichmüller space T .S/

equipped with the Teichmüller metric dT , Teichmüller space with the Weil–Petersson
metric dWP (or pants graph), or the mapping class group Mod.S/ equipped with
the word metric dW . For all K;C and for all R0; �0, there exists R1 such that if B
is a box of size at least R1 and f W B !X is a .K;C /-quasi-Lipschitz map, then
there is a sub-box B 0 � B of size R0 � R0 such that f .B 0/ lies inside an O.�0R0/-
neighborhood of a standard flat in X.

The implied constants in the theorem only depend on K , C , and the topology of
the surface.

As a corollary, we determine the large-scale rank of the space X. For a surface
X of genus g with b boundary components, the complexity is defined to be �.X/D
3g � 3C b. A subsurface X of S is essential if �.X/ > 0. Thrice-punctured spheres
(�.X/D 0) are never essential. Annuli (�.X/D�1) are essential only in the cases of
the mapping class group and Teichmüller space with the Teichmüller metric.

Define the topological rank of X, ranktop.X/, to be the largest integer r so that
there are pairwise-disjoint essential subsurfaces W1; : : : ;Wr in S . The dimension of
a standard flat in X is at most ranktop.X/.

THEOREM B (Geometric rank)
For every K and C , there is a constant R2 so that if B is a box of size at least R2
in Rn and f W B!X is a .K;C /-quasi-isometric embedding, then n� ranktop.X/.
Furthermore, the theorem is sharp. For n D ranktop.X/, there is a quasi-isometric
embedding of a Euclidean n-dimensional half-space into X.

Define the geometric rank of X, rankgeo.X/, to be the largest integer n so that
there exist K;C such that, for any R, there is a .K;C /-quasi-isometric embedding
f of a ball B � Rn of radius R into X. Also, let g be the genus of S , let p be the
number of punctures of S , and let c be the number of components of S .

COROLLARY C
The topological and the geometric ranks of X are equal. Namely, if X is either
.Mod.S/; dW / or .T .S/; dT /, then
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rankgeo.X/D ranktop.X/D 3gC p� 3c;

and if X is .T .S/; dWP/, then

rankgeo.X/D ranktop.X/D
j3gC p� 2c

2

k
:

Remark 1.1
In the case of Mod.S/, there are quasi-isometric embeddings of all of Euclidean
space, of dimension the geometric rank, into Mod.S/. One can achieve this via Dehn
twists about disjoint simple closed curves (see [15]). The same is true for Teich-
müller space with the Weil–Petersson metric. One takes a maximal collection of dis-
joint essential surfaces and a bi-infinite quasi-geodesic in each. In [7, Theorem 1.3],
B. Bowditch proves that there is a quasi-isometric embedding of a Euclidean n-
dimensional half-space into .T .S/; dT / if and only if n � ranktop.T .S/; dT /. In
[7, Theorem 1.4] he shows that there are quasi-isometric embeddings of the entire
Euclidean space of dimension ranktop.T .S/; dT / into Teichmüller space if and only
if the genus of S is at most 1 or S is a closed surface of genus 2.

Remark 1.2
Theorems A and B hold for a larger class of metric spaces than is discussed above.
Essentially, one needs a mapping-class-group action and a distance formula similar
to (11) (see Masur–Schleimer [21] for examples of such distance formulas). The def-
inition of an essential surface has to be modified to mean any type of surface that
appears in the associated distance formula.

Many such spaces, for example, the arc complex and the disk complex, are known
to be Gromov-hyperbolic and therefore have geometric rank 1 (see [21]). Hence, the
corollary is already known. Others are typically not Gromov-hyperbolic, such as the
Hatcher–Thurston complex and the separating curve complex, and our results prove
that the geometric rank and topological rank are equal. These complexes have been
omitted to simplify the exposition. After this article was completed, the axiomatic
approach suggested here was formalized by Behrstock, Hagen, and Sisto [2], who
introduced the notion of hierarchically hyperbolic spaces. In fact, they give a different
proof of the rank theorem.

History
The idea of studying the rank of these objects was introduced by Brock and Farb
[9]. In the case when X is the pants graph, Corollary C was first proved in that
paper when the surface is the twice-punctured torus. They also showed that the topo-
logical rank is bounded above by the geometric rank and conjectured Corollary C.
Corollary C was then proved for the mapping class group with the word metric or
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Teichmüller space with the Weil–Petersson metric by Behrstock and Minsky [4] and
Hamenstädt [16]. The rank statement is used to prove the quasi-isometric rigidity of
Mod.S/ by Behrstock, Kleiner, Minsky, and Mosher [3] and by Hamenstädt [16].
The case of Teichmüller space with the Teichmüller metric has not been studied pre-
viously. Note that the map that sends Mod.S/ to the orbit of a point in T .S/ is not
a quasi-isometry or even a quasi-isometric embedding because of the thin regions in
T .S/ which locally look like products of horoballs. Unlike [4], which uses asymp-
totic cones, our approach uses the local behavior of quasi-Lipschitz maps.

Main tools
To prove our theorems, we further develop some tools that already exist in the liter-
ature. The first one is the idea of coarse differentiation. This was introduced in the
context of geometric group theory by Eskin, Fisher, and Whyte [12], [13] and used
to prove the quasi-isometric rigidity of lattices in Sol and in the quasi-isometry clas-
sification of lamplighter groups (see references in those papers for its use in other
contexts). The statement they used is similar to Theorem 2.8 below, which holds for
quasi-Lipschitz maps between more general metric spaces. However, since we are
mostly concerned with maps where the domain is a subset of Rn, we prove the fol-
lowing statement, which is cleaner and easier to use. For a box B in Rn, let B be a
central sub-box of B with one-third the diameter.

THEOREM D (Coarse differentiation)
Let Z be a complete metric space. For every K , C , �0, �0, and R0 there is L0 so
that the following holds. For L � L0, let f W B ! Z be a .K;C /-quasi-Lipschitz
map, where B is a box of size L in Rn. Then there are R �R0 and a subdivision BR

of B to sub-boxes of size R so that the proportion of boxes B 0 2BR where f jB0 is
�0-efficient at scale R is at least .1� �0/.

The precise definition of a box and efficient will be given in the next section.
Roughly what it means is that for any line there is a partition of its points of a certain
scale such that the sum of the distances between the images of successive partition
points is bounded above up to a small additive linear error by the distance between the
image of the endpoints. Thus, a certain reverse triangle inequality holds. This notion
is very different from quasi-geodesic, where errors are allowed to be multiplicative.
Here they are additive errors. One can also think of efficiency as meaning that the
image of every line is a line up to a sublinear error. One should think of the above
theorem as a coarse version of Rademacher’s theorem that if f W Rn! Rm is Lips-
chitz, then f is differentiable almost everywhere. In Theorem D the sub-box B 0 is an
analogue of a point of differentiability.
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The importance of efficiency lies first of all in the fact that in a product space the
projection of an efficient path to a factor is still efficient. The corresponding statement
for quasi-geodesics is false. Furthermore, efficient maps into hyperbolic spaces are
easy to control (see Proposition 2.14).

This becomes especially relevant because of the construction of Bestvina, Brom-
berg, and Fujiwara [5], which we make use of. They embed the mapping class group
into a product of finitely many hyperbolic spaces. Their construction is axiomatic
and can be adapted easily to embed any of our spaces X into a product of finitely
many hyperbolic spaces. The L1-metric on this product induces a metric on the space
X, and this is the metric with respect to which we apply the coarse differentiation
theorem. Thus, the fact that the projections of efficient paths are still efficient becomes
useful in this context. Note that the notion of efficiency is not preserved under quasi-
isometry, and the choice of metric here is essential. The conclusion of this discussion,
Theorem 4.9, will be that efficient paths fellow-travel paths with the same endpoints
that have nice properties. These latter paths, which we call preferred paths, will play
the role of geodesics.

The power then of Theorem D lies in the fact that one can add the assumption of
efficiency for free, just by replacing B with a sub-box B 0. Altogether, this will mean
that, on large boxes, the image of every line fellow-travels a preferred path.

Finally, we use the realization theorem of Behrstock, Minsky, Mosher, and Klei-
ner [3]. They provide a description of the image of the mapping class group in the
product of curve complexes. We adopt it to provide a description of the image of X.
This is necessary to translate back the information obtained in each hyperbolic factor
to information in X.

Outline of the article
Section 2 is devoted to the development of coarse differentiation theory and to the
discussion of efficient maps. The main result is Theorem 2.5, as discussed above. We
also establish the basic properties of efficient maps and prove that efficient paths in
Gromov-hyperbolic spaces stay close to geodesics—an analogue of the Morse lemma.

In Section 3, we discuss the combinatorial model for each of the spaces con-
sidered in the article. The three seemingly different metric spaces above have very
similar models. Namely, Teichmüller space equipped with the Weil–Petersson metric
is quasi-isometric to the pants graph (see [8]). The mapping class group is quasi-
isometric to the marking graph by the work of Masur and Minsky [20], and Teich-
müller space equipped with the Teichmüller metric is quasi-isometric to the space of
augmented markings by the work of Rafi [26] and Durham [11].

The advantage of this approach is that we can measure the relative complexity of
two points x;y 2X from the point of view of a subsurface W . This is the distance
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in the curve complex of W between the projections of x and y to W . The curve
complex of every surface W is known to be Gromov-hyperbolic. We then define a
coarse metric on each of these combinatorial models using a distance formula which
is the sum over relative complexity from the point of view of different subsurfaces.
Since we work in the category of spaces up to quasi-isometries, the distance needs to
be defined only up a multiplicative error.

In Section 4, we introduce the notion of preferred paths. These are paths whose
projections to every curve complex are quasi-geodesics, and they replace the notion
of geodesics in our spaces. The main statement in the section is Theorem 4.9, which
shows that an efficient path stays near a preferred path joining its endpoints. Hence,
the outcome of the coarse differentiation theorem is indeed a box where straight lines
are mapped to straight lines up to the first order. This is the key tool for the rest of
the article. The proof uses the construction in [5], which allows one to embed X

into a product of hyperbolic spaces. The projection of the efficient paths into each
factor stays near a geodesic in that factor. We then use this and a consistency theorem
(Theorem 3.2) to build the preferred path in X tracing the given efficient path.

Section 5 establishes some properties of preferred paths. The main ones are
fellow-traveling properties that say that, under certain conditions, preferred paths that
begin and end near the same point fellow-travel in the middle (Propositions 5.7 and
5.10). These statements are used in the succeeding sections to build big boxes with
the required properties. In Section 6, the main inductive step is proved (Theorem 6.1),
and in Section 7 we assemble the proofs of the main theorems.

Treatment of constants
Suppose that Y and Z are geodesic metric spaces. We say a map f W Y!Z is quasi-
Lipschitz if there are constants K and C so that

dZ
�
f .x1/; f .x2/

�
�KdY.x1; x2/CC:

We fix constants K and C once and for all. We also fix an upper bound for the com-
plexity of the surface S and the dimension n. When we say a constant is uniform, we
mean that its value depends only onK , C , the topology of S , and the value of n. Sim-
ilarly, we will use terms like quasi-isometric embedding or quasi-isometry to mean
that the associated constants are the same as those for K and C fixed above.

To simplify the presentation, we try to avoid naming uniform constants when they
are used locally inside of an argument. Instead, we adopt the following notation. Let
a and b represent various quantities, and let M and C 0 be uniform constants. We say
that a is less than b up to a multiplicative error, a

�
� b, if a�Mb. We say that a and

b are comparable, a
�
� b, if we have both a

�
� b and b

�
� a.
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Using a similar notation when the error is additive or both additive and multi-

plicative, we say that a
C

� b if a� bCC 0 and a� b if a�MaCC 0. Again, a
C

� b if
we have both a

C

� b and b
C

� a, and a� b if we have both a� b and b� a. Also, we
often use the notation aDO.b/ to mean a

�
� b. For example,

a
C

� bCO.c/ () a� bCM cCC 0;

for uniform constants M and C 0.
Using this notation we may write

a
C

� b and b
C

� c H) a
C

� c:

Here, the additive error in the last inequality is the sum of the additive errors in the first
two inequalities and hence is still a uniform constant. That is, different occurrences

of
C

� have different implied constants. But as long as we use statements of this type a
uniformly bounded number of times, all of the implied constants are still uniform.

2. Coarse differentiation
Being differentiable means that, to first order, lines are mapped to lines. In this section,
we introduce a notion of coarse differentiability for a quasi-Lipschitz map. But first,
we need a coarse notion of a straight line that behaves better than a quasi-geodesic in
a product space. Points along a line (a geodesic) satisfy the reverse triangle inequality.
We emulate this by introducing the notion of �-efficient paths. The points along an
efficient path satisfy the reverse triangle inequality up to a small multiplicative error.

Definition 2.1
Let Z be a complete metric space, let � W Œa; b�! Z be a .K;C /-quasi-Lipschitz
(not necessarily continuous) path, and let R > 0 be such that jb � aj

�
� R. Let 0 <

� < 1. An r -partition of Œa; b� is a set of times a D t0 < t1 < 	 	 	 < tm D b so that
.tiC1 � ti /� r . Let zi D �.ti /. We define the coarse length of � with steps r to be

�.�; r/D inf
r -partitions

m�1X
iD0

dZ.zi ; ziC1/: (1)

We say that � is �-efficient at scale R if

�.�; �R/� dZ
�
�.a/; �.b/

�
CO.�R/: (2)

Here the constant in the implied bound O can depend on K;C but not on � or R.
We will always assume that �R � 1. Note that, by the triangle inequality, �.�; �R/�
dZ.�.a/; �.b//. Hence, (2) is essentially a reverse triangle inequality.
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Figure 1. We modify the segment Œ0;R� by adding spikes.

Example 2.2
We now review a few examples of paths that are or are not �-efficient. (The scale is
always the length of the domain.)

As a first example, consider a geodesic segment � W Œ0;R�! R2 along the x-
axis, which we can think of as the graph of the function which is identically 0. Then
modify this graph � by adding a spike (see Figure 1). That is, replace � jŒa;b� for
.b � a/� �R with the graph of a map h W Œa; b�! R, where h.a/D h.b/D 0 and h
is, say, K-Lipschitz. Note that h could take a value as large as K�R=2.

This new path is still �-efficient at scale R, since an �R-partition could miss the
interval Œa; b� and the sum of distances given by such a partition is exactly equal to R.
In fact, one can add many such spikes along disjoint intervals of lengths less than �R.

As a second example, consider a path � W Œ0;R�!X where the image has diam-
eter �2R. Since there is an �R-partition where the number of intervals is of order 1

�
,

we have

�.�; �R/
�
�
1

�
.�2R/D �R:

Hence, (2) holds and � is efficient. An instance of this example in H is the horocyclic
segment in the line y D 1 from .�R

2
; 1/ to .R

2
; 1/ where �2R � logR. For a given

�, we can always choose R large enough so that this holds. The diameter of this
segment is logR, and the path is efficient. That is, from our point of view, moving
along a horocycle is essentially the same as the constant map. Note that horocycles
are not quasi-geodesics, and thus, efficient paths do not have to be quasi-geodesics.
However, as we shall see (Lemma 2.12), all efficient paths in H are contained in an
O.�R/-neighborhood of a geodesic, in this case the constant map.

For a further example note that, for � small enough, a semicircle of radius R in
R2 is a quasi-geodesic but it is not �-efficient at scale R. As � goes to zero, �.�; �R/
converges to �R, which is much larger than 2R.
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We now establish some elementary properties of efficient paths. First, for a subset
Z0 �Z the closest point projection to Z0 picks out the not necessarily unique closest
point.

LEMMA 2.3
Consider a map � W Œa; b�!Z.
(1) Suppose that � is �-efficient at scale R and that k is a uniformly bounded

integer. Then for k points a � si � b

k�1X
iD0

dZ
�
�.si /; �.siC1/

�
D dZ

�
�.a/; �.b/

�
CO.�R/:

(2) For Œc; d �� Œa; b�, if � is �-efficient at scale R, then so is � 0 D � jŒc;d�.
(3) Assume that ZDZ1 
 	 	 	 
Zl is equipped with the L1-metric, and let �i be

the projection of � to Zi . If � is �-efficient at scale R, then so is every �i .
(4) If Z0 is a subset of Z and �.t/ is an �2-efficient path at scale R that is con-

tained in an O.�2R/-neighborhood of Z0, then the composition of � , followed
by the closest point projection Z0, defines an �-efficient path at scale R.

Proof
Let t0; : : : ; tm be an �R-partition of Œa; b� which is within �R of the infimum in the
definition of �.�; �R/. Add the points sj to the partition. This will increase the sum
in (1) by at most O.�R/. In fact, if ti � sj � tiC1, then jti � tiC1j � �R and, since �
is quasi-Lipschitz,

dZ
�
�.ti /; �.sj /

�
C dZ

�
�.sj /; �.tiC1/

�
C 2C DO.�R/:

Since the number of points sj is uniformly bounded, adding all times sj to the parti-
tion will increase the sum by at mostO.�R/. Now, removing all ti ’s will only decrease
the sum, and hence part (1) of the lemma holds.

To see part (2), as above, let t0; : : : ; tm be a set of times where the sum in (1) is
within �R of the infimum and so that the times c and d are included in the set ¹tiº.
Let zi D �.ti /. Letting c D tj and d D tk we have

�.�; �R/�

mX
iD1

dZ.zi ; ziC1/�O.�R/

� dZ
�
�.a/; �.c/

�
C

k�1X
iDj

dZ.zi ; ziC1/C dZ
�
�.d/; �.b/

�
�O.�R/

� dZ
�
�.a/; �.c/

�
C�.� 0; �R/C dZ

�
�.d/; �.b/

�
�O.�R/:
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Also, by definition,

�.�; �R/� dZ
�
�.a/; �.b/

�
CO.�R/:

Hence,

�.� 0; �R/� dZ
�
�.a/; �.b/

�
� dZ

�
�.a/; �.c/

�
� dZ

�
�.d/; �.b/

�
CO.�R/

� dZ
�
�.c/; �.d/

�
CO.�R/:

This finishes the proof of part (2).
We prove part (3) for l D 2. The general case is similar. Consider the partition

t0; : : : ; tm such that the sum in (1) for �.�; �R/ is within �R of the infimum. Let
xi D �1.ti / and yi D �2.ti /. Since Z is equipped with the L1-metric, we have

mX
iD1

dZ1.xi ; xiC1/C dZ2.yi ; yiC1/

� dZ1
�
�1.a/; �1.b/

�
C dZ2

�
�2.a/; �2.b/

�
CO.�R/: (3)

But, by the triangle inequality, we have

mX
iD1

dZ2.yi ; yiC1/� dZ2
�
�.a/; �.b/

�
: (4)

Subtracting (4) from (3) we obtain

�.�1; �R/�

mX
iD1

dZ1.xi ; xiC1/� dZ1
�
�1.a/; �1.b/

�
CO.�R/:

That is, �1 is �-efficient at scale R. The same holds for �2.
To see the last part, again let t1; : : : ; tm be an almost optimal subdivision. (Recall

that, in this case, � is �2-efficient.) Choose a subpartition s1; : : : ; sl so that

jsiC1 � si j
�
� �R:

Then, l
�
� 1

�
. Also, let � 0 be the path obtained from composing � with the closest

point map to Z0. Let zi D �.si / and z0i D �
0.si /. Then

�.� 0; �R/�

lX
iD1

dZ.z
0
i ; z
0
iC1/

�

lX
iD1

dZ.z
0
i ; zi /C dZ.zi ; ziC1/C dZ.ziC1; z

0
iC1/
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��.�; �R/C l 	O.�2R/��.�; �2R/CO.�R/

� dZ.z1; zl/CO.�R/� dZ.z
0
1; z
0
l/CO.�

2R/CO.�R/

� dZ.z
0
1; z
0
l/CO.�R/:

Above, in the third line, we used the fact that the si ’s are a subpartition of an almost
optimal partition. In the fourth line, we used the fact that the pairs z1; z01 and zl ; z0l are
O.�2R/-close. This finishes the proof.

Definition 2.4
A box in Rn is a product of intervals, namely, B D

Qn
iD1 Ii , where Ii is an interval

in R. We say a box B is of size R if, for every i , jIi j
�
�R and if the diameter of B is

less than R. Note that if B is of size R and of size R0, then R
�
�R0.

Throughout the article, Rn is always equipped with the Euclidean metric. A map
f W B!Z from a box of size R in Rn to a metric space Z is called �-efficient if, for
any geodesic � W Œa; b�!B , the path f ı � is �-efficient at scale R.

Let B D
Qn
iD1 Ii be a box of size L in Rn. By a central sub-box B we mean

a sub-box of B with one-third the diameter and such that the distance from the face
of B with the j th coordinate fixed to the corresponding face of B is jIj j=3. For any
constant 0 < R <L, let BR be a subdivision of B into boxes of size R. That is,
(1) boxes in BR are of size R;
(2) they are contained in B , and hence, their distance to the boundary of B is at

least L
3

;
(3) they have disjoint interiors; and
(4) their union is B .

For any metric space Z, we prove that any quasi-Lipschitz maps from B to Z are
coarsely differentiable almost everywhere in a central box of comparable size. This is
Theorem D from the Introduction, which we repeat.

THEOREM 2.5 (Coarse differentiation)
For every K , C , �0, �0, and R0, there is L0 depending on these constants so that the
following holds. For L�L0, let f W B!Z be a .K;C / quasi-Lipschitz map where
B is a box of size L in Rn. Then there is R � R0 so that the proportion of boxes
B 0 2BR where f jB0 is �0-efficient at scale R is at least .1� �0/.

Remark 2.6
Note that the size of the error, O.�0R/, depends on the size R of the boxes. An �0-
efficient map from a much larger box is allowed to have a much larger error. What we
control is the size of the error as a proportion of the size of the box.
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Theorem 2.5 is stronger than what we need, as we will need only one efficient
box. However, this more general statement will be useful in the upcoming paper [14]
proving the rigidity of Teichmüller space.

2.1. Choosing the correct scales
We first prove a much coarser differentiation statement. In a sense, the statement of
Theorem 2.5 is a direct analogue of Rademacher’s theorem, but the proof of Radema-
cher’s theorem is a direct analogue of the proof of Theorem 2.8 below.

In what follows we assume that � is always of the form �D 1
N

for a large positive
integer N .

Definition 2.7
A family F of geodesics in Rn is called locally finite if, for any compact subset B of
Rn, only finitely many geodesics in F intersect B .

Let B D
Qn
iD1 Ii be a box with diameter precisely L. Define FB to be the col-

lection of restrictions of paths in F to B that are long. More precisely, let

FB D
°
�
ˇ̌
ˇ � D � 0 \B;� 0 2 F ; j� j �

2L

5

±
:

For � 2 FB we say a set of points G.�; r/ along � is an r -grid for � if they
subdivide � into segments of size exactly r , except perhaps for the two end segments,
which may have a size less than r . An r -grid is an example of an r -partition. An r -
grid G.r/ is a collection of r -grids for every segment in FB . Since the ratio of lengths
of any two segments in FB is bounded by 5

2
, by taking into account the endpoints, the

ratio of the number of points in any r -grid in two different such segments is bounded
by 3. When an r -grid G.�; r/D ¹p1; : : : ; pkº is fixed, we define

�.�; r/D

k�1X
iD1

dZ
�
f .pi /; f .piC1/

�
:

This is essentially the same as the definition of �, except that the sum here is over a
fixed r -grid instead of an infimum over all r -partitions. The infimum could a priori
be much smaller. Given a scale R and a segment � 2 FB with an �R-grid G.�; �R/,
we define F .�;R/ to be the set of all subsegments of � of length R that start and end
at points in G.�; �R/. This makes sense since �D 1

N
. We also define

FB.R/D
[
�2FB

F .�;R/:
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THEOREM 2.8
Let F be a locally finite family of geodesics in Rn. For any K , C , R0, � D 1

N
, and

� > 0, there exists a constant L0 such that the following holds. Let L> L0, let B �
Rn be a box of size L, and let f W B ! Z be a .K;C /-quasi-Lipschitz map. Then,
there exist a scale R � R0 and an �R-grid G.�R/ such that, for at least a fraction
.1� �/ of segments � 2 FB.R/,

�.�; �R/
�
� dZ

�
f .a/; f .b/

�
C �R; (5)

where a; b are the endpoints of � .

Note that (5) implies that � 0 is �-efficient at scale R since a grid is an example of
a partition. Using grids is more suitable for our proof. Effectively, the theorem states
that f jB is nearly affine at scales R, up to an error of O.�R/.

Remark 2.9
In the theorem, R depends on �, � ,K , C , and also on B . However, the proof will find
R as one of finitely many values as long as �, � , K , and C are fixed. In fact, the ratio
L=R is bounded: we have R � ��ML for M

�
� K

��
.

We begin with the following lemma, which is in some sense the heart of the
matter.

LEMMA 2.10
Suppose that an interval I is divided into N0 segments Ij D Œcj ; dj � of length r with
cjC1 D dj and that � is a path defined on I . Suppose that each segment Ij is further
subdivided into 1

�
segments, each of length �r . Let � be the proportion of the segments

Ij for which (5) fails. Then

�.�; �r/��.�; r/
�
� �r�N0:

Proof
On each segment Ij for which (5) fails, we have

�.� j Ij ; �r/� dZ
�
�.dj /; �.cj /

�
� �r:

We sum this up over all such intervals. The number of intervals is �N0. Adding the
intervals for which (5) holds only increases the difference.

Proof of Theorem 2.8
Pick r0 � max¹R0;C º (C is the additive error in the definition of a quasi-Lipschitz
map), and inductively let
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Figure 2. The segments in F .�; rm/ can be grouped into nonoverlapping segments where each
group essentially covers � . The choice of rm-grid G.�; rm/ maximizes the proportion of

nonoverlapping subsegments of � that are not �-efficient at scale rm�1.

rm D
rm�1

�
DNrm�1:

Let M be a large positive integer (to be determined below), and let L1 D rM . Choose
an arbitrary r0-grid G.r0/ for FB . Recall that FB.r1/ is the set of all segments of
length r1 with endpoints in G.r0/. Let �1 be the fraction of segments in FB.r1/ for
which (5) does not hold with RD r1. If �1 � � , then we are done with RD r1. Thus,
assume �1 > � .

For � 2 FB , we choose an r1-grid G.�; r1/� G.�; r0/ as follows. Note that any
grid G.�; r1/ is essentially a decomposition of � into segments of length r1 (except
for the subsegments at the ends). That is, we are choosing a nonoverlapping collection
of segments in F .�; r1/ so that the next segment starts where the previous segment
ends. There are at most N choices depending on where one chooses the closest point
to the endpoints of � (see Figure 2). We choose G.�; r1/ among all such grids, which
maximizes the proportion �1.�/ of these nonoverlapping subsegments of � that do not
satisfy (5) with R D r1. Any subsegment of � of length r1 will occur in some grid.
Furthermore, as we have observed, by the definition of FB and taking into account
endpoints, for �; � 0 2 FB , the ratio of the number of r1-segments in � and in � 0 is at
most 3. These two facts imply that the average

P
� �1.�/

jFB j
�
�1

3
>
�

3
:

For m D 1; : : : ;M , we proceed in the same way. If �m � � , then we are done.
Otherwise, for every � , we choose the grid G.�; rm/ where the proportion �m.�/ of
segments that do not satisfy (5) with RD rmC1 is maximum (see Figure 2). Again we
have P

� �m.�/

jFB j
�
�m

3
>
�

3
:

We show that if M is large enough, then this contradicts the assumption that f
is quasi-Lipschitz. First, note that Lemma 2.10 applied with r D rm and rm�1 D �rm
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gives

�.�; rm�1/��.�; rm/
�
� �rm�m.�/

ˇ̌
G.�; rm/

ˇ̌
�
� �L�m.�/:

After iterating this over m as m goes from M down to 1 we get

�.�; r0/��.�; rM /
�
� �L

MX
mD1

�m.�/:

Using the fact that f is quasi-Lipschitz and that r0 >C , we have

�.�; r0/�
L

r0
.Kr0CC/

�
�KL:

Hence,

KL
�
� �L

MX
mD1

�m.�/;

and thus,

K

�

�
�

MX
mD1

�m.�/:

Averaging over all geodesics � 2 FB gives

K

�

�
�

MX
mD1

� 1

jFB j

X
�2FB

�m.�/
�
�
�

MX
mD1

�m

3
�
M�

3
:

Choosing M large enough, we obtain a contradiction. Hence, for some m, �m � �
and we are done.

Proof of Theorem 2.5
Let �0 < 1, K , C , �0, and R0 be given. Choose a family F of geodesics in Rn as
follows. Pick a finite set of vectors V in the unit sphere Sn�1 �Rn that is .�0/2-dense
in Sn�1 with size jV j

�
� 1

.�0/2
. For a direction Ev 2 V , let FEv be a family of parallel

lines in the direction Ev where the distance between nearby lines is comparable to 1.
Then

F D
[
Ev2V

FEv

is a locally finite family of geodesics in Rn.
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Let � D �20 , and let � be much larger than �0�nC2, with the amount to be deter-
mined below. Apply Theorem 2.8 to obtain the constant L0. Assume that a box B
of size L � L0 and a .K;C /-quasi-Lipschitz map f W B ! Z are given. Let R be
the scale, and let G .�R/ be the grid given by Theorem 2.8 for this finite family. Then
Theorem 2.8 says that at least a proportion .1��/ of the segments in F are �-efficient
at scale R.

Let BR be a collection of disjoint sub-boxes of B giving a decomposition of a
central box inB as in the statement of Theorem 2.5. LetB 0 2B be a box that contains
a geodesic ˇ that is not �0-efficient at scale R. Let Ev be the direction closest to the
direction of ˇ. Let

N E.B 0; Ev/� FB.R/

be the set of geodesic segments in FB.R/ that are in the direction of Ev, intersect B 0,
and are not �0-efficient at scale R.

Claim 2.11
Every geodesic in FEv that intersects an �R-neighborhood of ˇ contains a segment in
N E.B 0; Ev/.

Proof
Assume that � 2 FEv intersects an �R-neighborhood of ˇ. Condition (2) of the descrip-
tion of BR implies that j� \ Bj � L

3
. Choose a grid G.�R/ for � \ B . The subseg-

ments of length R of � that start and end in G.�R/ are included in FB;R. Since the
difference between the direction of � and ˇ is at most � D �20 , ˇ is contained in
an O.�R/-neighborhood of � . Also, the length of ˇ is less than the diameter of B 0,
which is less than R. Hence, there is a segment �0 2 FB.�;R/ of length R such that
ˇ is included in an O.�R/-neighborhood of �0 (refer to Figure 3). We show that the

Ev

R
n

� 2FEv B

B 0ˇ

�0

the �R-grid

Figure 3. The arc � is in an �R-neighborhood of ˇ0.
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assumption that ˇ is not �0-efficient at scale R implies that �0 is not �-efficient at
scale R, which is what we claimed.

Assume, for contradiction, that �0 is �-efficient at scale R. Then every subseg-
ment of �0 is also efficient at scaleR by Lemma 2.3(2). Choose a subsegment �1 of �0
so that the endpoints of �1 and ˇ areO.�R/-close. We now apply Lemma 2.3(4) with
Z0 D f .�0/ to conclude that ˇ is �0-efficient, which is a contradiction. This proves
the claim.

We continue with the proof of the theorem. Let FB0.R/ be the subset of FB.R/

consisting of segments that intersect B 0. In every direction Ev 2 V there are at most
O.R

n�1

�
/ segments in FB0.R/. This is because a cross section of B 0 perpendicular

to Ev has area O.Rn�1/, the grid has size �R, and the segments have length R. The
number of geodesics in FEv that intersect an �R-neighborhood of ˇ is on the order of
.�R/n�1 (which is the area of a cross section of an �R-neighborhood of ˇ perpendic-
ular to Ev). That is,

jN E.B 0; Ev/j

jFB0.R/j

�
�

1

jV j
	
.�R/n�1

Rn�1

�

�
� �nC2;

since jV j
�
� 1

�2
. Note that a definite proportion of segments in FB.R/ intersect some

box B 0 2 B, and each segment in FB.R/ intersects at most a uniform number of
boxes. Hence,

ˇ̌
FB.R/

ˇ̌
�
�
X
B02B

ˇ̌
FB0.R/

ˇ̌
:

Define

N E.B 0/D
[
Ev2V

N E.B 0; Ev/ and N E D
[
B02B

N E.B 0/:

Assume that the proportion of boxes B 0 that contain a nonefficient segment is larger
than �0. Since the sizes of FB0.R/ are comparable for every B 0, we have

jN Ej

jFB.R/j

�
�
X
B02B

jN E.B 0/j

jFB0.R/j

�
� �0�

nC2:

We have shown that there is a uniform constant c (only depending on K , C , and the
dimension n) such that at least a proportion c�0�nC2 of segments are not �-efficient
at scale R. If we chose � < c�0�nC2, then we have a contradiction to Theorem 2.8.
The contradiction finishes the proof.
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2.2. Efficient maps into a hyperbolic space
The following is the first use of efficient paths when the target is Gromov-hyperbolic
and is similar to the familiar Morse argument.

LEMMA 2.12
Suppose that X is a Gromov-hyperbolic space and that � W Œa; b�! X is .K;C /-
quasi-Lipschitz and �-efficient at scale R. Then � stays in an O.�R/-neighborhood
of a geodesic ` joining �.a/ and �.b/.

Proof
Before beginning the proof we remark that we do not actually need that the space X

is Gromov-hyperbolic; we only need that there is a contraction map to � .
We begin the proof. To simplify the choice of constants, assume that � is continu-

ous. Recall that we are assuming �R � 1. Because X is hyperbolic there are uniform
constants B , R0, and c0 > 0 such that if a point is distance L � R0 from `, then
the closest point projection to ` of a ball of radius c0L about the point has diameter
at most B . Fix a large but uniform constant D0 >max.B;C / to be determined later.
Suppose, forM >D0, that the path � leaves anM�R-neighborhood of `. We can find
times c; d 2 Œa; b� so that, at these times, � is distance D0�R from `; for t 2 Œc; d �,
�.t/ is at least D0�R away from `, so that in between c and d the path � travels to
some point at maximum distance M�R from `. We wish to bound M .

By Lemma 2.3, � 0 D � jŒc;d� is still �-efficient at scale R. Let

c D t1 < 	 	 	< tk D d

be a partition so that, for zi D �.ti /,

�.� 0; �R/
�
�
X
i

dX.ziC1; zi /: (6)

(In fact, by the definition of �, we can choose ti so that the two sides are equal.
However, we are about to modify the partition ti .) Now since c0 is a fixed constant,
tiC1 � ti � �R, and the map � is quasi-Lipschitz, we can remove some of the times
ti , so that for D0 large enough

c0

2
D0�R � dX.ziC1; zi /� c0D0�R:

Let N be the number of points in the new partition. Note that after removing points
from the partition, by the triangle inequality, the right-hand side of (6) decreases, and
so we can assume that

�.� 0; �R/�
Nc0D0�R

2
: (7)
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We also have

N �
M

c0D0
: (8)

The contraction property implies that the projection map � W X! ` satisfies

dX
�
�.zi /;�.ziC1/

�
�B:

By using these projected points to `, and since �.c/ and �.d/ are at a distance D0�R
from `, we have

dX
�
�.c/; �.d/

�
� 2D0�RCNB:

On the other hand,

�.� 0; �R/
�
�
X

dX.ziC1; zi /�
Nc0D0�R

2
:

From the assumption that � 0 is �-efficient at scale R, the above two inequalities give

Nc0D0�R

2
�D0�RCNB CO.�R/:

Now we can choose D0 large in terms of B so that the above inequality implies that
N is uniformly bounded in terms of B as well. Hence, M is also uniformly bounded
by (8). This finishes the proof.

We now consider an efficient map from a box to a hyperbolic space. First we need
the following lemma.

LEMMA 2.13
Given n and N , there is 	 D 	.n;N / > 0 such that, for each L, if ¹Ciº is a collection
of N convex bodies in Rn that cover a ball B of radius L, then some Ci contains a
ball of radius 	L.

Proof
For a convex set C , let R D R.C/ be the out-radius of C , that is, the radius of the
smallest ball that contains it. Let r D r.C / be the in-radius, that is, the radius of the
largest ball contained in the set, and let wDw.C/ be the width, that is, the minimum
distance between supporting hyperplanes.

From [18, Theorem 1] we have, for some 
 D 
.n/ > 0 and any convex set C ,
that

Vol.C /� 
Rn
Z arcsin w

2R

0

cosn � d� � 
Rn arcsin
w

2R
� 
Rn arcsin

cr

2R
: (9)
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The last inequality follows from the Steinhagen inequality, which states that there
is a constant c D c.n/ > 0 such that

w � cr:

Since the convex sets Ci cover the ball of radius L, for some c0 > 0, there is some
C D Ci with

Vol.C /�
c0Ln

N
:

This implies that RDR.C/� c00L for some constant c00 D c00.N / > 0.
We will show that r D r.C / � 	L for a uniform constant 	 by arguing in two

cases. Assume that

arcsin
cr

2R
�
�

4
:

Then cr
2R
�
p
2
2

and so

cr �
p
2R �

p
2c00L;

and we are done by taking 	 D
p
2c00

c
. Now assume that

arcsin
cr

2R
�
�

4

so that

arcsin
cr

2R
�
cr

R
:

But then (9) gives

c0Ln=N �Vol.C /� 
Rn
cr

R
D 
cRn�1r;

so

r �
c0

cN


�L
R

�n�1
L;

and again we are done by taking 	 D c0

c.c00/n�1N�
.

PROPOSITION 2.14
Suppose that Z is a Gromov-hyperbolic space and that f W B ! Z is an �-efficient
map at scale R from a box of size R in Rn to Z. Then, there is a sub-box B 0 �B with
jB 0j

�
� jBj, so that the image f .B 0/ lies in an O.�R/-neighborhood of a line `0 in Z.
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Proof
By taking a sub-box, we assume that B D Œ0;R�n, and we let the `i ’s be the edges of
the box B . Given a line `� B , denote by `0 a geodesic in Z joining the image of its
endpoints.

We first prove by induction on n that, for any q 2 B , f .q/ is within O.�R/ of a
point in `0i , the geodesic corresponding to the image of one of the edges. We start with
nD 2 and with `1; `2; `3; `4 being the four edges of B arranged in counterclockwise
order. We have by Lemma 2.12 that each point of f .`i / is within O.�R/ of `0i . Now
let `q be the line through q parallel to `1, and let l 0q be the corresponding geodesic
in the image. Take the rectangle with sides `q and `1 and subsegments m2 � `2 and
m4 � `4. Lemma 2.12 implies that the endpoints of m02 are within O.�R/ of `02. The
same holds for m04 and `04. The quadrilateral bounded by `01;m

0
2; `
0
q;m

0
4 is O.1/-thin,

which implies that f .q/ is within O.�R/ of one of the other three sides and therefore
within O.�R/ of one of the `0i ’s.

Now suppose that the statement is true for boxes in Rn�1 andB �Rn. Take again
the geodesics `i that correspond to the edges of the box B and any point q 2B . It lies
on a face Bn�1q parallel to a face of B . Let �i be the edges of Bn�1q . By induction,
f .q/ lies withinO.�R/ of some � 0i . Since each �i itself lies in an .n�1/-dimensional
face of B , again by induction, each point of f .�i / lies within O.�R/ of the union of
the `0i ’s. Thus, f .q/ is within O.�R/ of some `0i , completing the induction step.

Now, fix any n and one of the geodesics `0i . If nC 1 points q1; : : : ; qnC1 span
an n-simplex ƒ and are such that each f .qj / is within O.�R/ of `0i , then the image
under f of every point of ƒ is within O.�R/ of `0i . By the Carathéodory theorem,
the convex hull of the set of points mapped within O.�R/ of `0i is the union of such
simplices, and therefore, the convex hull is a convex set of points mapped within
O.�R/ of `0i . We conclude by Lemma 2.13 that there is a box B 0 with jB 0j

�
� jBj

consisting of points mapped within O.�R/ of one of the `0i ’s.

3. Combinatorial model
Let S be a possibly disconnected surface of finite hyperbolic type. Define the com-
plexity of S to be

�.S/D
X
W

.3gW C pW � 4/; (10)

where the sum is over all connected components W of S , gW is the genus of W , and
pW is the number of punctures.

Let .T .S/; dT / represent Teichmüller space equipped with the Teichmüller met-
ric, let .T .S/;dWP/ represent Teichmüller space equipped with the Weil–Petersson
metric, and let .Mod.S/; dW / represent the mapping class group equipped with the
word metric. Here one chooses a finite generating set and builds the Cayley graph.



1538 ESKIN, MASUR, and RAFI

A vertex of the graph is an element g of Mod.S/. One connects g1; g2 if there is a
generator h such that g1 D g2h. We construct combinatorial models for these spaces.

Let P .S/ be the pants complex of S . A vertex of P .S/ is a maximum number
of disjoint essential nonhomotopic simple closed curves. Two are connected with an
edge if there is an elementary move that changes one pants decomposition to the other.
In an elementary move, one changes only one curve, and the new curve intersects the
original one a minimum number of times. Define a marking .P; ¹�˛º˛2P / to be a
pants decomposition together with a transverse curve �˛ for each pants curve ˛. The
transverse curves are assumed to be disjoint from other curves in P and to intersect
˛ minimally. Again this can be made into a graph. There are two types of moves that
define the edges: either a Dehn twist about a pants curve applied to a transverse curve
or a replacement of a pants curve with its transversal and an introduction of a new
transversal (see [20] for more details). The marking complex is denoted by M.S/.

An augmented marking .P; ¹�˛º˛2P ; ¹`˛º˛2P / is a marking together with a pos-
itive real number l˛ (the length of ˛) associated to every pants curve ˛. The length
of each curve is assumed to be less than the Bers constant for the surface S . The
space of augmented markings is denoted by AM.S/ (see [26] and also [11] for a
slightly different definition and extensive discussion of AM.S/). We will use these
spaces as combinatorial models for, respectively, .T .S/; dWP/, .Mod.S/; dW /, and
.T .S/; dT /. Assume that X DX.S/ is one of these model spaces. Later in this sec-
tion we will equip X with a coarse metric.

3.1. Curve complex
Let W be an essential subsurface of S . We always assume that a subsurface is con-
nected (unless specified otherwise) and that the embedding W � S induces an injec-
tive map �1.W /! �1.S/. We also exclude the cases where W is a thrice-punctured
sphere or an annulus going around a puncture.

Let C.W / be the curve graph of W with metric dC.W /. This is a graph where the
vertices are free homotopy classes of nontrivial nonperipheral simple closed curves
(henceforth, simply referred to as curves) and edges are pairs of curves intersecting
minimally (see [20] for the precise definition and discussion). We make a special
definition for the case of annuli. For an annulus A,
� C.A/ is a horoball in H2 when X DAM.S/;
� C.A/ is Z when X DM.S/; and
� C.A/ is a point when X DP .S/.
The curve complex of every subsurface is Gromov-hyperbolic in all cases. This is
clear when W is an annulus and is a theorem of Masur and Minsky (see [19, Theo-
rem 1.1]) in other cases.
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For every subsurfaceW of S , there is a coarsely defined projection map (see [20]
for a general discussion and [11] for the case of augmented markings)

�W W X! C.W /:

We sketch the definition here. Assume first that W is not an annulus. Given x 2X

(recall that in all three cases x contains a pants decomposition which we denote by
Px), choose any pants curve � 2 Px that intersects W . If � � W , then choose the
projection to be � . If � is not contained in W , then � \ W is a collection of arcs
with endpoints on @W . Choose one such arc, and perform a surgery using this arc
and a subarc of @W to find a point in C.W /. The choice of different arcs or different
choices of intersecting pants curves determines a set of diameter 2 in C.W /; hence,
the projection is coarsely defined.

For annuli A, the definition is slightly different. When X D P .S/ the projec-
tion map is trivially defined since C.A/ is just a point. When X DM.S/, consider
the annular cover QA of S associated to A. Identify the space of arcs in QA (homotopy
classes of arcs connecting different boundaries of QA relative to their endpoints) with
Z by identifying some arc !0 with zero and sending every other arc ! to the signed
intersection number between ! and !0. Define �A.x/ by lifting the pants deposition
Px and transverse curves �˛ to QA. At least one of these curves lifts to an arc connect-
ing different boundaries of QA, and different ones have bounded intersection number.
Hence, the map is coarsely defined. We refer to this number as the twisting number
of x around ˛ and denote it by twist˛.x/, which is a coarsely defined integer.

Now consider the case X DAM.S/. Let B be the Bers constant of the surface S .
For an annulus A, we identify C.A/ with the subset H � R2 of all points in R2

where the y-coordinate is larger than 1=B. Note that, for an augmented marking x D
.P; ¹�˛º; ¹l˛º/, the twisting number twist˛.x/ can still be defined as above. If the core
curve of A is in Px , we define

�A.x/D
�
twist˛.x/; 1=l˛

�
;

otherwise

�A.x/D
�
twist˛.x/; 1=B

�
:

Also, for subsurfaces U and V we have a projection map

�U;V W C.U /! C.V /;

which is defined on the subset of C.U / consisting of curves that intersect V . Here
U is nonannular; for an annulus A, elements of C.A/ cannot be projected to other
subsurfaces. When the context is clear, we denote all these projection maps simply
by � . By construction, all projection maps are quasi-Lipschitz.
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3.2. Distance formula
For x;y 2X, define the W -projection distance between x and y to be

dW .x; y/D dC.W /
�
�W .x/;�W .y/

�
:

In fact, when W is an annulus with core curve ˛, we sometimes denote this distance
with d˛.x; y/. We define the distance in X using these projection distances. For a
threshold T > 0 large enough, define

dX.x; y/D
X

W 2WT .x;y/

dW .x; y/; (11)

where WT .x; y/ is the set of subsurfaces with dW .x; y/� T . This is not a real metric,
since the distance between different points may be zero and the triangle inequality
does not hold. However, it is symmetric, and the triangle inequality holds up to a
multiplicative error. That is, for x;y; z 2X,

dX.x; y/C dX.y; z/
�
� dX .x; z/:

Also, changing the threshold changes the metric by only uniform additive and multi-
plicative constants. That is, for T 0 � T we have (see [20], [25])X

W 2WT .x;y/

dW .x; y/�
X

W 2WT 0 .x;y/

dW .x; y/: (12)

Even though this is not a metric, it makes sense to say X is quasi-isometric to another
metric space. In fact, in the category of metric spaces up to quasi-isometry, this notion
of distance is completely adequate. We fix a threshold T once and for all so that
dX.x; y/ is a well-defined number for all x;y 2 X. The threshold T needs to be
large enough so that the statements in the rest of this section hold.

There is a coarsely defined map
�
T .S/; dWP

�
!P .S/

sending a Riemann surface X to the shortest pants decomposition in X , which is, by
[8], a quasi-isometry. Hence, P .S/ with the above metric is a combinatorial model
for the Weil–Petersson metric.

A point in .Mod.S/; dW / can be coarsely represented as a marking (see [19]).
That is, there is a coarsely defined map

�
Mod.S/; dW

�
!M.S/;

which can be defined by, for example, fixing a point x0 2M.S/ and sending a map-
ping class � 2Mod.S/ to the marking �.x0/. It is shown in [20] that this map is a
quasi-isometry.
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A point in .T .S/; dT / can be coarsely represented as an augmented marking (see
[26]). That is, there is a coarsely defined map

�
T .S/; dT

�
!AM.S/

defined as follows. A point in X in Teichmüller space is mapped to the augmented
marking x D .P; ¹�˛º; ¹l˛º/, where P is the shortest pants decomposition in X , ˛ 2
P , �˛ is the shortest transverse curve to ˛ in X , and l˛ is the hyperbolic length of ˛
in X . It follows from [25] that this map is a quasi-isometry (again, see [11] for more
details in this case).

By .X.S/; dX/ we denote one of the model spaces above. When the context is
clear, we use X instead of X.S/. However, often we need to talk about X.W / when
W is a subsurface of S . For example, if X.S/ is the space of pants decompositions
of S , then X.W / is the space of pants decompositions of W .

3.3. Bounded projection, consistency, and realization
In this section, we review some properties of the projection maps. We will also derive
a coarse characterization of the image of the curve complex projections of points in
X similar to [3]. We start with a theorem from [20].

THEOREM 3.1 (Bounded geodesic image theorem)
There exists a constant M0 so that the following holds. Assume that V � U are sub-
surfaces of S and ˇ1; : : : ; ˇk is a geodesic in C.U /. Then either there is some ˇj that
is disjoint from V or dV .ˇ1; ˇk/�M0.

Masur and Minsky proved this theorem, except in the case in which V is an
annulus with core curve ˛ and C.V / is a horoball. Then, applying Theorem 3.1, we
have that either some ˇj is disjoint from ˛ or

twist˛.ˇ1/
C

� twist˛.ˇk/:

Also,

�V .ˇi /D
�
twist˛.ˇi /; 1=B

�
:

Hence,

d˛.ˇ1; ˇk/
C

� log
ˇ̌
twist˛.ˇ1/� twist˛.ˇk/

ˇ̌
DO.1/:

Thus, Theorem 3.1 holds in the horoball case as well.
The other important property of the projection maps is the consistency and real-

ization result of [3]. First we recall that for subsurfaces U;V the notation U � V
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means that U \ V ¤ ; and neither is contained in the other. Consider the following
consistency condition on a tuple:

z 2
Y
U

C.U /:

Denote the coordinate of z in C.U / with zU . For a constant M , we say z is M -
consistent if
(1) whenever U � V ,

min
�
dU .zU ; @V /; dV .zV ; @U /

�
�M I

(2) if V � U , then

min
�
dU .zU ; @V /; dV .zV ; zU /

�
�M:

To any z 2 X, the tuple of projections of z is a tuple z so that zU D �U .z/.
The following, in the case in which X is either M.S/ or P .S/, is [3, Theorem 4.3].
However, it holds true for AM.S/ as well.

THEOREM 3.2 (Consistency and realization)
The tuples that are consistent are essentially those that are tuples of projections. More
precisely, there is a constant M1, so that
(1) for z 2X, the tuple of projection z of z is M1-consistent;
(2) if a tuple z is M -consistent for some uniform M , then there is a realization

z 2X so that

8U dU .z; zU /DO.1/:

Proof
As mentioned before, this is known for P .S/ and M.S/. We verify the theorem in
the case of AM.S/.

First we check part (1). For any z 2X, let Pz be the associated pants decompo-
sition. The nonannular projections of z are the same as projections of Pz , and by the
P .S/-case of Theorem 3.2, these projections are consistent. Let A be an annulus, and
let U be any other surface intersecting A. As in Theorem 3.1, the consistency still
holds because
� the image of �U;A is always on the boundary of the horocycle C.A/,
� the distance in C.A/ between two points on the boundary is the log of the

twisting difference, and
� the twisting distance is bounded as a consequence of the consistency theorem

for M.S/.
That is, the consistency constant for AM.S/ is no larger than that of M.S/.
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To see part (2) we need to construct an augmented marking from a consistent
tuple z. Use the realization part of Theorem 3.2 for P .S/ to construct a pants decom-
position P0 so that, for every subsurface U that is not an annulus, dU .P0; zU / D
O.1/. Still, for some curves ˛, with corresponding annulus A, the projection of P
to C.A/ may not be close to z˛ . We claim that there is a uniform bound so that for
intersecting curves ˛ and ˇ it cannot be the case that the distance of the projection of
P to the corresponding annulus for both ˛ and ˇ is more than this bound.

To prove the claim, let U be the surface they fill. Then U intersects either ˛ or ˇ
(say, ˛ without loss of generality). By the construction of P0,

dU .P0; zU /DO.1/
�U;A is quasi-Lipschitz
��������������! d˛.P0; zU /DO.1/;

and, by the second condition in the consistency of the coordinates of z,

d˛.zU ; z˛/DO.1/:

Now, the triangle inequality implies that d˛.P0; z˛/ D O.1/. We have proved the
claim.

We also note that, for any such curve ˛ (where d˛.P0; z˛/ is large) and for every
subsurface U intersecting ˛,

dU .˛;P0/
C

� dU .˛; zU /DO.1/:

This is because if zU is far from ˛ in C.U /, then the projection of zU to C.˛/ is
defined and is near z˛ (z is constant). But, as above, dU .P0; zU / D O.1/, which
implies d˛.P0; zU /DO.1/. This is a contradiction.

Let ˛ be the multicurve consisting of all the curves above. Since, dU .P0;˛/D
O.1/ for every nonannular subsurface U , ˛ can be extended to a pants decomposition
P with dU .P0;P /DO.1/ for every nonannular subsurface U . That is,

dV .P; zV /DO.1/; for every subsurface V intersecting P :

We now complete P into an augmented marking. For a curve ˇ 2 P , write zˇ 2
C.ˇ/ as

zˇ D .tˇ ; lˇ /;

where tˇ is an integer and lˇ is a real number less than the Bers constant. Let �ˇ
be a curve intersecting ˇ minimally that is disjoint from other curves in P with

twistˇ .�ˇ /
C

� tˇ . (This can always be achieved by applying Dehn twists around ˇ.)
Now,

x D
�
P; ¹�ˇ ºˇ2P ; ¹lˇ ºˇP

�
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is the desired augmented marking. This is because, for ˇ 2 P , the projections to C.ˇ/

are close to zˇ by construction and, for every other subsurface V , the projection of x
to V is the same as the projection of P to V .

The following statements will be useful later.

COROLLARY 3.3
Let U and V be two subsurfaces where @V intersects U . For any x 2X, if

dU .xU ; @V / >M1; then dV .xV ; xU /DO.1/:

Proof
There are two cases. If V � U , then this is immediate from part (2) of the consistency
condition.

Otherwise, @U intersects V and has a defined projection to C.V /. Since xU is
disjoint from @U , dV .xU ; @U / D O.1/. On the other hand the assumption of the
corollary and part (1) of the consistency condition say that dV .xV ; @U /DO.1/. The
corollary follows from the triangle inequality.

Given x;y; z 2 X and a subsurface W , let 
W be the center of the triangle
.xW ; yW ; zW / guaranteed by the hyperbolicity of C.W /. That is, 
W is ıW -close
to all three geodesics Œx; y�W , Œy; z�W , and Œx; z�W , where ıW is the hyperbolicity
constant of C.W /.

LEMMA 3.4
The set ¹
W º is O.1/-consistent.

Proof
Let U;V be arbitrary domains which are not disjoint. We can assume that U 6� V ,
and hence �U .@V / is defined. We know that the projections of x;y; z to U and V are
themselves M1-consistent.

Consider the triangle �U with vertices xU ; yU ; zU in C.U /. Note that if @V is
uniformly close to all three edges of �U , then @V is uniformly close to 
U and we
are done. Hence, we can, without loss of generality, assume that no point in Œx; y�U is
near @V in C.U /. In fact, since 
U is ı-close to Œx; y�U , we can assume every point
in the convex hull of xU , yU , and 
U is more than M1 away from @V .

This implies that xU , yU , and 
U have defined projections to V , and Theorem 3.1
implies that their projections are a bounded distance from one another. That is,

dV .
U ; xU /DO.1/; dV .
U ; yU /DO.1/; and dV .xU ; yU /DO.1/:
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On the other hand, because dU .xU ; @V / and dU .yU ; @V / are both larger thanM1, by
Corollary 3.3

dV .xV ; xU /�M1 and dV .yV ; yU /�M1:

By the triangle inequality,

dV .xV ; yV /DO.1/:

From the definition of 
V , we have

dV
�

V ; Œx; y�V

�
� ıV :

Again, using the triangle inequality, we get

dV .
U ; 
V /DO.1/: (13)

This is the consistency condition when V � U .
Thus, assume that U � V . Since 
U and @U are disjoint, dV .
U ; @U /D O.1/.

This and (13) imply that

dV .@U;
V /DO.1/;

which is the required consistency condition in this case.

Definition 3.5
Since the tuple of centers is consistent, it has a realization 
. We call 
 the center of
the triangle with vertices x, y, and z.

3.4. Product regions
For every subsurface W of S , we have a projection map

�W W X!X.W /

defined by Theorem 3.2. Namely, since the projections of a point x 2X to subsur-
faces of S are consistent, the projections to subsurfaces of W are also consistent and
hence can be realized by a point in X.W /. For points x;y 2X, we define

dX.W /.x; y/D dX.W /
�
�W .x/; �W .y/

�
:

The subsurface W is allowed to be an annulus, in which case X.W /D C.W /.
For a curve system ˛, let X˛ be the set of points in x 2X where ˛ is a subset

of the pants decomposition Px associated to x. Consider a point x 2X˛. Since every
pants curve in x is disjoint from ˛, the projection of x to any subsurface intersecting
˛ is a distance at most 2 from the projection of ˛. Therefore, for a sufficiently large
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threshold T and for any x;y 2 X˛ , the set WT .x; y/ consists only of subsurfaces
disjoint from ˛, each of which is contained in some componentW of S n˛. Therefore,
the map

ˆ W X˛!
Y
W

X.W /; where ˆD
Y
W

�W ;

is a quasi-isometry. (The image is coarsely surjective) Here the product space is
equipped with the L1-metric. A version of this theorem for Teichmüller space was
first proved by Minsky [22] and is known as the product regions theorem. We see that
the fact that ˆ is a quasi-isometry is essentially immediate from the distance formula.
However, the proof of the distance formula in [25] used Minsky’s product regions
theorem.

There is also a projection map �X˛ W X!X˛. For x 2X and each component
W of S n˛, take �W .x/ and then take the union over allW ’s. We then add the curves
˛ to find a point in X˛. We define dX˛ to mean the distance between projections to
X˛. That is, for x;y 2X, we define

dX˛.x; y/ WD dX
�
�X˛.x/; �X˛.y/

�
:

Note that the projection of �X˛.x/ to X.W / is close to �W .x/, because �W was
defined using the consistency result. Therefore, we have

dX˛.x; y/�
X
W

dX.W /.x; y/; (14)

where the sum is over components of S n ˛.
We finish with an estimate of dX using the projection distances dX˛ .

LEMMA 3.6
Suppose x;y 2X and ˛1; : : : ; ˛k is a geodesic in C.S/ joining ˛1 2 Px to ˛k 2 Py .
Then

dX.x; y/�

kX
iD1

dX˛i .x; y/:

Proof
Let M0 be the constant in Theorem 3.1. Then any subsurface U with dU .x; y/�M0

is disjoint from some ˛j and so is a subset of S n ˛j . Thus, it appears as a term in
some dX.W /.x; y/, where W is a component of S n ˛j . We are done by (14).

4. Efficient paths are nearly geodesics
In this section, we show that efficient paths are nearly geodesics in the space X. To do
this, we use the construction of Bestvina, Bromberg, and Fujiwara [5], which gives a
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quasi-isometric embedding of the mapping class group to a finite product of Gromov
hyperbolic spaces. Their construction is completely axiomatic and works, essentially
without modifications, for any of our spaces X. We first review their construction.
We remark first that their notation differs from ours. We will explain the differences.

4.1. A quasitree of curve complexes
We summarize some statements in [5]. Fix a threshold K . Let Y be a collection of
subsurfaces of S with the property that if V;W 2Y, then
� V �W , and
� every curve in W intersects V . Hence, the domain of �W;V is C.W /.
Starting from the function, for each Y 2Y, dY WYn¹Y º
Yn¹Y º
Yn¹Y º! Œ0;1�

(in their notation the function is d�Y ), one can define a new functionDY WYn¹Y º
Yn
¹Y º
Yn¹Y º! Œ0;1� (in their notation it is dY ), which satisfies a list of conditions,
the chief of which from our point of view is

DU .Z;W /� dU .Z;W /
C

�DU .Z;W /:

Define (see [5, Definition 3.6]) PK.Y/ to be a graph whose vertices are elements of
Y, and two vertices V;W are connected with an edge if for all U 2Y

DU .@V; @W /�K:

It is shown in [5] for K sufficiently large that PK.Y/ is quasi-isometric to a tree.
Define C.Y/ to be the space obtained from PK.Y/ by attaching a copy of C.W /

for every vertex W 2Y as follows. The vertex set of C.Y/ is the union of vertex sets
of C.W /, W 2 Y. If V and W are joined by an edge in PK.Y/, then we join the
vertex �V .@W / in C.V / to �W .@V / in C.W /. We also include the edges of C.W /

for each W . It follows from [5, Theorem E], using the fact that each space C.W / is
hyperbolic, that the resulting space C.Y/ is also hyperbolic.

Furthermore, Bestvina, Bromberg, and Fujiwara [5] show the following when S
is connected:
� the subsurfaces of S can be decomposed into finitely many disjoint subsets

Y1; : : : ;Yk , each having the transversality property mentioned above; and
� there is a finite-index subgroup � in Mod.S/ which fixes each Yi .
When S is disconnected, we decompose the subsurfaces of each component as above
and let Y1; : : : ;Yk be the list of all such collections.

We can assume that Yj contains only essential subsurfaces; that is, the thrice-
punctured spheres are always excluded, and in the case in which X is the pants graph,
annuli are also excluded. Let

CD
kY
jD1

C.Yj /
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be equipped with the L1-metric. Thus, C is a product of finitely many hyperbolic
spaces.

We define a projection map ‰j W X! C.Yj / as follows. For x 2X, choose a
subsurface Wj 2Yj that minimizes

max
˛2Px

i.˛; @Wj /;

where the minimum is over Wj 2Yj . Define

‰j .x/D xWj :

Recall that xWj is the projection of x to the curve complex C.Wj /. That is, xWj is a
point in C.Wj / and hence is a point in C.Yj /.

Remark 4.1
Our definition of the projection is slightly different from that in [5]. There, the action
of the mapping class group is used to define the projection. However, in the case in
which Yj consists of annuli and X is the augmented marking space, xWj is a point
in the horoball H �H2 and not a curve. In particular, the action of the mapping class
group is not coarsely transitive. But in the other two cases, the two definitions match.

We claim that, for large K , the consistency condition (Section 3.3) shows that
this map is coarsely well defined. That is, up to a bounded distance in C, the image is
independent of the choice of Wj .

First we note that, since the finite-index subgroup � acts preserving each C.Yj /,
the above minimum is uniformly bounded by a constant independent of x. We need to
check that distinct choices of Wj and Vj give points at a bounded distance in C.Yj /.
First we check that we can choose K so that for all U 2Yj

DU .@Wj ; @Vj /� dU .@Wj ; @Vj /�K: (15)

Choose an ˛ 2 x that intersects U . We have i.˛; @Wj / D O.1/, where the implied
bound in O.1/ is universal and does not depend on K . Therefore,

dU .˛; @Wj /DO.1/;

and similarly for ˛ and @Vj . The triangle inequality says that Wj and Vj are con-
nected by an edge in PK.Yj / for K sufficiently large. To show that xWj and xVj are
close in C.Yj /, we need that

dVj .xVj ; @Wj /DO.1/ and dWj .xWj ; @Vj /DO.1/:
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This holds since, for every curve ˛ 2 x,

i.˛; @Wj /DO.1/ and i.˛; @Vj /DO.1/:

We often denote ‰j .x/ by xj . Now define a map

‰ W X!C with ‰D
Y
j

‰j :

The following result is proved in [5] for the mapping class group.

LEMMA 4.2
There is K 0 >K so that, for every x;y 2X,

dC
�
‰.x/;‰.y/

� �
�

X
W 2WK0 .x;y/

dW .x; y/:

This follows from the lower bound of Bestvina, Bromberg, and Fujiwara [5, The-
orem 4.13]; we have replaced DW with dW , and in their theorem, the multiplicative
error is 1

2
. In view of (15), the terms on the right-hand side are larger only addi-

tively compared to the terms in [5, Theorem 4.13]. Hence, choosing a larger thresh-
old ensures that the sum above does not have any extra terms. Also, increasing every
term in the above sum by a uniform additive amount increases the sum by at most a
uniform multiplicative amount. The proof in [5] uses only the hyperbolicity of each
curve complex and the consistency condition detailed in Section 3.3 and works ver-
batim in our case. Hence, we omit the proof. As a consequence we have the following
theorem, which is also proved in [5] for the mapping class group. We give a proof
here because our projection maps  j are defined differently from those in [5].

THEOREM 4.3
For K sufficiently large, the map ‰ is a quasi-isometric embedding from X into C.

Proof
For x 2X, the map ‰ is defined by

‰.x/D .xW1 ; : : : ; xWk /;

for some subsurfaceWj 2Yj , 1� j � k. We show that ‰j is quasi-Lipschitz, which
is essentially the same as the proof that ‰j is coarsely well defined. If dX.x; x0/D
O.1/, then

dU .x; x
0/DO.1/ 8U:
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We have i.x; @Wj /DO.1/, and so

dU .x; @Wj /DO.1/ and similarly dU .x
0; @W 0j /DO.1/:

Together this gives

dU .@Wj ; @W
0
j /DO.1/;

which implies for large K that Wj and W 0j are connected by an edge in PK.Yj /. We
also know that x is close to x0, which has a bounded intersection with @W 0j . Hence,

dWj .xWj ; @W
0
j /DO.1/; and similarly dW 0

j
.xW 0

j
; @Wj /DO.1/:

Therefore,

dC.Yj /
�
‰j .x/;‰j .x0/

�
DO.1/:

This means that the maps ‰j are quasi-Lipschitz and so is ‰.
We need to find a lower bound for the distance between ‰.x/ and ‰.y/. By

Lemma 4.2, there is K 0 >K so that

dC
�
‰.x/;‰.y/

� �
�

X
W 2WK0 .x;y/

dW .x; y/;

and since the distance formula works for any threshold,

dX.x; y/
�
�

X
W 2WK0 .x;y/

dW .x; y/:

Hence,

dC
�
‰.x/;‰.y/

� �
� dX.x; y/:

This finishes the proof.

4.2. Preferred paths and efficient paths
Since the space X is not hyperbolic, a quasi-geodesic connecting two points in X

may not be well behaved. Instead, we define a notion of preferred path connecting
two points in X.

Definition 4.4
Given x;y 2X, we say a quasi-geodesic ! W Œa; b�!X is a preferred path connect-
ing x to y if
� !.a/D x, !.b/D y; and
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� for every subsurface U , the map

!U D �U ı! W Œa; b�! C.U /

is an unparameterized quasi-geodesic.

LEMMA 4.5
For any x;y 2X there is a preferred path connecting x to y.

Proof
In the case of the mapping class group and the pants complex, a resolution of a hier-
archy is a preferred path (see [20]). In the case in which X is Teichmüller space with
the Teichmüller metric, such a path is constructed in [25, Theorem 5.7].

Remark 4.6
It is known that a Teichmüller geodesic is not always a preferred path. (There may be
backtracking in annuli.) It is unknown if a Weil–Petersson geodesic or a geodesic in
the mapping class group is a preferred path.

Now let U be a subsurface of S , and let xU and yU be the projections of x and
y to C.U /. Denote a geodesic segment in C.U / connecting xU to yU by Œx; y�U .
Given 
 > 0, let

G .x; y; 
/D
®
z 2X

ˇ̌
8U;dU

�
z; Œx; y�U

�
� 


¯
:

This notion was introduced in [3], where they call it the hull. In a sense, this set
is the union of all points in all preferred paths.

LEMMA 4.7
There is a constant 
0 depending only on the topology of S and the constant involved
in the definition of a preferred path so that, for any preferred path ! W Œa; b�!X and
any a � t � b,

!.t/ 2 G .x; y; 
0/:

Proof
Since C.U / is Gromov-hyperbolic and the projection of ! is an unparameterized
quasi-geodesic, it stays in a uniform neighborhood of the geodesic connecting its
endpoints.



1552 ESKIN, MASUR, and RAFI

LEMMA 4.8
There exists 
0 depending only on topology and the constantM0 in Theorem 3.1 such
that if x;y 2X and w;z 2 G .x; y; 
0/, then the following statements hold.
� For any subsurface U ,

dU .w; z/
C

� dU .x; y/:

In fact, Œw; z�U is contained in a uniform neighborhood of Œx; y�U .
� (Convexity) If w;z 2 G .x; y; 
0/, then G .w; z; 
0/ is contained in a uniform

neighborhood of G .x; y; 
0/.

Proof
Since C.U / is Gromov-hyperbolic, if both zU and wU are close to Œx; y�U , then so is
Œz;w�U . Hence the length of Œz;w�U is less than that of Œx; y�U . This proves the first
statement.

We prove the second statement. Let 
0 be the maximum hyperbolicity constant
for any C.U /. (In fact, all curve complexes are known to be uniformly hyperbolic
(see [1], [6], [10], [17], [23]).) Given any p 2 G .z;w; 
0/ let 
 be the center (see
Definition 3.5) of points x;y;p given by Lemma 3.4. For any subsurface U , the
distance between 
U and Œx; y�U is bounded by the hyperbolicity constant of C.U /.
Hence, for 
0 large enough, 
 2 G .x; y; 
0/.

We need to show that dX.p; 
/ is uniformly bounded. For every subsurface U ,
pU is within 
0 of Œz;w�U , and by the first part, Œz;w�U is contained in a uniform
neighborhood of Œx; y�U . That is, the distance between pU and Œx; y�U is uniformly
bounded, and hence the distance between pU and 
U is also uniformly bounded. This
gives a bound on dX.p; 
/ by the distance formula.

We now fix 
0 so that the above two lemmas hold and simply write G .x; y/. The
following is the main theorem of this section and states that efficient paths fellow-
travel preferred paths.

THEOREM 4.9
Let � W Œ0;R�! X be an �-efficient path at scale R connecting x D �.0/ to y D
�.R/. Then, the image of � stays in an O.�R/-neighborhood of G .x; y/. Moreover, it
stays in an O.�R/-neighborhood of a preferred path connecting x to y.

We now show that taking the center of three points (see Definition 3.5) and pro-
jecting to C.Yj / commute.
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LEMMA 4.10
For any x;y; z 2X, let 
 be the center of the triangle � with vertices x;y; z. Let xj ,
yj , zj , and 
j , respectively, denote ‰j .x/, ‰j .y/, ‰j .z/, and ‰j .
/, the projec-
tions of these points to C.Yj /. Then 
j is near the center of the triangle .xj ; yj ; zj /
in C.Yj /.

Proof
First we claim that, for every W 2Yj , dW .x; xj /DO.1/. To prove the claim let xj
be a curve xV in a surface V 2Yj . We have that

xV is disjoint from @V H) dW .@V;xV /DO.1/

and

i.x; @V /DO.1/ H) dW .@V;x/DO.1/:

The claim follows from the triangle inequality.
In [5, Lemma 4.15], it is shown that a geodesic in C.Yj / connecting xj to yj is a

bounded Hausdorff distance from a union of geodesics Œxj ; yj �W , where the union is
over the subsurfaces for which dW .xj ; yj / is large. The same holds for the geodesic
connecting xj to 
j .

But, as a consequence of the above claim, the geodesic Œxj ; yj �W is a bounded
Hausdorff distance from Œx; y�W , and Œxj ; 
j �W is a bounded Hausdorff distance from
Œx; 
�W . Also, by assumption, we know that Œx; 
�W is contained in a bounded neigh-
borhood of Œx; y�W . Therefore, Œxj ; 
j �W is contained in a bounded neighborhood of
Œxj ; yj �W . In particular, if dW .xj ; 
j / is large, then so is dW .xj ; yj /.

That is, every subsurface that appears in the geodesic connecting xj to 
j also
appears in the geodesic connecting xj to yj , and the portion of the geodesic Œxj ; 
j �
that is in W stays near the geodesic Œxj ; yj �. Thus, 
j is itself close to Œxj ; yj �.

The same holds for xj ; zj and yj ; zj . Since C.Yj / is Gromov-hyperbolic and

j is close to all three geodesics, it is near the center of the triangle.

We now prove the theorem.

Proof of Theorem 4.9
Let �j D ‰j ı � be the projection of the path � to C.Yj /. By Lemma 2.3, each
�j is still �-efficient. Since C.Yj / is hyperbolic, by Lemma 2.12, �j .t/ is within
an O.�R/-distance of a geodesic Œxj ; yj � connecting xj D ‰j .x/ to yj D ‰j .y/.
Let z D �.t/, and let 
 be the center of x;y; z. From the construction, we have 
 2
G .x; y/. We estimate the distance between 
 and z.
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By Lemma 4.10, 
j is the center of triangle .xj ; yj ; zj /. The distance from zj to
Œxj ; yj � is, up to an additive error, the distance from zj to the center 
j . Therefore,

dC.Yj /.zj ; 
j /
C

� dC.Yj /
�
zj ; Œxj ; yj �

�
DO.�R/:

It follows, since ‰ is coarsely Lipschitz and the metric in C is the L1-metric, that

dX.z; 
/
�
�
X
j

dC.Yj /.zj ; 
j /DO.�R/:

This finishes the proof of the first statement of the theorem.
We prove the second statement, namely, that � stays in an O.�R/-neighborhood

of a preferred path connecting x to y. Let 
.t/ be the center of the triangle with
vertices x, y, and �.t/. The issue is that 
.t/ may not trace a preferred path, since
the �-efficient path � is allowed to backtrack up to O.�R/. We proceed therefore as
follows.

For a time t and a subsurface W , let 
W .t/ be the projection of 
.t/ to W .
Consider the geodesic Œx; y�W in C.W /. Let sW 2 Œ0; t � be a time where dW .xW ;

W .sW // is maximized (see Figure 4), and define

!W .t/D 
W .sW /:

Note that !W .t/ is an unparameterized quasi-geodesic, since it stays close to the
geodesic Œx; y�W and does not backtrack.

We prove, for every t , that the set ¹
W .sW /º is M1-consistent, where M1 is the
constant from Theorem 3.2. Pick two intersecting surfaces U and V . Suppose first
that U � V . If dU .x; y/DO.1/, then dU .
.sU /; 
.sV //DO.1/. Now since 
U .sV /
and 
V .sV / are consistent, so are 
U .sU / and 
V .sV /. Similarly, if dV .x; y/DO.1/,
then we are done.

Otherwise, as we have seen before, we can assume without loss of generality that
dV .@U;y/DO.1/ and dU .x; @V /DO.1/. Now, if dU .
.sU /; @V / is large enough,

xW yW

�W .sW /

�W .t/

!W .t/�W .t/

C.W /

Figure 4. The point !W .t/ is defined to be the point 
W .s/ that is farthest along in Œx; y�W for
s 2 Œ0; t �.
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then the segment Œ
U .sU /; y�U has a distance more than M1 from @V and by the
bounded geodesic image theorem (see Theorem 3.1) we have dV .
.sU /; y/ �M0.
But 
V .sV / is between 
V .sU / and y and hence is close to both. By the triangle
inequality, we have

dV
�
@U;
V .sV /

�
DO.1/:

Next assume that V � U and that dU .
.sU /; @V / is large. In C.U /, one of
the segments Œx; 
.sU /�U or Œ
.sU /; y�U has a distance at least M1 from �U .@V /.
Assume first that it is ŒxU ; 
U .sU /�U . But 
U .sV / is contained in this segment and is
also far from �U .@V /. Then Theorem 3.1 implies that

dV
�

.sU /; 
.sV /

�
DO.1/:

The remaining case is when Œ
.sU /; y�U has a distance of at least M1 from @V .
Then

dV
�

.sU /; y

�
DO.1/:

But 
V .sV / is contained in the interval Œ
V .sU /; y�. Hence, it is close to both, and in
particular,

dV
�

.sU /; 
.sV /

�
DO.1/:

Now, using Theorem 3.2(2), there is a point !.t/ 2X where the projection of !.t/ to
W is close to !W .t/ (hence justifying the notation).

Finally, we need to prove

dX
�
�.t/;!.t/

�
DO.�R/:

Let !j .t/ be the projection of !.t/ to C.Yj /. We observe that !j .t/ is near the point

j .s/, s 2 Œ0; t �, that is farthest along in Œxj ; yj �. This is because a geodesic in C.Yj /
is a union of geodesics in subsurfaces W1; : : : ;Wk appearing in natural order, and
since all these subsurfaces intersect, if a point zj is ahead of z0j along Œxj ; yj �, then
the projection of zj is ahead of the projection of z0j in every subsurface. Therefore,
there is s 2 Œ0; t � so that

dC.Yj /
�
!j .t/; 
j .s/

�
DO.1/:

From Lemma 2.3(1) we have

dC.Yj /
�
xj ; �j .s/

�
C dC.Yj /

�
�j .s/; �j .t/

�
C dC.Yj /

�
�j .t/; yj

�
� dC.Yj /.xj ; yj /CO.�R/:
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But C.Yj / is Gromov-hyperbolic, so the projection to Œxj ; yj � is distance-decreasing.
Furthermore, dC.Yj /.
j ; Œxj ; yj �/DO.1/. Hence,

dC.Yj /
�
xj ; 
j .s/

�
C dC.Yj /

�

j .s/; 
j .t/

�
C dC.Yj /

�

j .t/; yj

�
� dC.Yj /.xj ; yj /CO.�R/:

But we know 
j .t/ comes before 
j .s/. Therefore,

dC.Yj /
�

j .s/; 
j .t/

�
DO.�R/;

and hence,

dC.Yj /
�
!j .t/; 
j .t/

�
DO.�R/:

Since this is true for every j , we also have

dX
�
!.t/; 
.t/

�
DO.�R/:

This finishes the proof.

5. Behavior of preferred paths
In this section, we analyze preferred paths more carefully to obtain more control over
their behavior. In Proposition 5.5 we show (up to taking a subsurface) that if a pre-
ferred path is making progress in a subsurface, then it has to stay close to the set of
points in X that contain the boundary of that subsurface in their pants decomposition.
This is analogous to the main results in [24] for Teichmüller geodesics. At the end
of the section we prove two fellow-traveling results (Propositions 5.7 and 5.10) for
preferred paths. We start by proving a few lemmas.

The following lemma gives a bound on the thickness of G .x; y/ in terms of pro-
jection distances dX.W /.x; y/.

LEMMA 5.1
For any D > 0, if dX.W /.x; y/ �D for every proper subsurface W , then any point
z 2 G .x; y/ is within a distance O.D/ of any preferred path � joining x;y.

Proof
Let � be a preferred path connecting x to y, and let z 2 G .x; y/. Assume first that S
is connected, and let �.t/ be a point with

dC.S/
�
z; �.t/

�
DO.1/:

Such a point exists because dS .z; Œx; y�S /DO.1/ by the definition of G .x; y/ and �
connects x to y.
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Let ˛1; : : : ; ˛k be the geodesic in C.S/ connecting a pants curve in z to a pants
curve in �.t/ with k DO.1/. For every ˛i and every subsurface U of S �˛i , we have
(Lemma 4.8)

dU
�
z; �.t/

� C
� dU .x; y/:

Hence, using the distance formula, we get

dX˛i

�
z; �.t/

� �
� dX˛i .x; y/�D:

Now, by Lemma 3.6

dX
�
z; �.t/

� �
�
X
i

dX˛i

�
z; �.t/

�
DO.D/:

If S is not connected, then writing S DW1 [ 	 	 	 [Wk as a disconnected union,
for any time t , as above gives

dX
�
z; �.t/

�
D
X
i

dX.Wi /
�
z; �.t/

�

�
�
X
i

dX.Wi /.x; y/DO.D/:

In preparation for the next lemma, we recall a result of Rafi and Schleimer [27].
They give the following definition.

Definition 5.2
Given a pair of points x;y 2X.S/, thresholds T1 � T0 > 0, and a subsurface W , a
collection� of subsurfacesWi �W is an antichain inW for x and y if the following
statements hold.
� If Wi 2�, then dC.Wi /.x; y/� T0.
� If dV .x; y/� T1, then V �Wi where Wi 2�.
� If Wi ;Wj 2�, then Wi is not a proper subsurface of Wj .

The size of � is a lower bound for the distance in the curve complex.

LEMMA 5.3 (see [27])
There is a constant ADA.T0; T1/ such that

j�j �AdW .x; y/:

We show that if � is moving in some X.W / but is not close to X@W , then this
happens because � is really moving in a subsurface of W .
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LEMMA 5.4
For all sufficiently large M;D and any subsurface W of S , if � W Œa; b�! X is a
preferred path connecting x to y such that for all t

dX
�
�.t/;X@W

�
�M and dX.W /.x; y/�D;

then there is a proper subsurface V �W such that

dX.V /.x; y/
�
� dX.W /.x; y/:

Proof
Let M0 be the constant for Theorem 3.1, and let M1 be from Theorem 3.2. We will
introduce additional uniform constants: a threshold constant T for the distance for-
mula and M;D depending on T which will satisfy the conclusions of the lemma. All
will depend solely on M0, M1, and the uniform constants coming from the definition
of preferred paths.

We claim we can choose M large enough such that, for all x;y,

dW .x; y/�M:

Begin by choosing M;T so that

M >T >max
�
2K.M0CC/;M1

�
;

where K;C are the constants that arise from the fact that the projection of a preferred
path to a surface is a .K;C /-quasi-geodesic.

Suppose now by contradiction that dW .x; y/ >M . Choose z 2 � whose projec-
tion to C.W / is at the midpoint of the quasi-geodesic �W ı � . From our assumption,
we know that both

dW .x; z/�
M

2
and dW .z; y/�

M

2
:

Let ˛D @W , and recall there is a projection map �X˛ WX!X˛. Let wD �X˛.z/ 2
X@W . By the assumption of the lemma,

dX.z;w/�M:

By consistency,

dU .z;w/�M1

for all U �W or U disjoint fromW . SinceM >T , the distance formula with thresh-
old T says that there is a subsurface U such that either W � U or U �W and

dU .z;w/� T:
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Consider first the possibility that W � U and dU .z; @W /� T . Since the.K;C /-
quasi-geodesic Œx; y�U in C.U / passes through zU , either Œx; z�U or Œz; y�U stays a
distance at least T

K
� C >M0 from @W . Then, by Theorem 3.1, either dW .x; z/ �

M0 <
M
2

or dW .y; z/�M0 <
M
2

, which is a contradiction.
Consider the other possibility that U �W with

dU .z; @W /� T:

By the first consistency condition we have that

dW .z; @U /�M1:

For M again sufficiently large compared to M1, the assumptions that dW .x; z/� M
2

and dW .y; z/� M
2

and the triangle inequality now imply both

dW .x; @U /�
M

4

and

dW .y; @U /�
M

4
:

Again, the first consistency condition implies for M large enough that

dU .x; @W /DO.1/

and

dU .y; @W /DO.1/;

which together imply that

dU .x; y/DO.1/

by the triangle inequality. This in turn implies dU .x; z/ D O.1/ and dU .y; z/ D
O.1/, and using the triangle inequality one more time, we conclude that

dU .z; @W /DO.1/:

The implied constants here are uniform, not depending on M;T . Thus, choosing T
larger than this constant we again have a contradiction. We have proved the claim.

Thus, we can assume we can choose M so that

dW .x; y/�M
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for all x;y. By the distance formula,

dX.W /.x; y/
�
�

X
U2WM .x;y/

dU .x; y/:

Here WM .x; y/ is the collection of subsurfaces U �W where dU .x; y/ >M . Since
dW .x; y/ < M , W itself is not in the sum. Consider the antichain � in W for x
and y. Then Lemma 5.3 applied with T0 D T1 DM implies that �D ¹V1; : : : ; Vkº
where k DO.M/. Each subsurface in WM .x; y/ is a subset of some Vi . Hence, for
V equal to some Vi and for D sufficiently large compared to M , we have

dX.W /.x; y/
�
�

X
U2VM .x;y/

dU .x; y/;

where VM .x; y/ is the collection of subsurfaces U � V where dU .x; y/ �M . That
is,

dX.V /.x; y/
�
� dX.W /.x; y/:

PROPOSITION 5.5
There exists a constantD0 such that, given a subsurfaceW � S and a preferred path
� W Œa; b�!X connecting x to y where

D D dX.W /.x; y/�D0;

there are a subsurface V �W and a subinterval Œc; d �� Œa; b� so that
� dX.V /.�.c/; �.d//

�
�D;

� for t 2 Œc; d �, dX.�.t/;X@V /DO.1/.

Proof
We use induction on the complexity of subsurfaces. If � does not come within M of
X@W , then we apply Lemma 5.4. Let W 0 �W be a subsurface such that

dX.W 0/.x; y/
�
�D:

Since W 0 has lower complexity than W , Proposition 5.5 applies by induction. That
is, there is a subsurface V �W 0 �W with the desired properties.

Thus, assume that � does in fact come within M of X@W , and let z1 and z2 be
points in � marking the first and the last times � is within M of X@W . We have either

dX.W /.x; z1/
�
�D; dX.W /.z1; z2/

�
�D; or dX.W /.z2; y/

�
�D:

If dX.W /.z1; z2/
�
�D, then we are done after taking V DW . In the other two cases

(say, dXW .x; z1/
�
�D), the path connecting x and z1 does not come close to X@W but

travels a large distance in XW . Hence, we again can apply Lemma 5.4 and induction
to finish the proof.
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5.1. Steady progress
Consider a preferred path that stays near the space X@W for some subsurface W .
Sometimes it is desirable for � to make steady progress in the curve complex of W .
We make this notion precise.

Definition 5.6
Suppose that � W Œa; b�! X@W is a preferred path connecting x D �.a/ and y D
�.b/. Let L D dX.W /.x; y/, and let a D t0 < t1 < t2 < t3 < t4 < t5 D b such that
each yi D �.ti / satisfies

L
�
� dX.W /.yi ; yiC1/

C

�L=5:

For a constant C0, we say that � makes C0-steady progress in W if, for i D 0; : : : ; 4,

dW .yi ; yiC1/� C0:

Note that if � makes C0-steady progress in W for some C0, then it makes C 00-
steady progress in W for C 00 <C0.

We first prove a fellow-traveling proposition that indicates one use of this con-
cept. Then in a following lemma we show that we can find W in which we make
steady progress. The fellow-traveling proposition states that if the endpoints of two
preferred paths are close compared to their lengths and the first one makes steady
progress in W , then the middle part of the second one also stays near X@W . Namely,
let � be a preferred path joining x;y 2X@W that makes C0-steady progress in W .
Let x D y0; : : : ; y5 D y be as in Definition 5.6, and let z be a point in � between y2
and y3 (see Figure 5) so that

dX.z; y2/
C

�D=10 and dX.z; y3/
C

�D=10:

PROPOSITION 5.7
There are uniform constants c0; c1;C0;D0 so that, in the setup of the above para-
graph, the following holds. Assume that D WD dX.W /.x; y/ �D0, and suppose that
� 0 is a preferred path joining x0 and y0 with

dX.x; x
0/� c0D and dX.y; y

0/� c0D:

Then there is a subsegment of � 0 with length comparable toD that stays in a bounded
neighborhood of X@W . In fact, for z0 on � 0, if

dX.z
0; z/� c1D; then dX.z

0;X@W /DO.1/:

Proof
Consider the projection �W .�/ to C.W /. We have dW .x; y1/

�
� C0. Even though the
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x y1 y2 y3 y4 yˇ1 ˇ2 ˇ3 ˇ4

2ı 2ıC0 2ıC0 2ı C0

C.W /

Figure 5. The projections of y0; : : : ; y5 in C.W / are at least C0 apart. For i D 1; : : : ; 4, the ˇi in
Œx; y�W is 2ı away from the projection of yi in the indicated direction.

distance in X between y1 and x is (up to additive error) at least D=5� c0D, the
projection of x0 to C.W / may be to the right of �W .y1/ along Œx; y�W . However, this
cannot happen if we travel a few steps toward y along Œx; y�W . We make this precise.

Pick a curve ˇ1 along Œx; y�W that is a distance 3ı � 6 toward y from the projec-
tion of y1 to W .

Claim 5.8
There is c0 sufficiently small so that, for any z00 2X, dX.x; z00/� c0D implies that
the closest point projection of z00W to Œx; y�W lies on Œx;ˇ1�.

We remind the reader that ı is the hyperbolicity constant for C.W /. We can
assume that ı � 2.

Proof

We know that dX.W /.x; y1/
C

� D=5 and that the distance in X.W / is the sum of
subsurface projections to subsurfaces in WT .x; y1/. The boundary of any such sub-
surface is near a curve in Œx; y1�W . For T larger than M0, by Theorem 3.1 the projec-
tion of Œˇ1; y�W to any subsurface U 2WT .x; y1/ has uniformly bounded diameter
M0. (Every curve in Œˇ1; y�W intersects U since the distance of the projection y1 to
W from ˇ1 is at least 3.) Arguing by contradiction, suppose, for c0 small, that z00

satisfies dX.x; z1/ � c0D, and yet the closest projection of z00W to Œx; y�W lies on
Œˇ1; y�W . Then every curve in the geodesic Œz00; y�W also intersects U since it is at
least a distance 2ı � 4 from y1. Hence,

dU .x; z
00/
C

� dU .x; y1/:

Therefore, dX.W /.x; z00/
�
� dX.W /.x; y1/

�
�D=5, and we have a contradiction for c0

sufficiently small.

Similarly we find
� a curve ˇ4 near the projection of y4 so that, for any z00, if
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dX.W /.z
00; y/� c0D;

then the closest point projection of z00W to Œx; y�W lies on Œˇ4; y�W ;
� curves ˇ2 and ˇ3, respectively, near the projections of y2 and y3 to C.W / so

that, for any z2; z3 2X ,

dW .z2; ˇ2/� ı; dW .z3; ˇ3/� ı H) dX.z2; z3/
�
�D: (16)

Now, by the claim, the closest point projection of x0W to Œx; y�W lies on Œx;ˇ1�W ,
and the closest point projection of y0W to Œx; y�W lies on Œˇ4; y�W . It follows from the
hyperbolicity of the curve complex that the 2ı-neighborhood of the path Œx0; y0�W has
to contain Œˇ2; ˇ3�W . In particular,

dW .x
0; y0/

C

� C0:

For C0 > M0 this means that the path Œx0; y0� passes within a distance 1 of X@W .
Let z01 and z04 be the first and the last times, respectively, in the path Œx0; y0� that this
occurs. A ı-neighborhood of the geodesic Œz01; z

0
4�W must also contain Œˇ2; ˇ3�W .

This means that there are points z02 and z03 along Œz01; z
0
4� whose projection to

C.W / are ı-close to ˇ2 and ˇ3, respectively. Thus, by (16),

dX.z
0
2; z
0
3/
�
�D H) dX.z

0
1; z
0
4/
�
�D:

This is the desired subsegment of � 0. To see the last assertion of the theorem, note
that if dX.z0; z/� c1D for c1 small enough, then z0 is indeed in the segment Œz02; z

0
3�.

This finishes the proof.

The next lemma says that we can find subsurfaces where there is steady progress.
The constant D0 appears in Proposition 5.5, Lemma 5.9, and Proposition 5.7. This
means that we choose D0 large enough such that all three statements hold.

LEMMA 5.9
We can choose D0 such that, for any surface W , if � is a preferred path joining
x;y 2NO.1/.X@W / and

D WD dX.W /.x; y/�D0;

then, for some interval Œc; d �� Œa; b� and some subsurface V �W , we have that
� dX.V /.�.c/; �.d//

�
�D; and

� � jŒc;d� makes C0-steady progress in V .

Proof
We first note that, by definition, a quasi-geodesic in a lowest-complexity subsurface
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makes steady progress; otherwise, since it is a quasi-geodesic, it would have to make
progress in the curve complex of some proper subsurface, but there are none. The
proof is now by induction on complexity. If � does not make steady progress in W ,
then for some i , dW .yi ; yiC1/DO.1/. If so, we use the antichains (Lemma 5.3) and
argue as in case 1 in the proof of Lemma 5.4 to conclude that there exists a subsurface
V �W where

dX.V /.yi ; yiC1/
�
�D:

Here the implied constant depends only on C0 and not onD. Now, an induction on the
complexity of W implies the lemma. (Replace � with the preferred path connecting
yi to yiC1, and replace W with V .)

We now prove a second fellow-traveling proposition. Recall that ı is the hyper-
bolicity constant for the curve complex of S .

PROPOSITION 5.10
Assume that S is connected, and let dS .	; 	/ denote distance in C.S/, the curve com-
plex of S . There are constants C1 < C2 with the following property. For two pairs of
points x;y and x0; y0, suppose that

dS .x; x
0/� C1ı and dS .y; y

0/� C1ı:

Suppose that z0 2 G .x0; y0/ is such that

dS .z
0; x/� C2 and dS .z

0; y/� C2:

Then

z0 2 G .x; y/:

Proof
We need to show that, for any subsurface U ,

dU
�
z0; Œx; y�U

�
DO.1/:

If U D S , then we know from the hyperbolicity of C.S/ that z0S is within 2ı of
Œx0; x�S [ Œx; y�S [ Œy; y

0�S . Note that different paths connecting two points in C.S/

are O.ı/ apart in the metric dS . For C2 large compared to C1, x0S is much closer to
xS than z0S is, so z0S is far from the path Œx; x0�S . Similarly, zS is far from Œy; y0�S .
Thus, it has to be near Œx; y�S .

Now assume that U ¤ S . If the distance in C.S/ from @U to z0S is at least 3,
then without loss of generality, we can assume that @U is at least a distance 2 from
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Œz0; y�S . (Otherwise, @U would be at least a distance 2 from Œx; z0�S .) Therefore, by
Theorem 3.1 dU .z0; y/�M0. That is, z0U is within M0 of yU and, hence, within M0

of Œx; y�U .
If @U is within 3 of z0S in C.S/, then for C2 large compared to C1 it is a distance

at least 2 from Œx; x0�S and Œy; y0�S . Therefore,

dU .x; x
0/�M0 and dU .y; y

0/�M0:

Hence, Œx; y�U is within O.M0/ of Œx0; y0�U . But we know that z0U is within O.1/ of
Œx0; y0�U , and therefore, it is within O.M0/ of Œx; y�U . This finishes the proof.

6. Local structure of efficient maps
We want to prove the following result. We assume that S is connected.

THEOREM 6.1
For all R0; �0 there are R1 �R0 and �1 < �0 so that if B is a box in Rn with jBj D
R � R1 and f W B!X is an �R-efficient map with � � �1, then there is a sub-box
B 0 �B with R0 D jB 0j �R0 such that one of the following statements holds.
� R0

�
�

3
p
�2R, and for some curve ˛, f .B 0/ lies within an O. 3

p
�R0/-

neighborhood of X˛ .
� R0

�
� 3
p
�R, and there exist x;y so that f .B 0/ lies within an O. 3

p
�R0/-

neighborhood of a preferred path in X joining x to y.

Proof
We can assume that the diameter f .R/ is at least 3

p
�R; otherwise, the first case holds

by taking B 0 D B , R0 D R, and any curve ˛ 2 �S ı f .B/. Thus, choose x D f .p/
and y D f .q/, where p;q 2B such that

dX.x; y/�
3
p
�R:

Identify the geodesic segment Œp; q� with an interval in R. By Theorem 4.9, f .Œp; q�/
stays in the O.�R/-neighborhood of a preferred path � joining x;y.

Now suppose, for some proper subsurface W � S , that

dX.W /.x; y/�
3
p
�2R:

We now claim that the first conclusion of the theorem holds. That is, there are a sub-
box B 0 of size

R0
�
� dX.W /.x; y/

�
�

3
p
�2R

and a curve ˛ such that f .B 0/ lies within an O. 3
p
�R0/-neighborhood of X˛ . We

prove the claim.
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It follows from Proposition 5.5 and Lemma 5.9 that we can find a subinterval
Œd1; d2�� Œa; b�, a subsurface V , and C0 such that
(1) dX.V /.�.d1/; �.d2//

�
�R0;

(2) �.Œd1; d2�/ stays in an O.1/-neighborhood of X@V ; and
(3) the path � jŒd1;d2� makes C0-steady progress in V .
Let xi D �.di /. Let si 2 Œp; q� so that

dX
�
f .si /; xi

�
DO.�R/:

For small c consider any two points t1; t2 at distance cR0 from s1; s2, respectively,
and set yi D f .ti /. For c small enough we have

dX.xi ; yi /� dX
�
xi ; f .si /

�
C dX

�
f .si /; yi

�
�O.�R/CKcR0 � c0R

0;

where c0 is the constant given by Proposition 5.7. Let d 2 Œd1; d2� be such that x D
�.d/ is the midpoint of � jŒd1;d2�. Let p be any point such that

dX
�
f .p/; x

�
DO.�R/:

By Proposition 5.7, there is c1 so that all y 2 G .y1; y2/ that satisfy

dX.y; x/� c1R
0

also satisfy

dX.y;X@V /DO.1/:

For c small, a box of size R0 centered at p is mapped under f within a distance
O.�R/DO. 3

p
�R0/ of such y and so the image of the box lies within O. 3

p
�R0/ of

X˛ for ˛D @V . This proves the claim.
We continue the proof of the theorem. By the first part of the argument we can

assume that, for all W � S ,

dX.W /.x; y/
�
�

3
p
�2R: (17)

This and Lemma 3.6 imply that � makes C 00-steady progress in the entire surface
S for some C 00

�
� 1= 3

p
�. For � small enough, this implies that it makes C0-steady

progress where C0 is the fixed constant of Proposition 5.7. Let C1 be the constant of
Proposition 5.10. For a small but fixed c > 0, take a cR0-neighborhood of p and a
cR0-neighborhood of q where now

R0 D dX.x; y/
�
� 3
p
�R:
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Let p0; q0 be any points in these neighborhoods, and let x0 D f .p0/ and y0 D
f .q0/. By Theorem 4.9 we can find a preferred path � 0 joining x0; y0 within O.�R/
of f .Œp0; q0�/. Since the map f is quasi-Lipschitz it follows, for c sufficiently small,
that

dX.x
0; y0/

�
�R0:

Choose any point Op in the middle third of Œp0; q0�. There is z0 2 G .x0; y0/ whose
projection to C.S/ is at least C1-far from x0S and y0S , and

dX
�
f . Op/; z0

�
DO.�R/:

By Proposition 5.10, we know that z0 2 G .x; y/ and so f . Op/ is within O.�R/ of
G .x; y/, and by Lemma 5.1, any point of G .x; y/ is within a distance O. 3

p
�2R/

of � .
We have shown that any point in the middle third of any segment starting near p

and ending near q is mapped to a point that is in an O.�R/-neighborhood of � . But
such a path covers a box of size R0. Thus, there is a box of size R0 which maps within
O.

3
p
�2R/DO. 3

p
�R0/ of a preferred path. We are done.

7. Proof of main theorems
We are ready to prove Theorems A and B. We first prove a version of Theorem A for
efficient maps. Then, we use coarse differentiation to finish the proof.

Definition 7.1
Let ˛ be a (possibly empty) curve system. For every connected component W of
S n ˛ (including annuli if X is not P .S/), let !W W IW ! X.W / be a preferred
path. Consider the box B D

Q
W IW �Rn, where n is the number of components of

S n ˛. Then

F W B!X˛ D
Y
W

X.W /; where F D
Y
W

!W ;

is a quasi-isometric embedding because each �W is a quasi-geodesic and the product
space is equipped with the L1-metric. We call this map a standard flat in X.

THEOREM 7.2
Let S be a surface with complexity � D �.S/. For given �0 < 1 and R0, let

�	 D �
.6� /
0 and R	 D

R0

�	
:
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Assume that f W B!X is an �	 -efficient map at scale R	 , where B is a box of size
R	 in Rn. Then, there is a box B 0 � B of size R0 � R0 so that the image f .B 0/ lies
inside the O.�0R0/-neighborhood of a standard flat in X.

Proof
We prove the theorem by induction on the complexity � D �.S/ of the surface S (see
(10)). If � D 0, then

S D

ma
iD1

Si ;

where each Si is either a once-punctured torus or a four-times-punctured sphere.
When X is the pants complex, X.Si / is quasi-isometric to the Farey graph; when
X is the augmented marking space, X.Si / is isometric to a copy of the hyperbolic
plane; and when X is the marking complex, X.Si / is a graph whose vertices are the
edges .˛;ˇ/ of the Farey graph and two vertices .˛;ˇ/ and .˛0; ˇ0/ are connected by
an edge if the pairs share a curve, say, ˛ D ˛0 and ˇ;ˇ0 are related by a Dehn twist
about ˛. The latter is known to be quasi-isometric to a tree. Hence, in all cases, X.Si /

is a Gromov-hyperbolic space. That is, X is a product of hyperbolic spaces.
In this case, R	 DR0 and �	 D �0. Let fi W B!X.Si / be the projection of f to

X.Si /. By Lemma 2.3, fi is still �0-efficient at scale R0. Applying Proposition 2.14
to f1 W B ! X.S1/, we obtain a sub-box B1 where f1.B1/ lies in an O.�0R0/-
neighborhood of a quasi-geodesic in X.S1/. But in this case, quasi-geodesics are
also preferred paths. Now we apply Proposition 2.14 to f2 W B1!X.S2/ to obtain
a box B2 so that f2.B2/ lies in an O.�0R0/-neighborhood of a preferred path in
X.S2/. Continuing this way, we find a box Bm where the image of every fi lies in an
O.�0R0/-neighborhood of a preferred path in X.Si /. This means that f .Bm/ lies in
an O.�0R0/-neighborhood of a standard flat in X. Note that Bm has the same size as
B (within a uniform multiplicative error). This proves the base case of the induction.

Assume now that � is nonzero. Apply Theorem 6.1. If the second condition holds,
then we are done, for in this case

R0
�
� 3
p
�	R	 D

3
p
�	

�	
R0 �R0;

since a preferred path is itself a standard flat and 3
p
�	 D �

2
	�1
� �0.

Otherwise, we have a box NB of size

NR
�
� 3

q
�2
	
R	 �R	�1

that maps to an O. 3
p
�	 NR/-neighborhood of X˛ for some curve ˛. The map f is

�2
	�1

-efficient at scale NR, because reducing the size of the box by some factor (in this
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case 3

q
��2
	

) only makes the efficiency constant increase by the same factor and

�	

3

q
�2
	

D 3
p
�	 D �

2
	�1:

Composing f with the closest point projection map to X˛ and using the fact that
X˛ is quasi-isometric to C.˛/
X.S n ˛/, we obtain a map

Nf W NB! C.˛/
X.S n ˛/:

By Lemma 2.3(4), Nf is �	�1-efficient at scale NR.
Projecting to the second factor, we have an �	�1-efficient map from a box of size

R	�1 to X.S n ˛/, which by the inductive assumption has a sub-box B0 of size at
least R0 that stays in an O.�0R0/-neighborhood of a standard flat in X.S n ˛/. Now
projecting to the first factor and applying Proposition 2.14 (C.˛/ is hyperbolic), we
find a sub-box B 0 of size at least R0 that stays in an O.�0R0/-neighborhood of a line
in C.˛/. That is, f .B 0/ stays in an O.�0R0/-neighborhood of a standard flat in X.
This finishes the proof.

Proof of Theorem A
Let R1 be large enough so that the box B is guaranteed (by Theorem 2.5) to have
a sub-box B	 of size at least R	 , where the restriction of f to B	 is �	 -efficient at
scale R	 . Note that we are not using the full force of the theorem; we need only one
efficient sub-box. Apply Theorem 7.2 to f W B	!X to obtain the theorem.

Proof of Theorem B
Pick 1=�0 much larger than K and R0 much larger than C=�0. Apply Theorem A to
obtain an R2 so that given a box of size at least R2 there is a sub-box B 0 of size R0 >
R0 whose image is in an O.�0R0/-neighborhood of a standard flat F W Rm!X.
Taking a composition of f , the closest point projection to the image of F , and then
F �1, we obtain a map G W B 0!Rm with the property that, for p;q 2B 0,

dRm
�
G.p/;G.q/

� �
� dRn.p; q/˙O.�0R

0/: (18)

We show that there is no such map if n is bigger than ranktop.X/ � m. The proof
is similar to the proof of the nonexistence of quasi-isometries between Rn and Rm.
Consider a net of O.�0R0/n points in B 0 that are pairwise K1�0R0 apart, where K1 is
much larger than the constants involved in (18). Then, by the choice of K1, the image
points are at least a distance �0R0 apart and are contained in a ball of radius O.R0/
in Rm. The number of points in such a net is of order O.R0�0/m. Choosing R0 large
enough (which can be done by choosing R0 large) we obtain a contradiction.
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To see the second assertion, we note that if, for every subsurface Wi , C.Wi /

contains an infinite geodesic, then the product of these geodesics is a quasi-isometric
image of Rn. This fails when Wi is an annulus and X is the augmented marking
space. (A horoball does not contain a bi-infinite geodesic.) In this case, we choose
an �0-thick point X in T .S/ and a pants decomposition of curves of length at most
some fixed B . The point x 2 X associated to X is uniformly close to the product
region associated to P (see Section 3.4). Consider an infinite ray for every horoball
associated to a curve in P . The product of these rays is a quasi-isometric image of an
orthant in Rn.

Acknowledgments. We are extremely grateful to the referee for a careful reading and
numerous useful suggestions and corrections. We are also grateful to Saul Schleimer
for helpful suggestions. We are grateful to Brian Bowditch for pointing out an error
in a previous version of this article.

Eskin’s work was supported in part by National Science Foundation (NSF) grants
DMS 0905912 and DMS 1201422. Masur’s work was supported in part by NSF grant
DMS-0905907. Rafi’s work was supported in part by NSF grant DMS-1007811.

References

[1] T. AOUGAB, Uniform hyperbolicity of the graphs of curves, Geom. Topol. 17 (2013),
2855–2875. MR 3190300. (1552)

[2] J. BEHRSTOCK, M. F. HAGEN, and A. SISTO, Hierarchically hyperbolic spaces, I: Curve
complexes for cubical groups, to appear in Geom. Topol., preprint,
arXiv:1412.2171v4 [math.GT]. (1519)

[3] J. BEHRSTOCK, B. KLEINER, Y. N. MINSKY, and L. MOSHER, Geometry and rigidity of
mapping class groups, Geom. Topol. 16 (2012), 781–888. MR 2928983. (1520,
1521, 1541, 1542, 1551)

[4] J. BEHRSTOCK and Y. N. MINSKY, Dimension and rank for mapping class groups,
Ann. of Math. (2) 167 (2008), 1055–1077. MR 2415393.
DOI 10.4007/annals.2008.167.1055. (1520)

[5] M. BESTVINA, K. BROMBERG, and K. FUJIWARA, Constructing group actions on
quasi-trees and applications to mapping class groups, Publ. Math. Inst. Hautes
Études Sci. 122 (2015), 1–64. MR 3415065. (1521, 1522, 1546, 1547, 1548,
1549, 1553)

[6] B. H. BOWDITCH, Uniform hyperbolicity of the curve graphs, Pacific J. Math. 269
(2014), 269–280. MR 3238474. DOI 10.2140/pjm.2014.269.269. (1552)

[7] , Large-scale rank and rigidity of the Teichmüller metric, to appear in J. Topol.,
preprint, 2016. (1519)

[8] J. BROCK, The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex
cores, J. Amer. Math. Soc. 16 (2003), 495–535. MR 1969203. (1517, 1521,
1540)

http://www.ams.org/mathscinet-getitem?mr=3190300
http://arxiv.org/abs/arXiv:1412.2171v4
http://www.ams.org/mathscinet-getitem?mr=2928983
http://www.ams.org/mathscinet-getitem?mr=2415393
http://dx.doi.org/10.4007/annals.2008.167.1055
http://www.ams.org/mathscinet-getitem?mr=3415065
http://www.ams.org/mathscinet-getitem?mr=3238474
http://dx.doi.org/10.2140/pjm.2014.269.269
http://www.ams.org/mathscinet-getitem?mr=1969203


LARGE-SCALE RANK OF TEICHMÜLLER SPACE 1571

[9] J. BROCK and B. FARB, Curvature and rank of Teichmüller space, Amer. J. Math. 128
(2006), 1–22. MR 2197066. (1519)

[10] M. CLAY, K. RAFI, and S. SCHLEIMER, Uniform hyperbolicity of the curve graph via
surgery sequences, Algebr. Geom. Topol. 14 (2014), 3325–3344. MR 3302964.
(1552)

[11] M. DURHAM, The augmented marking complex of a surface, J. Lond. Math. Soc. 94
(2016), 933–969. DOI 10.1112/jlms/jdw065. (1521, 1538, 1539, 1541)

[12] A. ESKIN, D. FISHER, and K. WHYTE, Coarse differentiation of quasi-isometries, I:
Spaces not quasi-isometric to Cayley graphs, Ann. of Math. (2) 176 (2012),
221–260. MR 2925383. (1520)

[13] , Coarse differentiation of quasi-isometries, II: Rigidity for Sol and lamplighter
groups, Ann. of Math. (2) 177 (2013), 869–910. MR 3034290.
DOI 10.4007/annals.2013.177.3.2. (1520)

[14] A. ESKIN, H. MASUR, and K. RAFI, Rigidity of Teichmüller space, preprint,
arXiv:1506.04774v1 [math.GT]. (1517, 1528)

[15] B. FARB, A. LUBOTZKY, and Y. MINSKY, Rank-1 phenomena for mapping class
groups, Duke Math. J. 106 (2001), 581–597. MR 1813237. (1519)

[16] U. HAMENSTÄDT, Geometry of the mapping class group, III: Quasi-isometric rigidity,
preprint, arXiv:math/0512429v2 [math.GT]. (1520)

[17] S. HENSEL, P. PRZYTYCKI, and R. C. H. WEBB, 1-slim triangles and uniform
hyperbolicity for arc graphs and curve graphs, J. Eur. Math. Soc. (JEMS) 17
(2015), 755–762. MR 3336835. (1552)

[18] M. A. HERNÁNDEZ CIFRE, G. SALINAS, and S. SEGURA GOMIS, Two optimization
problems for convex bodies in the n-dimensional space, Beitr. Algebra Geom. 45
(2004), 549–555. MR 2093025. (1535)

[19] H. A. MASUR and Y. N. MINSKY, Geometry of the complex of curves, I: Hyperbolicity,
Invent. Math. 138 (1999), 103–149. MR 1714338. DOI 10.1007/s002220050343.
(1538, 1540)

[20] , Geometry of the complex of curves, II: Hierarchical structure, Geom. Funct.
Anal. 10 (2000), 902–974. MR 1791145. (1521, 1538, 1539, 1540, 1541, 1551)

[21] H. A. MASUR and S. SCHLEIMER, The geometry of the disk complex, J. Amer. Math.
Soc. 26 (2013), 1–62. MR 2983005. DOI 10.1090/S0894-0347-2012-00742-5.
(1519)

[22] Y. N. MINSKY, Extremal length estimates and product regions in Teichmüller space,
Duke Math. J. 83 (1996), 249–286. MR 1390649. (1546)

[23] P. PRZYTYCKI and A. SISTO, A note on acylindrical hyperbolicity of mapping class
groups, preprint, arXiv:1502.02176v1 [math.GT]. (1552)

[24] K. RAFI, A characterization of short curves of a Teichmüller geodesic, Geom. Topol. 9
(2005), 179–202. MR 2115672. (1556)

[25] , A combinatorial model for the Teichmüller metric, Geom. Funct. Anal. 17
(2007), 936–959. MR 2346280. (1540, 1541, 1546, 1551)

[26] , Hyperbolicity in Teichmüller space, Geom. Topol. 18 (2014), 3025–3053.
MR 3285228. (1521, 1538, 1541)

http://www.ams.org/mathscinet-getitem?mr=2197066
http://www.ams.org/mathscinet-getitem?mr=3302964
http://dx.doi.org/10.1112/jlms/jdw065
http://www.ams.org/mathscinet-getitem?mr=2925383
http://www.ams.org/mathscinet-getitem?mr=3034290
http://dx.doi.org/10.4007/annals.2013.177.3.2
http://arxiv.org/abs/arXiv:1506.04774v1
http://www.ams.org/mathscinet-getitem?mr=1813237
http://arxiv.org/abs/arXiv:math/0512429v2
http://www.ams.org/mathscinet-getitem?mr=3336835
http://www.ams.org/mathscinet-getitem?mr=2093025
http://www.ams.org/mathscinet-getitem?mr=1714338
http://dx.doi.org/10.1007/s002220050343
http://www.ams.org/mathscinet-getitem?mr=1791145
http://www.ams.org/mathscinet-getitem?mr=2983005
http://dx.doi.org/10.1090/S0894-0347-2012-00742-5
http://www.ams.org/mathscinet-getitem?mr=1390649
http://arxiv.org/abs/arXiv:1502.02176v1
http://www.ams.org/mathscinet-getitem?mr=2115672
http://www.ams.org/mathscinet-getitem?mr=2346280
http://www.ams.org/mathscinet-getitem?mr=3285228


1572 ESKIN, MASUR, and RAFI

[27] K. RAFI and S. SCHLEIMER, Covers and the curve complex, Geom. Topol. 13 (2009),
2141–2162. MR 2507116. DOI 10.2140/gt.2009.13.2141. (1557)

Eskin

Department of Mathematics, University of Chicago, Chicago, Illinois, USA;

eskin@math.uchicago.edu

Masur

Department of Mathematics, University of Chicago, Chicago, Illinois, USA;

masur@math.uchicago.edu

Rafi

Department of Mathematics, University of Toronto, Toronto, Ontario, Canada;

rafi@math.toronto.edu

http://www.ams.org/mathscinet-getitem?mr=2507116
http://dx.doi.org/10.2140/gt.2009.13.2141
mailto:eskin@math.uchicago.edu
mailto:masur@math.uchicago.edu
mailto:rafi@math.toronto.edu

	Introduction
	Coarse differentiation
	Combinatorial model
	Efficient paths are nearly geodesics
	Behavior of preferred paths
	Local structure of efficient maps
	Proof of main theorems
	References
	Author's addresses

