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Abstract We compute the asymptotic growth rate of the number N (C, R) of
closed geodesics of length ≤ R in a connected component C of a stratum of
quadratic differentials.We prove that, for any 0 ≤ θ ≤ 1, the number of closed
geodesics γ of length at most R such that γ spends at least θ -fraction of its
time outside of a compact subset of C is exponentially smaller than N (C, R).
The theorem follows from a lattice counting statement. For points x, y in the
moduli spaceM(S) of Riemann surfaces, and for 0 ≤ θ ≤ 1we find an upper-
bound for the number of geodesic paths of length ≤ R in C which connect a
point near x to a point near y and spend at least a θ -fraction of the time outside
of a compact subset of C.
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1 Introduction

Let S = Sg,p be a surface of genus g with p punctures and let M(S) be
the moduli space of Riemann surfaces homeomorphic to S. The co-tangent
bundle of M(S) is naturally identified with QM(S) the space of finite area
quadratic differentials on S. Let Q1M(S) be subspace of quadratic differen-
tials of area 1. There is a natural SL(2,R) action on the Q1M(S). The orbits

of the diagonal flow, gt =
[
et 0
0 e−t

]
, projects to geodesics in M(S) equipped

with the Teichmüller metric. For R > 0, let N (R) be the number of closed
Teichmüller geodesics of length less than or equal to R on Q1M(S). It was
shown in [16] that, as R →∞, the number N (R) is asymptotic to ehR/hR,

where h = 6g − 6+ 2p.
The moduli space of quadratic differentials is naturally stratified: to

each quadratic differential (x, q) ∈ QM(S) we can associate σ(q) =
(νi , . . . , νk, ς)where ν1, . . . , νk are the orders of the zeros and poles of q, and
ς ∈ {−1, 1} is equal to 1 if q is the square of an abelian differential and−1 oth-
erwise. For a given tuple σ , we say a quadratic differential (x, q) ∈ QM(S)

is of type σ if σ(q) = σ . The space QM(σ ) of all quadratic differentials in
QM(S) of type σ is called the stratum of quadratic differentials of type σ .
The stratumQM(σ ) is an analytic orbifold of real dimension 4g+2k+ς−3.

LetQ1M(σ ) be the space of quadratic differentials inQM(σ ) of area 1. It
is not necessarily connected (see [26,29] for the classification of the connected
components), however, each connected component is SL(2,R) invariant. Let C
be a connected component ofQ1M(σ ). In this paper, we study the asymptotic
growth rate of the number N (C, R) of closed Teichmüller geodesics of length
less than or equal to R in C. Our main tool is estimating the number N (CK, R)

of closed geodesics that stay completely outside of a large compact setK ⊂ C.

Theorem 1.1 Given δ > 0 there exists a compact subset K ⊂ C and R0 > 0
such that for all R > R0,

N (CK, R) ≤ e(h−1+δ)R .

This result implies that:

Theorem 1.2 As R →∞, we have

N (C, R) ∼ ehR

hR
,

where h = 1
2 [1+dimR(C)] and the notation A ∼ B means that the ratio A/B

tends to 1 as R tends to infinity.
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Counting closed geodesics in strata

Remark 1.3 In the case of abelian differentials, h is equal to the dimension
of the relative homology of S with respect to the set of singular points of
(x, q) ∈ C, otherwise h is one less.

Recurrence of geodesicsWe prove a stronger version of Theorem 1.1. Every
quadratic differential defines a singular Euclidean metric on the surface S and
for every compact setK ⊂ C, there is a lower bound for the q-length of a saddle
connection where q ∈ K. Here, we restrict attention to closed geodesics where
more than one simple closed curve or saddle connection is assumed to be short;
in this case the growth rate is of even lower order.

LetT (S) be theTeichmüller space, the universal cover ofM(S). LetQT (S)

andQ1T (S) be defined similarly. To distinguish between points in theModuli
space and Teichmüller space, we use x ∈M(S) and X ∈ T (S). Also, we use
the notation (x, q) for points in Q1M(S) and (X, q) for points in Q1T (S).
We denote a geodesic in Q1M(S) by g and a geodesic in Q1T (S) by G. The
space Q1T (S) is also naturally stratified. We denote the space of quadratic
differentials in Q1T (S) of type σ by Q1T (σ ). To simplify the notation, let

Q(σ ) := Q1T (σ ).

Recall that ExtX (α) denotes the extremal length of a a simple closed curve α

on the Riemann surface X ∈ T (S). (see Eq. (1) for definition). We introduce
a notion of extremal length for saddle connections on quadratic differentials.
Essentially, the extremal length of a saddle connection ω in a quadratic dif-
ferential (X, q) ∈ Q1T (S) with distinct end points p1 and p2 is the extremal
length of the associated curve in the ramified double cover of X with simple
ramification points at only p1 and p2 (see Sect. 3.5 for more details).

Definition 1.4 For ε > 0 and for any quadratic differential (X, q) ∈ Q(σ ),
let �q(ε) be the set of saddle connections ω so that either Extq(ω) ≤ ε

or ω appears in a geodesic representative of a simple closed curve α with
ExtX (α) ≤ ε. Let Q j,ε(σ ) be the set of quadratic differentials (X, q) of type
σ so that �q(ε) contains at least j disjoint homologically independent saddle
connections. When σ is fixed, we denote this set simply by Q j,ε . Let C j,ε be
the set of points in C whose lift toQ1T (S) lies inQ j,ε . For 0 ≤ θ ≤ 1, define
Nθ (C j,ε, R) to be the number of closed geodesics of length at most R in C that
spend at least θ -fraction of their length in C j,ε .

In this paper, we show:

Theorem 1.5 Given δ > 0, there exist ε > 0 small enough and R > 0 large
enough so that, for all j ≥ 1 and 0 ≤ θ ≤ 1,

Nθ (C j,ε, R) ≤ e(h− jθ+δ)R .
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X
BR(X)

R

Q(σ)

X1
Y1

Z = g · Y
Y

G

Fig. 1 There is a geodesic G in Q(σ ) connecting a point near X to a point near Z ∈ BR(X)

that is in the orbit of Y

Remark 1.6 The condition on �q(ε) is necessary. Just assuming there are
j saddle connections of q-length less than ε does not reduce the exponent
by j . In fact, for any ε, there is a closed geodesic g in Q1M(S) where the
number of saddle connections with q-length less than ε is as large as desired at
every quadratic differential (X, q) along g. This is because the Euclidean size
of a subsurface could be as small as desired (see Sect. 3.4) and short saddle
connection can intersect.

Lattice counting in Teichmüller space Let �(S) denote the mapping class
group of S and let BR(X) denote the ball of radius R in the Teichmüller space
with respect to the Teichmüller metric centered at the point X ∈ T (S). It is
known ([5]) that, for and Y ∈ T (S),

∣∣�(S) · Y ∩ BR(X)
∣∣ ∼ 
2 e(6g−6)R,

as R → ∞. Here 
 is a constant depending only on the topology of S (see
[13]).

The main theorem in this paper is a partial generalization of this result for
the strata of quadratic differentials. Here we are interested in the case where
the Teichmüller geodesic joining X to g ·Y , for g ∈ �(S), is assumed to belong
to the stratum Q(σ ) or stay close to it.

More precisely, for a fix r0 > 0 (see Sect. 6.2), let Nθ (Q j,ε, X, Y, R) be the
number of points Z ∈ T (S) such that (see Fig. 1):

• Z ∈ BR(X) and Z = g · Y , for some g ∈ �(S).
• there is a Teichmüller geodesic segment G ⊂ Q(σ ) joining X1 ∈ Br0(X)

to Y1 ∈ Br0(Z)

• G spends at least θ -fraction of the time in Q j,ε .
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Counting closed geodesics in strata

Also, for a fix ε0 (see Sect. 1.3 below), we define SX to be the set of ε0-short
curves in X and

G(X) = 1+
∏

β∈SX

1√
ExtX (β)

.

Theorem 1.7 Given δ > 0, there exist ε > 0 small enough and R > 0 large
enough such that, for every 0 ≤ θ ≤ 1, j ≥ 1 and X, Y ∈ T (S), we have

Nθ (Q j,ε, X, Y, R) ≤ G(X)G(Y ) e(h− jθ+δ)R,

Compare with Theorem 7.2 in [16].

1.1 Notes on the proof

1. Each stratumQ1M(σ ) has an affine integral structure, and carries a unique
probability measure μ, called the Masur-Veech measure, invariant by the
Teichmüller flow which is equivalent to the Lebesgue measure. Moreover, the
restriction of the Teichmüller flow to any connected component C ofQ1M(σ )

ismixingwith respect to theLebesguemeasure class [32,48]. In fact, theTeich-
müller flow on C is exponentially mixing with respect to μ [2,3]. However,
we will only use the mixing property (as stated in Theorem 2.4) in this paper.
2. The main difficulty for proving Theorem 1.2 is the fact that the Teich-
müller flow is not uniformly hyperbolic. As in [16], we show that the
Teichmüller geodesic flow (or more precisely an associated random walk)
is biased toward the part of C that does not contain short saddle connections
(see Lemma 6.4). Similar method has been used in [16] where it is enough
to use Minsky’s product region theorem (see Sect. 2.5) to prove the necessary
estimates. In this paper, since the projection map from C toM(S) is not easy
to understand, we need different and more delicate methods to obtain similar
results.
3. We define a notion of a (q, τ )-regular triangulation for a quadratic differ-
ential (X, q) (Definition 3.11). Such a triangulation captures the geometry of
singular Euclidean metric associated to q in a way that is compatible with
the hyperbolic metric associated to X . We will show that a set of disjoint
saddle connections in �q(ε) can be included in a (q, τ )-regular triangulation
(Lemma 3.13).
4. In order to prove Theorem 5.1 (Sect. 5) we compute, given the triangulation
Ta , the number of possible triangulations Tb which have certain bounds on
their intersection number with Ta . It turns out that the number of possible
triangulations Tb is related to the number of edges in Ta that are homologically
independent. This is the main reason that the growth rate of Nθ (Q j,ε, X, Y, R)

is related to dimR C. In Sect. 3 we establish the basic properties of a (q, τ )-
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regular triangulation and in Sect. 4 we establish the necessary bounds on the
intersection number between Ta and Tb needed in Sect. 5.
5. Theorems 1.1 and 1.5 are essentially corollaries of Theorem 1.7. In Sect. 6,
we use Theorem 5.1 to prove Theorem 1.7. Herewe describe the steps involved
in the proof of Theorem 1.7. First, we fix a net N in M(S) and its lift Ñ in
T (S). For any constant τ , we note that Nθ (Q j,ε, X, Y, R) is bounded above by
the number of trajectories {λ0, . . . , λn} in Ñ from X to Y so that the distance
between λi and λi+1 is at most τ and, for θ proportion of steps, the segment
[λi , λi+1] can be approximated by a path in Q j,ε .

Given λi , we bound the number of possible choices for λi+1 so that the
segment [λi , λi+1] can be approximated by a path inQ j,ε . The bound depends
on the geometry of λi (captured by the function G(�).

On the other hand, if G : [a, b] → Q j,ε is a geodesic segment with initial
and terminal quadratic differentials (Xa, qa) and (Xb, qb) with |b − a| ≤ τ ,
one can find a (qa, τ )-regular triangulation Ta and (qb, τ )-regular triangulation
Tb so that Ta and Tb have j nomologically independent edges in common
(see Lemma 6.1 for the precise statement). Then Theorem 5.1 shows that the
number of choices for λi+1 is also reduced by a factor e− jτ .
6. To obtain Theorem 1.2, we use the basic properties of the Hodge norm [5] to
prove a closing lemma for the Teichmüller geodesic flow in Sect. 8.We remark
that the Hodge norm behaves badly near smaller strata, i.e. near points with
degenerating zeros of the quadratic differential, where quadratic differentials
have small geodesic segments.

On the other hand, the set of quadratic differentials with no small geodesic
segment is compact and in any compact subset of C, the geodesic flow is
uniformly hyperbolic (see [19,48] and Sect. 7). Also, in view of Theorem 1.5,
for any 0 ≤ θ ≤ 1, the number of closed geodesics γ of length at most R such
that γ spends at least a θ -fraction of the time outside of a compact subset of
C is exponentially smaller than N (C, R). Therefore, “most” closed geodesics
spend at least (1− θ)-fraction of the time away from the degenerating locus.
This allows us to prove Theorem 1.2 following the ideas fromMargulis’ thesis
[30].

1.2 Further remarks and references

1.According to theNielsen–Thurston classification, every irreduciblemapping
class g ∈ �(S) of infinite order has a representative which is a pseudo-Anosov
homeomorphism. Let Kg denote the dilatation factor of g [46]. By a theorem
of Bers, every closed geodesic in M(S) is the unique loop of minimal length
in its homotopy class. Also a pseudo-Anosov g ∈ �(S) gives rise to a closed
geodesic Gg of length log(Kg) in Q1M(S). Hence log(Kg) is the translation
length of g as an isometry of T (S) [9]. In other words,
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L(S) = {
log(Kg) | g ∈ �(S) pseudo-Anosov

}

is the length spectrum ofM(S) equipped with the Teichmüller metric. By [1]
and [25],L(S) is a discrete subset ofR. Hence the number of conjugacy classes
of pseudo-Anosov elements of the group �(S) with dilatation factor Kg ≤ eR

is finite. We remark that for any pseudo-Anosov g ∈ �(S) the number Kg is an
algebraic number and log(Kg) is equal to the minimal topological entropy of
any element in the same homotopy class [18]. (See [10,39] for simple explicit
constructions of pseudo-Anosov mapping classes.) In terms of this notation,
N (C, R) is the number of conjugacy classes of pseudo-Anosov elements g in
the mapping class group �(S) with expansion factor of at most eR such that
Gg ⊂ C.

2. The first results on this problem are due to Veech [48]. He proved that there
exists a constant c such that

h ≤ lim inf
R→∞

log N (R)

R
≤ lim sup

R→∞
log N (R)

R
≤ c

and conjectured that c = h.
Foliations fixed by pseudo-Anosovmaps can be characterized by being rep-

resentable by eventually periodic “convergent” words [37]. Moreover, there is
an inequality relating the length of the repeating part of the word correspond-
ing to a pseudo-Anosov foliation and the dilatation factor of a pseudo-Anosov
map preserving that foliation [38]. However, the estimates obtained using these
inequalities are weaker.
3. The basic idea behind the proof of the main theorem in this paper is proving
recurrence results for Teichmüller geodesics. Variations on this theme have
been used in [4,14–16]. One reason the proof is different from [16] is that
in general the projection map π : Q1M(σ ) → M(S) is far from being a
fibration: in many cases dim(Q1M(σ )) < dim(M(S)) and dim(π−1(X) ∩
Q1M(σ )) depends on the geometry of X . In this paper, we need to analyze
the geometry of quadratic differentials more carefully. The results obtained in
Sect. 3 allow us to deal with this issue.
4. Our results are complimentary to the following result:

Theorem 1.8 (Hammenstadt) There exists a compact K ⊂ C such that for R
sufficiently large,

N (CK, R) ≥ e(h−1)R .

Also, by results in [22] the normalized geodesic flow invariant measure
supported on the set of closed geodesics of length ≤ R in C become equidis-
tributetd with respect to the Lebesgue measure μ as R →∞.
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1.3 Choosing constants

We choose our constants as follows:We call a curve short if its extremal length
is less than ε0. This is a constant that depends on the topology of S only (a
uniform constant) and is chosen so that Theorem 2.2 and the estimate in Eq. (5)
hold.We call any other constant that depends in the topology of S or the choice
of ε0 a uniform constant. Most of these constants are hidden in notations ∗�
and

∗≺ (see the notation section below). For the arguments in Sect. 6 to work,
we need to choose τ large enough depending on the value of δ (see proofs
of Theorem 1.5 and Lemma 6.4 in Sect. 6). Then ε is chosen small enough
depending on the value of τ . We need ε ≤ ε1 = ε1(τ ) so that Lemma 3.13
holds and ε ≤ ε2 = ε2(τ ) so that Lemma 6.1 holds. The dependence on the
choice of τ and ε is always highlighted and a constant that we call uniform
does not depend on ε or τ .

1.4 Notation

In this paper, the expression A
∗≺ B means that A < cB and A

+≺ B means
A ≤ B+ c for some uniform constant c which only depends on the topology
of S (a uniform constant). We writeA ∗� B if we have bothA

∗≺ B and B
∗≺ A.

Similarly, A
+� B if both A

+≺ C and B
+≺ A hold. The notation A = O(B)

means that A
∗≺ B.

2 Teichmüller space and quadratic differentials

In this section,we recall somedefinitions andknown results about the geometry
ofM(S) equipped with the Teichmüller metric. For more details, see [17,24,
45].

2.1 Teichmüller space

Let S be a connected oriented surface of genus g with p marked points. A
point in the Teichmüller space T (S) is a Riemann surface X of genus g with p
marked points equipped with a diffeomorphism f : S → X sending marked
points to marked points. The map f provides a marking on X by S. Two
marked surfaces f1 : S → X and f2 : S → Y define the same point in T (S)

if and only if f1 ◦ f −12 : Y → X is isotopic (relative to the marked points) to a
holomorphic map. By the uniformization theorem, each point X in T (S) has a
complete metric of constant curvature−1 with punctures at the marked points.
The space T (S) is a complexmanifold of dimension 3g−3+ p, diffeomorphic
to a cell. Let �(S) denote the mapping class group of S, the group of isotopy
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classes of orientation preserving self-homeomorphisms of S fixing the marked
points point-wise. The mapping class group �(S) acts on T (S) by changing
the marking. The quotient space

M(S) = T (S)/�(S)

is the moduli space of Riemann surfaces homeomorphic to S.

2.2 Teichmüller distance and Teichmüller’s theorem

The Teichmüller metric on T (S) is defined by

dT
(
( f1 : S → X1), ( f2 : S → X2)

) = 1

2
inf
f
log(K f ),

where f : X1 → X2 ranges over all quasiconformal maps isotopic to f1◦ f −12
and K f ≥ 1 is the dilatation of f . For convenience, we will often omit the
marking and write X ∈ T (S). To distinguish between a marked point and
an un-marked point, we use small case letters for points in Moduli space and
write x ∈M(S).

We recall the following important theorem due to Teichmüller. Given any
X1, X2 ∈ T (S), there exists a unique quasi-conformal map f , called the
Teichmüller map and quadratic differentials (Xi , qi ) ∈ Q1(Xi ) such that the
map f takes zeroes and poles of q1 to zeroes and poles of q2 of the same order
and dT (X1, X2) = 1

2 log(K f ).

2.3 The space of quadratic differentials

LetQ(X) denote the vector space of quadratic differentials on X with at most
simple poles at the marked points of X . The cotangent space of T (S) at a point
X can be identified with Q(X) and the space

QT (S) =
{
(X, q)

∣∣∣ X ∈ T (S), q ∈ Q(X)
}

can be identified with the cotangent space of T (S).
In local coordinates z, q is the tensor given by q(z)dz2, where q(z) is a

meromorphic function with poles of degree at most one at the punctures of X .
In this setting, the Teichmüller metric corresponds to the norm

‖ q ‖T =
∫
X
|q(z)| |dz|2
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on QT (S). Let Q1T (S) denote the space of (marked) unit area quadratic
differentials, or equivalently the unit cotangent bundle over T (S). Define

QM(S) ∼= QT (S)/�(S) and Q1M(S) ∼= Q1T (S)/�(S).

To simplify the notation, in this paper, we let p denote both projection maps

p : T (S) →M(S), and p : Q1T (S) → Q1M(S).

Similarly, π will denote both projection maps:

π : Q1M(S) →M(S), and π : Q1T (S) → T (S).

2.4 Extremal and hyperbolic lengths of simple closed curves

By a curve we always mean the free homotopy class of a non-trivial, non-
peripheral, simple closed curve on the surface Swhere the homotopy is relative
to the marked points. We denote the set of curves on S by S to emphasize that
they are simple curves.

Given a curve α on the surface S and X ∈ T (S), let �X (α) denote the
hyperbolic length of the unique geodesic in the homotopy class of α on X .
The extremal length of a curve α on X is defined by

ExtX (α) := sup
ρ

�ρ(α)2

Area(X, ρ)
, (1)

where the supremum is taken over all metrics ρ conformally equivalent to X ,
and �ρ(α) denotes the infimum of ρ-lengths of representatives of α.

Here X can be any Riemann surface, even an open annulus. Recall that the
modulus of an annulus A is defined to

Mod(A) := 1

ExtA(α)
,

where α is the core curve of A.
Given curves α and β on S, the intersection number i(α, β) is the minimum

number of points inwhich representatives ofα andβ must intersect. In general,
by [20]

i(α, β) ≤ √
ExtX (α) ·√ExtX (β). (2)

The following result [28] relates the ratios of extremal lengths to the Teich-
müller distance:
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Theorem 2.1 (Kerckhoff) Given X, Y ∈ T (S), the Teichmüller distance
between X and Y is given by

dT (X, Y ) = sup
β∈S

log

(√
ExtX (β)√
ExtY (β)

)
.

The relationship between the extremal length and the hyperbolic length is
complicated; in general, by the definition of extremal length,

�X (α)2

π(2g − 2+ p)
≤ ExtX (α).

Also, for any X ∈ T (S), the extremal length can be extended continuously to
the space of measured laminations [28] such that

ExtX (r · λ) = r2 ExtX (λ).

As a result, since the space of projectivized measured laminations is compact,
for every X there exists a constant cX so that

1

cX
�X (α) ≤ √

ExtX (α) ≤ cX �X (α).

However, by [31]

1

π
≤ ExtX (α)

�X (α)
≤ 1

2
e�X (α)/2. (3)

Hence, as �X (α) → 0,

�X (α)

ExtX (α)

∗� 1.

2.5 Minsky’s product theorem

Let A = {α1, . . . , α j } be a collection of disjoint simple closed curves on S
and, for a fixed ε0,

Tε0(A) =
{
X ∈ T (S)

∣∣∣ ExtX (αi ) ≤ ε0, 1 ≤ i ≤ j
}
.

Then, using the Fenchel–Nielsen coordinates on T (S), we can define

�A : Tε0(A) → (H2) j
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by

�A(X) =
(

θ1(X),
1

�X (α1)
, . . . , θ j (X),

1

�X (α j )

)
.

Here, θi (�) is the Fenchel-Nielson twist coordinate aroundαi and represents the
x-coordinate in upper-half planeH and the y-coordinate inH is the reciprocal
of the hyperbolic length. Following Minsky, we get a map

� : Tε0(A) → (H2) j × T (S\A),

where T (S\A) is the quotient Teichmüller space obtained by collapsing all
the αi . The product region theorem [36] states that for sufficiently small ε0 the
Teichmüller metric on Tε0(A) is within an additive constant of the supremum
metric on (H2) j ×T (S\A). More precisely, let dA(�, �) denote the supremum
metric on (H2) j × T (S\A). Then:

Theorem 2.2 (Minsky) There is ε0 > 0 is small enough and B > 0 depending
only on S such that for all X, Y ∈ Tε0(A),

∣∣dT (X, Y )− dA
(
�(X), �(Y )

)∣∣ < B.

As mentioned in the introduction, we fix ε0 so that the above theorem and the
estimate in Eq. (5) hold.

2.6 Short curves on a surface

For ε0 as above, we say a curve α is short on X if ExtX (α) ≤ ε0. From
discussions in [36], we know that, if two curves are short in X they can not
intersect. Let SX be the set of short curves on X . Define G : T (S) → R+ by

G(X) = 1+
∏

α∈SX

1√
ExtX (α)

. (4)

If dT (X, Y ) = O(1) then G(X)
∗� G(Y ). The function G is �(S) invariant

and induces a proper function on M(S). We also recall the following lemma
which, for example, follows from [16].

Lemma 2.3 For any X ∈ T (S) let

IX =
{
g ∈ �(S)

∣∣ dT (g · X, X) = O(1)
}
.
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be the set of mapping classes that move X by a bounded amount. Then

∣∣IX ∣∣ ∗� G(X)2.

2.7 Stratum of quadratic differentials

Although the value of q ∈ Q(X) at a point in X depends on the local coordi-
nates, the zero set of q iswell defined.As a result, there is a natural stratification
of the spaceQT (S) by themultiplicities of zeros of q. For σ = (ν1, . . . , νk, ς)

defineQT (σ ) ⊂ QT (S) to be the subset consisting of pairs (X, q)of quadratic
differentials on X with zeros and poles ofmultiplicities (ν1, . . . , νk). The poles
are always assumed to be simple and are located at themarked points, however,
not all marked points have to be poles. The sign ς ∈ {−1, 1} is equal to 1 if
q is the square of an abelian differential (an abelian differential). Otherwise,
ς = −1. Then

QT (S) =
⊔
σ

QT (σ ).

It is known that each QT (σ ) is an orbifold. See [32,35] for more details.

2.8 Flat lengths of simple closed curves and saddle connections

Let (X, q) be a quadratic differential. If we represent q locally as q(z)dz2

then |q| = |q(z)| 12 |dz| defines a singular Euclidean metric on X with cone
points at zeros and poles. The total angle at a singular point of degree ν is
(2 + ν)π . (for more details, see [45]). This is not a complete metric space
since poles are a finite distance away. However, one can still talk about the
geodesic representative of a curve that may pass through the poles even though
the poles. Namely, for a arc in (X, q), consider the lift of this arc to the universal
cover, take the geodesic representative in the completion of the universal cover
and then project it back to (X, q). Following the discussion in [40, Page 185],
we can ignore this issue and treat these special geodesics as we would any
other geodesic.

The homotopy class of an arc (relative to its endpoints) has a unique
q-geodesic representative. Any curve α either has a unique q-geodesic repre-
sentative or there is flat cylinder of parallel representatives. In this case, we say
α is a cylinder curve and we denote the cylinder of geodesics representatives
of α by Fα . We denote the Euclidean length of the q-representative of α by
�q(α).
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A saddle connection on (X, q) is a q-geodesic segment which connects a
pair of singular points without passing through one in its interior. We denote
the Euclidean length of a saddle connection ω on q by �q(ω).

2.9 Period coordinates on the strata

In general, any saddle connectionω joining two zeros of a quadratic differential
q = ζdz2 determines a complex number holq(ω) (after choosing a branch of√

ζ and an orientation of ω) by

holq(ω) =
⎛
⎝∫

ω

�√ζ

⎞
⎠+

⎛
⎝∫

ω

Im
√

ζ

⎞
⎠ i.

We recall that for any σ = (νi , . . . , νk, ς) the period coordinates givesQT (σ )

the structure of an affine manifold. Consider the first relative homology group
H1(S, �,R) of the pair (S, �) with |�| = k. Let

h = (2g + k − 1) = dim
(
H1(S, �,R)

)

if ς = 1, and

h = (2g + k − 2) = dim
(
H1(S, �,R)

)− 1

if ς = −1.We recall that given (X, q) ∈ Q1T (σ ) there is a triangulation T of
the underlying surface by saddle connections (see for example [49, Proposition
3.1] and [47, Proposition 3.1]). One can choose h directed edges ω1, . . . , ωh
of T , and an open neighborhood Uq ⊂ QT (σ ) of q such that the map

ψT,q : QT (σ ) → C
h defined by ψT,q(q) = (

holq(ωi )
)h
i=1

is a local homeomorphism. For any other geodesic triangulation T ′, the map
ψT ′,q ◦ ψ−1

T,q is linear.
In case of abelian differentials (ς = 1) it is enough to choose a basis for

H1(S, �,R) from the edges of T . Note that for non-orientable differentials
(ς = −1) there will be a linear relation between the holonomies of the vectors
corresponding to a basis for the relative homology (see Sect. 4.3). In this case,
it is enough to choose dim(H1(S, �,R))− 1 independent vectors of T . For a
more detailed discussion of the holonomy coordinates see [34].
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2.10 Teichmüller geodesic flow

We recall thatwhen 3g+p > 4 theTeichmüllermetric is not evenRiemannian.
However, geodesics in this metric are well understood. A quadratic differential
(X, q) ∈ Q1T (S) with zeros at p1, . . . pk is determined by an atlas of charts
mapping open subsets of S − {p1, . . . , pk} to R

2 such that the change of
coordinates are of the form v → ±v + c. Therefore the group SL(2,R)

acts naturally on Q1T (S) by acting on the corresponding atlas; given A ∈
SL(2,R), A · q ∈ Q1T (S) is determined by the new atlas {Aφi }. The action
of the diagonal subgroup gt =

[
et 0
0 e−t

]
is the Teichmüller geodesic flow for

the Teichmüller metric. In other words, in holonomy coordinates the Teich-
müller flow is simply defined by

�( holgt (q)(ωi )
) = et �( holq(ωi )

)
,

and

�( holgtq(ωi )
) = e−t �( holq(ωi )

)
.

This action descends to Q1M(S) via the projection map p : Q1T (S) →
Q1M(S). We denote both actions (on Q1T (S) and Q1M(S)) by gt . The
subspacesQ1T (σ ) andQ1M(σ ) are invariant under the Teichmüller geodesic
flow. Moreover, we have [32,48]:

Theorem 2.4 (Veech–Masur) Each connected component C of a stratum
Q1M(σ ) carries a unique probability measure μ in the Lebesgue measure
class such that:

• the action of SL(2,R) is volume preserving and ergodic;
• Teichmüller geodesic flow is mixing.

3 Geometry of a quadratic differential

In this section, we recall some of the basic geometric properties of a quadratic
differential (X, q). We describe how the extremal length of a curve, which
can be calculated from the conformal structure of X , relates to the singu-
lar Euclidean metric associated to (X, q). We also define the notion of a
(q, τ )-regular triangulation, where τ > 0 is a large constant. This is a partial
triangulation of (X, q) using the saddle connections that captures the geom-
etry of the singular Euclidean metric associated to q. The main statement of
the section is Lemma 3.13 which shows the existence of such triangulations.
In the rest of the section, we establish some basic properties of (q, τ )-regular
triangulations which are used in Sect. 5.
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3.1 Intersection number

In the hyperbolic metric of X , the geodesic representatives of any two curves α

and β intersect minimally. Hence, the geometric intersection number between
homotopy classes of curves is equal to the intersection number between their
geodesic representatives.

In the singular Euclidean metric |q|, this is not true. First, as mentioned in
2.8, the geodesic representative might pass through the poles even though the
poles are removed from the surface. Also, the q-geodesic representatives of
curves α and β that have geometric intersection number zero may intersect.
However, these intersections are tangential. That is, α and β may share an
edge, but they do not cross. By this, we mean that any lifts α̃ and β̃ to the
universal cover q̃ of q have end points in the boundary that do no interlock.
To simplify the exposition, when we say α and β intersect, we always mean
that they have an essential intersection not tangential.

We also talk about the intersection number between two saddle connections.
Here, we say two saddle connections are disjoint if they have disjoint interiors
or if they are equal. The intersection number between two saddle connections
is the number of interior intersection points. The intersection number between
a saddle connection and itself is zero. In both cases, (saddle connections and
curves) the intersection number is denoted by i(�, �).

If A is an embedded annulus, we distinguish between a curve α intersecting
A and crossing it. To intersect A, α needs only to enter the interior of A. The
curve α crosses A if α enters one side of A and exits the other. To be more
precise, in the annular cover X̃ A of X associated to A, there is a lift of α

connecting the two boundary components of X̃ A.

3.2 Extremal lengths and flat lengths of simple closed curves

One can give an estimate for the extremal length of a simple closed curve α in
X by examining the singular Euclideanmetric |q|. Asmentioned before,αmay
not have a unique geodesic representative; different geodesic representatives
of α are parallel and foliate a flat cylinder that we refer to as Fα . Denote the
two boundary curves of Fα by αE and αG . When Fα is degenerate, αE = αG .

We say an annulus is regular if its boundary curves are equidistant. Let Eα

be the largest embedded regular annulus with boundary curve αE and let Gα

be the largest embedded regular annulus with boundary curve αG . Note that
Eα and Gα may intersect Fα and each other. In a degenerate case, the interior
of some or all of these annuli could be empty, for example, the interior of Fα

is empty when α has a unique geodesic representative.
We call αE , the shared boundary of Eα and Fα , the inner boundary of Eα

(and similarly αG is the inner boundary of Gα). The annuli Eα and Gα are
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called expandingbecause the equidistance curves parallel to the inner boundary
get longer as they span Eα and Gα . Let l = �q(α) and let e, f and g be the
q-distances between the boundaries of Eα , Fα andGα respectively. According
to [43], when ExtX (α) ≤ ε0, (see Sect. 1.3 for the discussion of the choice of
ε0) we have the following estimates

1

ExtX (α)

∗� Mod(Eα)+Mod(Fα)+Mod(Gα) (5)

where

Mod(Eα)
∗� Log

e

l
Mod(Fα) = f

l
, and Mod(Gα)

∗� Log
g

l
.

(6)

Here Log(�) is a modified logarithm function:

Log(t) = max
{
log(t), 1

}
.

We intend Log to apply only to large numbers. Of course, the value of either
e, f or g could be zero and the second line will be −∞. We use the modified
logarithm to avoid this issue.

Note that, a simple closed curve that has a short flat length may not have a
small extremal length. We need to measure what is the largest neighborhood
of α that still has a simple topology. Later, we use this idea to define a notion
of extremal length for a saddle connection.

3.3 Short simple closed curves

As in Sect. 2.6, we say a curve α is short in q if ExtX (α) ≤ ε0. Denote the set
of short curves in q by Sq . We say α is a cylinder curve if the interior of Fα is
not empty. In what follows, the cases when α ∈ Sq is a cylinder curve and Fα

has a large enough modulus will need special treatments. When the modulus
of Fα is extremely small, α behaves essentially like a non-cylinder curve. We
make this precise:

Definition 3.1 Let τ be a positive real number and let Mτ = e−2τ . We say a
curve α ∈ Sq is a large-cylinder curve if Mod(Fα) ≥ Mτ . Denote the set of
large-cylinder curves by S ≥τ

q and define

S ≤τ
q = Sq\S ≥τ

q .

For α ∈ S ≥τ
q , the size sα of Fα is defined to be the distance between the

boundaries of Fα .
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Remark 3.2 The constant τ , which is determined in Sect. 6, is the distance
between steps of a random walk trajectory. We useMτ instead of just writing
e−2τ to highlight the fact thatMτ is a bound for modulus. There is an implicit
assumption that τ is large enough (say, τ ≥ τ0 for some uniform constant τ0).
That is, unless otherwise stated, all statements hold with uniform constants
independent of τ as long as τ ≥ τ0.

Along Teichmüller geodesics, the length of a curveα ∈ S ≤τ
q changes slowly

while the modulus of Fα remains small. More precisely, let

(Xt , qt ) = gt (X, q),

where gt is the Teichmüller geodesic flow. Assuming α ∈ S ≤τ
q and 0 ≤ t ≤ τ ,

we have Modqt (Fα)
∗≺ 1. As a consequence of Eqs. (5) and (6), Modqt (Gα)

and Modqt (Eα) change at most linearly and we have

1

ExtX (α)
− t

∗≺ 1

ExtXt (α)

∗≺ 1

ExtX (α)
+ t. (7)

3.4 The thick–thin decomposition of quadratic differentials

We call the components of S\Sq the thick subsurfaces of q. The homotopy
class of each such subsurface Q of S has a representative with q-geodesic
boundaries. There is, in fact, a unique such representative that is disjoint from
the interior of cylinders associated to the boundary curves of Q. This can also
be described as the smallest representative of Q with q-geodesic boundaries.
We denote this subsurface by Q as well. Define the size sQ of Q to be the q-
diameter of this representative. The following theorem states that the geometry
of the subsurface Q is essentially the same as that of the thick hyperbolic
subsurface of X in the homotopy class of Q but scaled down to a size sQ :

Theorem 3.3 [42] For every essential closed curve γ in Q,

�X (γ )
∗� √

ExtX (γ )
∗� �q(γ )

sQ
.

In particular, the q-length of shortest essential curve in Q is on the order of
sQ.

Example 3.4 A quadratic differential can be described as a singular flat struc-
ture of a surface plus a choice of a vertical direction. For example, the surface
obtained from the polygon in Fig. 2 with the given edge identifications is a
once punctured genus 2 surface. Assume that the edges 2, 3, 5 and 6 have a
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β

α α

β

Fig. 2 Quadratic differential (X, q) and short curves of X

Eα Gα

Fβ

Fig. 3 The maximal expanding annuli Eα and Gα and the maximal flat annulus Fβ

comparable lengths, the edge 1 is significantly shorter and the edge 4 is sig-
nificantly longer than the others. Choose an arbitrary vertical direction and let
(X, q) be the associated quadratic differential.

Then the hyperbolic metric on X has two short simple closed curves; Sq =
{α, β}. The curve β is a cylinder curve and has a small extremal length because
the flat annulus Fβ (Fig. 3) has a large modulus. In fact, β is a large-cylinder
curve (S ≥τ

q = {β}). The curve α is a non-cylinder curve and it has a small
extremal length because the expanding annuli Eα and Gα (Fig. 3) have large
moduli (S ≤τ

q = {α}). Note that the q-geodesic representative of α is the saddle
connection 1 (the end points of arc 1 are identified).

There are two thick subsurfaces. There is a once punctured torus with a
boundary curve β whose q-representative is degenerate and is represented in
q with a graph of area zero (the union of arcs 5 and 6). The other is a pair of
pants whose boundaries consist of two copies of α and one copy of β. The
maximal expanding annuli Eα and Gα do not necessarily stay inside of the
q-representative of this pair of pants and they may overlap.

The size of a thick subsurface Q is related to the radii of annuli Eα , Fα

and Gα for every boundary curve α. We make a few observations that will be
useful later.

Lemma 3.5 Let Q be a thick subsurface of (X, q),α be a boundary component
of Q and Eα be the expanding annulus in the direction of Q. Using the notation
of Eq. (5) we have

1. l ≤ 2sQ.
2. e ≤ sQ.
3. max(e, f, g) ≥ �q(α).
4. (e + l)

∗� sQ.
5. If Mod(Eα)

∗� 1 then e ∗� sQ.
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Proof Since α is part of Q, its length is less than twice the diameter of Q
which is the first assertion. To see part two, note that if e is larger than sQ ,
then Q is contained in Eα which is an annulus. This is a contradiction. Part
(3) follows from Eq. (6) and the fact that α is ε0-short. Parts (1) and (2) imply
(e + l)

∗≺ sQ . Hence, to prove part (4), we need to show (e + l)
∗� sQ .

Since Eα is maximal, its outer boundary self-intersects. Let γ be the curve
constructed as a concatenation a sub arc of α and two arcs connecting α to
the boundary points of Eα associated to the self intersection of Eα . Note that
the inner boundary of Eα is a geodesic and its outer boundary has positive
curvature, therefore, the interior of Eα is convex, and the curve γ must be
essential.

Then l + e
∗� �q(γ ). If γ is contained in Q and is essential in Q, then

ExtX (γ )
∗� 1 (Q is a thick subsurface). From Theorem 3.3 we get,

�q(γ )

sQ

∗� 1 and hence (e + l)
∗� sQ .

If γ is not contained in Q, we show that there exists a closed curve γ ′ in Q
whose length is not much longer than γ .

Assume that γ exists Q by intersecting a boundary curve α′ and returns
via a boundary curve α′′ (α′ and α′′ maybe the same curve). By part (3),
max(e′, f ′, g′) is larger than l ′, max(e′′, f ′′, g′′) is larger than l ′′ and �q(γ ) is
larger than both. There is a sub-arc ω of γ connecting α′ to α′′, in particular,
�q(ω) ≤ �q(γ ). If α′ �= α′′, let γ ′ be the curve obtained as a concatenation
of two copies of ω and a copy of α′ and α′′ each. This curve is essential in
Q unless Q is a pair of pants, in which case, we take γ ′ to be the curve that
wraps around α′ twice. If α′ = α′′, then let γ ′ be the curve obtained as a
concatenation of ω and a sub-arc of α′. Again, this curve is essential in Q
unless Q is a pair of pants, in which case, we take γ ′ to be the curve that wraps
around α′ twice. The curve γ ′ resides in Q and �q(γ

′) ∗≺ �q(γ ). We have

(e + l)
∗� �q(γ )

∗� �q(γ
′) ∗� sQ .

To see part (5), we note that, if

Log
e

l
∗� Mod(Eα)

∗� 1 then e
∗� (e + l).

Now, part (5) follows from part (4). ��
As a corollary we get the following analogue of the collar lemma:
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Corollary 3.6 Let α ∈ Sq be the boundary of a thick subsurface Q and let γ
be any curve crossing α. Then

�q(γ )
∗� sQ .

Proof We have �q(γ ) ≥ max(e, f, g) and by part (3) of Lemma 3.5,
max(e, f, g) ≥ l. Hence, �q(γ )

∗� (e + l). The corollary now follows from
part (4) of Lemma 3.5. ��

3.5 Extremal lengths and flat lengths of saddle connections

As mentioned above, we can also define a notion of extremal length for saddle
connections. Let ω be a saddle connection connecting two distinct critical
points in (X, q). Let Eω be the annulus obtained by taking the largest regular
neighborhood of ω that is still a topological disk and then cutting a slit open
along ω. Let l = �q(ω) and e be the radius of Eω (the q-distance between ω

and the boundary of Eω). Then, we define [the second inequality follows from
Eq. (6)]

Extq(ω) := 1

Log(e/ l)
∗� 1

Mod(Eω)
.

Another interpretation of this notion of extremal length, that would provide
roughly the same result, is to compute the extremal length in a ramified double
cover of (X, q). Denote the end points of ω by p1 to p2. There exists a unique
ramified double cover φ : Xω → X with simple ramification points at only
p1 and p2. Note that αω = φ−1ω is a simple closed curve on Xω.

Lemma 3.7 If Extq(ω) ≤ ε0, then

ExtXω(αω)
∗� Extq(ω).

Proof Let qω be the lift of q to Xω. Note that αω has a unique geodesic repre-
sentative in qω (Mod(Fαω) = 0) and Eαω and Gαω are conformally equivalent
to Eω. Hence, by Eq. (5)

1

ExtXω(αω)

∗� Mod(Eαω)+Mod(Gαω) = 2Mod(Eω)
∗� 1

Extq(ω)
.

��
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Since l and e change atmost exponentially fast along aTeichmüller geodesic,
similar to Eq. (7), for qt = gt (q) we have

1

Extq(ω)
− t

∗≺ 1

Extqt (ω)

∗≺ 1

Extq(ω)
+ t. (8)

Definition 3.8 For any 0 < ε ≤ ε0, let �q(ε) be the set of saddle connections
ω of q so that, either

• Extq(ω) ≤ ε, or
• ω lies on a geodesic representative for α with ExtX (α) ≤ ε.

Later in the text, we will add further restrictions on the value of ε depending on
τ (see Lemma 3.13 and Lemma 6.1). We note however that, in all the proofs,
making ε smaller or making τ larger does not effect the constants involved in
any of our estimates.

In general, knowing �q(ω) is small does not imply thatω has a small extremal
length. However, we have the following lemma which is enough to show that
Theorem 1.5 follows from Theorem 1.5.

Lemma 3.9 Assume that (X, q) has a saddle connection ω with �q(ω) � 1.
Then, either

1

Extq(ω)

∗� Log
1

�q(ω)
or

1

ExtX (α)

∗� Log
1

�q(ω)
,

for some simple closed curve α. In particular, �q(ε) is non-empty.

Proof Let l = �q(ω) and e be the radius of Eω. Since the boundary of Eω

self intersects (Eω is maximal), there is a simple closed curve γ , obtained by
a concatenation of a sub arc of ω and two arcs connecting ω to the boundary
of Eω, with �q(γ )

∗≺ (e + l).
Assume first that Sq is empty. Then, �q(γ )

∗� 1. Since, e
∗≺ 1, we have

e

l
∗� (e + l)

l
∗� 1

�q(ω)
and

1

Extq(ω)

∗� Log
e

l
∗� Log

1

�q(ω)
.

That is, the first inequality holds. Otherwise, we show that, there is a curve
α1 ∈ Sq with �q(α1)

∗≺ (e+ l). This is because, either γ ∈ Sq and we can take
α1 = γ or γ intersects a thick subsurface Q in which case we let α1 be any
boundary component of Q. Using Corollary 3.6 and part one of Lemma 3.5,
we get:

(e + l)
∗� �q(γ )

∗� sQ
∗� �q(α1).
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Since the total area of q is 1, there is always a thick subsurface of size
comparable to 1. Let Q1, . . . , Qk be a sequence of distinct subsurfaces of
sizes s1, . . . , sk respectively, where α1 is a boundary component of Q1, Qi−1
and Qi share a boundary curve αi and sk

∗� 1. Let li = �q(αi ) and let s0 = l1.
ConsiderGαi , the expanding annuluswith inner boundaryαi in the direction

of Qi with radius gi . For i ≥ 1, part (4) of Lemma 3.5 implies, (gi + li )
∗� si

and by part (1) si−1
∗� li . Hence, from Eq. (5), we know that

1

Extq(αi )

∗� max

(
Log

gi
li

, 1

)
+� Log

gi + li
li

+� Log
si
si−1

.

That is, the common boundary curve of two surfaces of very different size has
a very small extremal length. Also, (recall that s0 = l1

∗≺ (e + l)):

(
k∏

i=1

si
si−1

)
e + l

l
∗�
(
1

s0

)
e + l

l
∗� 1

l
. (9)

Here, the maximum value of k depends only on the topology of S. Therefore,
taking the logarithm of both sides of Eq. (9), we conclude that either

there is someiwhere,
1

Extq(αi )

∗� Log
1

l
or Log

e + l

l
∗� Log

1

l
.

In the first case, the lemma holds for α = αi . In second case,

1

Extq(ω)

∗� Log
e

l
∗� Log

e + l

l
∗� Log

1

�q(ω)
.

��
Remark 3.10 Note that in both Lemma 3.7 and Lemma 3.9 the implied con-
stants only depend on the topology of S.

3.6 A (q, τ)-regular triangulation

We would like to mark a quadratic differential q by a triangulation where the
edges have a bounded length. However, the notion of having a bounded length
should depend on which thick subsurface we are in. That is, we would like
the q-length of an edge to not be longer than the size of the thick subsurfaces
it intersects. The complication comes from the fact that a saddle connection
may intersect several thick subsurfaces of various sizes.

Also, as mentioned before, large-cylinder curves will require a special treat-
ment. Hence, we triangulate only the complement of large-cylinders. Recall
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that two saddle connections are said to be disjoint if they have disjoint interiors
but they may share one or two end points.

Definition 3.11 Let (X, q) be a quadratic differential. Given a cylinder curve
α, let υα be an arc connecting the boundaries of Fα that is perpendicular to
α. By a (q, τ )-regular triangulation T of q we mean a collection of disjoint
saddle connections satisfying the following conditions:

1. For α ∈ S ≥τ
q , denote the interior of a cylinder Fα by F◦α . Then, T is disjoint

from F◦α and it triangulates their complement

q\
⋃

α ∈ S ≥τ
q

F◦α .

That is, the complement of T is a union of triangles and large-cylinders
F◦α , α ∈ S ≥τ

q . In particular, T contains the boundaries of Fα .

2. If an edge ω of T intersects a thick subsurface Q of q then �q(ω)
∗≺ sQ .

3. If α is a cylinder curve in S ≤τ
q then υα intersects T a uniformly bounded

number of times.

We shall see that condition 3 means that the triangulation T does not twist
around short simple closed curves.

Remark 3.12 It is important to choose the implied constants in conditions 2
and 3 in Definition 3.11 large enough so that every quadratic differential q has
a (q, τ )-regular triangulation. In fact, we choose the constants so that the key
Lemma 3.13 below holds.

Lemma 3.13 For every τ there is ε1(τ ) so that for ε < ε1(τ ) the follow-
ing holds. Let � be a subset of �q(ε) consisting of pairwise disjoint saddle
connections. Then � can be extended to a (q, τ )-regular triangulation T .

Proof We would like to triangulate each thick piece Q separately and let T
be the union of these triangulations. However, saddle connections in � may
intersect a boundary curve α of Q. To remedy this, we perturb α slightly to a
curve α that is a union of saddle connections, lies in a small neighborhood of
α and is disjoint from � (see Claim 1). These curves divide the surface into
subsurfaceswith nearly geodesic boundaries.We denote the surface associated
to Q with Q. We then extend � to a triangulation in each Q so that the edge
lengths are not much longer than the diameter of Q which is comparable to sQ
(seeClaim3) and let T be the union of these triangulations.However, one needs
to be careful that Q does not intersect any subsurface of size much smaller
that sQ , otherwise the resulting triangulation would not be (q, τ )-regular.

123



Counting closed geodesics in strata

Claim 1 For every α ∈ Sq , there is a representative α of α that is a union of
saddle connections, lies in a (�q(α)/2)-neighborhood of α and is disjoint from
�. For α, β ∈ Sq , α and β do not intersect. Furthermore, if α is a boundary of
Q then α intersects only surfaces that are larger than Q, namely, if α intersects
a thick subsurface Q′ we have:

sQ′
∗� sQ .

Proof of Claim 1: Let α ∈ Sq be a common boundary of thick subsurfaces Q
and R. Recall that Mτ = 2−2τ . If Mod(Fα) ≥ Mτ , we can choose ε1 small
enough to ensure that α is disjoint from �. This is because, if ω is part of a
short curve α′, then ω is disjoint from α because short curves α and α′ do not
intersect. Otherwise,ω has to satisfy the first assumption inDefinition 3.8. But,
Fα does not contain any singular points and any arc ω ∈ � intersecting α has
to cross Fα . Therefore, �q(ω) ≥ fα ( fα is the distance between the boundaries
of Fα) and, for the radius eω of Eω, we have eω ≤ �q(α) (otherwise α would be
contained in Eω). ButMod(Fα) = fα

�q (α)
≥ Mτ and thus (the second inequality

follows from Eq. (6))

1

ε1
≤ 1

Extq(ω)

∗� Log
eω

�q(ω)
≤ Log

�q(α)

fα
≤ Log

1

Mτ

= 2τ.

which is not possible if ε1 is chosen to be small enough. To summarize, if
Mod(Fα) ≥ Mτ , then α is already disjoint from �, we can take α = α.

If Mod(Fα) ≤ Mτ , then either Eα or Gα has a large modulus. The annulus
with the larger modulus is in the direction of the thick surface with the larger
size (Lemma 3.5). Assume Eα , the annulus in the direction of Q, has a large
modulus. Let eα be the distance between the boundaries of Eα . By part (5) of
Lemma 3.5 and the previous assumption we have

eα
∗� sQ ≥ sR .

Denote the (�q(α)/2)-neighborhood of α in Eα with Eα . The annulus Eα

may not be contained entirely in Q and may intersect some thick subsurfaces
with very small size. But Eα does not intersect any small subsurfaces. To see
this, assume Q′ intersects Eα . Since Q′ is disjoint from α, it has to enter Eα

intersecting the outer boundary of Eα . But eα is much larger than �q(α), and
hence:

sQ′
∗� �q(∂Q

′) > e − �q(α)/2
∗� sQ .

Thus, the last condition of the claim is satisfied as long as α stays in Eα .
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Note that no arc in � can cross Eα (intersect both boundaries). This is
because, if ω is an arc in a curve β ∈ Sq , then it does not intersect α since
β and α have intersection number zero. Otherwise, Extq(ω) is small, which
implies that its length is much less than the injectivity radius of any point
along ω. But the injectivity radius of any point in Eα is less that 2�q(α).
Hence, (by choosing ε small enough) �q(ω) is less than the distance between
the boundaries of Eα with is equal to �q(α)/2.

Consider the union of α and the set�α of arcs in� that intersect α. The con-
vexhull Hα of this set in Eα is an annulus (perhaps degenerate).Weobserve that
the interior of Hα does not contain any singular points. Otherwise, there would
be a geodesic quadrilateral, where two edges are subsegments of arcs in�α and
one edge is a subsegment of α, that contains a singular point in its interior. But
this violates the Gauss–Bonnet theorem. Let α be the boundary component of
Hα that is not α. Then α is in the homotopy class of α and lies inside Eα . Also,
because the interior Hα does not contain any singular points, α is disjoint from
every saddle connection in�. Furthermore, by the triangle inequality, any sad-
dle connection ω that appears in α has a q-length less than or equal to 2�q(α).

It remains to show that for α, β ∈ Sq , α and β are disjoint. Assume
�q(β) ≥ �q(α). Then, α is disjoint from Eβ , otherwise, α would be contained
in Eβ which is an annulus an does not contain any curve non-homotopic to
β. This means α is disjoint from β which is contained in Eβ . Also, since Hβ

contains no singular points, if a saddle connection ω ∈ �α intersects β then it
also intersects β. But thenω is in�β and hence it is disjoint from β. Therefore,
β is disjoint from the convex hull Hα and thus also from α. This finishes the
proof of claim 1. ��

Next, let � be the set of edges that appear in curves α for every α ∈ S. We
have shown that saddle connections in � are disjoint from those in �. After
removing the interiors of large cylinders from the quadratic differential (X, q)

and cutting along curvesα,α ∈ Sq , we obtains a collection of subsurfaceswith
nearly geodesic boundaries. Denote the representative of a thick subsurface Q
that is disjoint from curves α by Q.

For each α ∈ S ≤τ
q , if F◦α is disjoint from every saddle connection in �∪�,

we choose a saddle connection ωα that crosses Fα , is disjoint from να (does
not twists around α). In particular, ωα is disjoint from every saddle connection
� ∪� and has a length that is comparable with �q(α). Let �n denote the set
of such saddle connections ωα .

Claim 2 Saddle connections in

T0 = � ∪� ∪�n

satisfying conditions (2–3) of Definition 3.11.
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Proof of Claim 2: All the conditions follow immediately from the construc-
tion, but the argument is long since we have to look at all the cases. We have
already shown that these edges satisfy condition (1) and arcs in α satisfy con-
dition (2). To see that an arc ω ∈ � satisfies condition (2) note that if it did
not, ω would intersect a thick subsurface Q with �q(ω) ≥ sQ . The radius of
Eω is much larger than length of ω (log eω

lω
≥ 1

ε1
), which implies Eω contains

Q. This is a contradiction.
We show that arcs in T0 satisfy condition (3). Namely, if ω ∈ � intersects a

cylinder Fα , we need to show that ω intersects υα a bounded number of times.
In fact, if they intersect more than once, then �q(ω) ≥ �q(α). But then Eω

would contain the curve α which is a contradiction (Eω is a topological disk).
Also, the curve α is a convex hull of the union of the curve α which is disjoint
from Fα and a bounded number of arcs in �, each of which intersect υα at
most once. Hence α intersects υα at most a bounded number of times and thus
arcs in α satisfy condition (3).

Since, for every α ∈ S ≤τ
q , there is a saddle connection in T0 crossing Fα ,

any triangulation containing T0 is guaranteed to satisfy the condition (3). ��
In the next claim, we describe how to add the remaining edges to T0 while

still satisfying conditions (1) and (2).

Claim 3 A partial triangulation of Q where the length of edges are less than a
fixedmultiple of sQ can be extended to a triangulation using saddle connections
of length less than a larger fixed multiple of sQ .

Proof of claim 3: We prove the claim by induction. Start by cutting Q along
the given edges. Each cutting increases the diameter by at most twice the
length of edge being cut. Hence, in the end, we have several components each
with diameter comparable to sQ . If all components are triangles, we are done.
Otherwise, some component contains a saddle connection that is not part of its
boundaries or the given triangulation, the shortest such saddle connection has a
length less than the diameter of the component it is in, which is comparable to
sQ (again, see [49, Proposition 3.1]). The claim follows from the fact that this
process ends after a uniformly bounded number of times. The diameter grows
at most multiplicatively each time but still it is uniformly bounded multiple
of sQ in the end. We choose the constant in the second condition of a (q, τ )-
regular triangulation large enough so that the outcome of this algorithm is in
fact a (q, τ )-regular triangulation. ��

The triangulation T is now defined to be the union of all the saddle connec-
tions in T0 and those coming from claim 3. The newly added edges in Q have
a q-length less than a fixed multiple of sQ and, for any thick subsurface R that
Q intersects, we have sQ

∗≺ sR . Hence, the condition (2) in Definition 3.11 is
satisfied. Therefore, the resulting triangulation T is (q, τ )-regular. ��
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3.7 Twisting and extremal lengths

In this section we define several notions of twisting and discuss how they
relate to each other. This is essentially the definition introduced by Minsky
extended to a slightly more general setting. We denote the relative twisting
of two objects or structures around a curve α by twistα(�, �). This is often
only coarsely defined, that is, the value of twistα(�, �) is determined up to a
uniformly bounded additive error.

In the simplest case, let A be an annulus with core curve α and let β and γ

be homotopy classes of arcs connecting the boundaries of A (here, homotopy
is relative to the end points of an arc). The relative twisting of β and γ around
α, twistα(β, γ ), is defined to be the geometric intersection number between β

and γ .
Now consider a more general case where α is a curve on the surface S and

β and γ are two transverse curves to α. Let S̃α be the annular cover of S
associated to α and denote the core curve of S̃α again by α. Let β̃ and γ̃ be
the lifts of β and γ to S̃α (respectively) that connect the boundaries of S̃α .
Note that freely homotopic curves lift to arcs that are homotopic relative their
endpoints. The arc β̃ is not uniquely defined, however any pair of lifts are
disjoint. We now define

twistα(β, γ ) = twistα(β̃, γ̃ ),

using the previous case. This is well defined up to an additive error of 2 (see
[36]).

We can generalize this further and define twisting between any two struc-
tures on S as long as the structures in question provide a (nearly) canonical
choice of a homotopy class of an arc β̃ connecting the boundaries of S̃α . Then
we say the given structure defines a notion of zero twisting around α. The
relative twisting between two structures is the relative twisting between the
associated arcs in S̃α . Here are a few examples:

• Let X be a Riemann surface. Then β̃ can be taken to be the geodesic in X̃α

that is perpendicular to α in the Poincare metric of X̃α . Alternatively, we
can pick a shortest curve β transverse to α and let β̃ be the lift of β that
connects the boundaries of X̃α. In any case, the choice of β̃ is not unique, but
any two such transverse arcs have bounded geometric intersection number
(see [36]) and the associated relative twisting twistα(�, X) is well defined
up to an additive error.

• Letq be a quadratic differential.As before, β̃ can be taken to be the geodesic
in q̃α that is perpendicular to α in the Euclidean metric coming from q or
a lift of a q-shortest curve β transverse to α (see [12]). We denote the
associated relative twisting with twistα(�, q).
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• Let T be a (q, τ )-regular triangulation of (X, q) and α ∈ S ≤τ
q . Then we

can choose a curve β transverse to α that is carried by T and has a bounded
combinatorial length in T and let the lift ofβ to the annular cover ofα define
zero twisting. Since curves with bounded combinatorial length intersect a
bounded number of times, the associated relative twisting twistα(�, T ), is
again well defined up to an additive error.

The expression “fix a notion of zero twisting around α” for a curve α in S
means “choose a homotopy class of arcs connecting the boundaries of S̃α .”

3.8 Intersection and twisting estimates

In this section we establish some statements relating Extremal length, twisting
and intersection number.We start with a theorem ofMinsky giving an estimate
for the extremal length of a curve. For a X ∈ T (S), let SX be a set of ε0-short
simple closed curves in X . There is a uniform constant B depending on ε0
and the topology of S so that, for every X , any curve β not in SX intersects a
curve γ with ExtX (γ ) ≤ B. That is, the curves with extremal length at most B
fill every complementary component of SX . Let BX be the set of curves with
extremal length at most B.

Theorem 3.14 (Minsky, [36, Theorem 5.1]) Given X ∈ T (S) and a simple
closed curve γ /∈ SX ,

ExtX (γ )
∗� max

α∈SX
i(γ, α)2

[
1

ExtX (α)
+ twist2α(γ, X)ExtX (α)

]

+ max
α∈BX

i(γ, α)2. (10)

The multiplicative constant depends only on the topology of S.

It follows from the definition of twisting and elementary hyperbolic geom-
etry that if twistα(β, X) is large (that is, if β twists around α a lot), then
ExtX (β)

∗� ExtX (α).

Corollary 3.15 For every curve γ and any X ∈ T (S), there is a curve β so
that,

√
ExtX (γ )ExtX (β)

∗≺ i(γ, β) and twistγ (X, β) = O(1).

Note that the reverse of first inequality always holds (Eq. (2)).

Proof If γ ∈ SX , then we choose β to be a curve that intersects γ once or
twice, is disjoint from other curves in SX , where twistγ (β, X) is bounded
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and where i(β, α) = O(1) for α ∈ BX . Applying Eq. (10) to β we have
ExtX (β)

∗� 1
ExtX (γ )

which implies that the corollary holds for β and γ .
If γ is not short in X , Theorem 3.14 applies to γ . Since the number of

elements in SX and BX is uniformly bounded, ExtX (γ ) is comparable to one
the following terms:

i(γ, α)2

ExtX (α)
, i(γ, α)2 twist2α(γ, X)ExtX (α) or i(γ, α)2.

In the fist two cases α ∈ SX and in the third case α ∈ BX . We argue in 3 cases.

If ExtX (γ )
∗≺ i(γ,α)2

ExtX (α)
, for α ∈ SX , then the corollary holds for β = α (the

second conclusion follows from the fact that the twisting number of a short
curve around a long curve is uniformly bounded).

In the second case, we take β to be a curve transverse to α with (see above)
ExtX (β)

∗� 1
ExtX (α)

and twistα(β, X) = O(1). In particular

twistα(γ, X)
+� twistα(γ, β). (11)

The curve γ also intersects α and hence ExtX (γ )
∗� 1

ExtX (α)

∗� ExtX (β). Thus,
β twist around γ at most a uniformly bounded number of times. Also, every
strand of γ intersecting α intersects β at least twistα(γ, β) times (up to an
additive error). In this case twistα(γ, β) is large and the additive error can be
replaced by a multiplicative error to obtain

i(γ, α) twistα(γ, β)
∗≺ i(γ, β). (12)

Therefore,

ExtX (γ )
∗≺ i(γ, α)2 twist2α(γ, X)ExtX (α) (Assumption on γ )

∗≺ i(γ, α)2 twist2α(γ, β)

ExtX (β)
(Equation (11))

∗≺ i(γ, β)2

ExtX (β)
, (Equation (12))

which implies the corollary.
The last case is when α ∈ BX and ExtX (γ )

∗≺ i(γ, α)2. In this case, we take
β = α. Since β has bounded length in X ,

twistγ (β, X) = O(1) and ExtX (β)
∗� 1.
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Again, the corollary follows. ��
We also recall the following lemma ([41, Theorem 4.3]):

Lemma 3.16 (Rafi) For a quadratic differential (X, q) and aRiemann surface
Y ∈ T (S) with dT (X, Y ) = O(1), we have

twistα(Y, q)
∗≺ 1

ExtX (α)
.

3.9 Geometry of quadratic differentials and (q, τ)-regular
triangulations

As wementioned at the beginning of the section, a (q, τ )-regular triangulation
is supposed to capture the geometry of q.Wemake this explicit in the following
two lemmas. In Lemma 3.17, we relate the length of a saddle connection to
its intersection number with a (q, τ )-regular triangulation. Lemma 3.18 shows
that the notion of zero twisting coming from q or T is the same. These are
used to prove Lemma 3.19 but more essentially they are needed in Sect. 4.

Lemma 3.17 Let T be a (q, τ )-regular triangulation and ωT be an edge of T .
Let s be the minimum of sQ where Q is a thick subsurface of q that intersects
ωT . Letω be any other saddle connection in q so that, for every curveα ∈ S ≤τ

q ,
twistα(ω, q) = O(1). Then

i(ωT , ω)
∗≺ �q(ω)

s
+ 1.

Proof Condition (2) in the definition of a (q, τ )-regular triangulation implies
that �q(ωT )

∗≺ s. It is sufficient to prove the lemma for a subsegment of
ωT with a q-length less than s/7, because ωT can be covered but uniformly
bounded number of such segments. Hence, without loss of generality, we
assume �q(ωT ) ≤ s/7.

Consider the s/7-neighborhood N ofωT . Thenω∩N has at most O
(

�q (ω)

s

)
components. Hence, it is sufficient to show, for every component ω̄ of ω ∩ N ,
that

i(ωT , ω̄) = O(1).

First, we claim that any non-trivial curve in N is homotopic to some curve in
Sq . This is because, any nontrivial loop γ in N has a q-length of at most 3s/7.
By the definition of s, it can not be an essential curve in any subsurface Q
that ωT intersects. Assume it intersects curves α1, α2 ∈ Sq that are boundary
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Q1 Q2

Q3
Fα1

Fα2

ωT

ω

N

Fig. 4 The arcωT intersects curves α1, α2 ∈ S ≤τ
q and thick subsurfaces Q1, Q2 and Q3. Each

component ω̄ of ω∩ N intersects ωT only a bounded number of times outside of cylinders Fα1
and Fα2 . The number of intersection points inside of Fαi is bounded because of the assumption
on the twisting

curves of Q1 (α1 may equal α2). Then, �q(α1) and �q(α1) are much smaller
than �q(γ ) which is at most 3s/7. But, the sum of �q(α1), �q(α2) and twice
the distance between α1 and α2 (the sum is less than s) is an upper-bound for
the size of Q which is assumed to be larger than s. The contradiction proves
the claim.

We have shown that a closed curve in N cannon intersect curves in Sq .
However, the saddle connection ωT may still intersects some curve α ∈ S ≤τ

q
(in fact more than one, see Fig. 4). As before, let να be an arc in Fα that
connects the boundaries of Fα and is perpendicular to them.

First we observe that the number of intersection points between ωT and ω̄

inside of Fα is uniformly bounded. This is because both ωT and ω̄ intersect
να a uniformly bounded number of times. (This follows from the definition
(q, τ )-regular triangulation and the twisting assumption on ω.) If two arcs
inside of a cylinder have a large intersection number, at least one of them has
to twist around Fα a large number of times.

It remains to show that the number of intersection points outside of all
cylinders Fα is bounded. To see this we observe that, for any thick subsurface
Q, it is not possible to have a subsegment of ωT and a subsegment of ω̄ that
are contained in Q and have the same endpoint. Otherwise, the concatenation
would create a two segment curve β that is non-trivial in N . Hence, it has to
be homotopic to some curve α ∈ Sq . Which means, α and β create a cylinder

123



Counting closed geodesics in strata

with total negative curvature which contradicts the Gauss–Bonnet theorem.
(See [12, Lemma 5.6] for a more detailed discussion.)

Since the number of thick components Q is uniformly bounded and ωT and
ω̄ can intersect at most once in each Q we conclude that the total intersection
number outside of cylinders Fα is uniformly bounded as well. This finishes
the proof. ��
Lemma 3.18 For a quadratic differential (X, q), α ∈ S ≤τ

q and a (q, τ )-
regular triangulation T we have

twistα(T, q) = O(1).

Proof Let Q1 and Q2 be the thick subsurfaces of (X, q) glued along the
cylinder Fα (which by assumption, has a modulus at most Mτ ), and let β be
an essential curve in Q1 ∪ Fα ∪ Q2 that is transverse to α and has the shortest
combinatorial T -length. A representative for the curve β can be constructed
using edges of T that intersect either Q1 or Q2. Consider such a representative
traversing the minimum possible number of edges. Let γ be a curve transverse
to α with the shortest q-length. From the definition of relative twisting,

twistα(T, q)
+≺ i(β, γ ).

Hence, it is sufficient to show that i(β, γ ) is uniformly bounded.
The curveγ intersectsα once ifQ1 = Q2 and twice otherwise. Its restriction

to Qi has a length bounded by O(sQi ) and its restriction to Fα has a length
bounded by �q(α) (Mod(Fα) is bounded and there is no twisting around α)
which is less than both sQ1 and sQ2 . An argument similar to that of Lemma 3.17
implies that γ intersects any edge of T at most a bounded number of times.

On the other hand, each edge of T appears at most twice along the repre-
sentative of β, otherwise a surgery argument would reduce the length of β.
Also, the total number of edges of T is bounded by the topology of S. Hence,
i(β, γ ) is uniformly bounded. ��

3.10 The number of (q, τ)-regular triangulation

We now count the number of (q, τ )-regular triangulations near a point in
Teichmüller space.We can think of a (q, τ )-regular triangulations on (X, q) as
topological objects on S, after being pulled back by themarkingmap fX : S →
X , up to homotopy. That is, we say a (q, τ )-regular triangulation T on (X, q)

is equivalent to a q ′-regular triangulation T ′ on (X ′, q ′) if the pre images
f −1X (T ) and f −1X ′ (T ′) are homotopic on S. The homotopy does not have to
fix the vertices of T . For a multi-curve S0, we say T is equivalent to T ′ up
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twisting around S0 if, T is equivalent to φ(T ′) where φ is a multi-twist with
support on curves in S0.

Lemma 3.19 Let U be a ball of radius one in T (S) centered at X0. Then the
number of equivalence classes, up to twisting around SX0 , of (q, τ )-regular
triangulations T on a quadratic differential (X, q) where X ∈ U is uniformly
bounded.

Proof We start with a topological counting statement. Let S0 = Sc
0 ∪ Sn

0 be a
system of curves on S. For every subsurface Q in S\S0, let μQ be a marking
for the subsurface Q in the sense of [33]. That is, μQ is a pants decomposition
{γ1, . . . , γk} for Q together with a transverse curve γ i for 0 ≤ i ≤ k. Each γ i
is contained in Q, intersects γi once or twice and is disjoint from γ j , j �= i .
Also, for α ∈ Sn

0 , let βα be a curve transverse to α that is disjoint from all
other curves in S0 and i(βα, μQ) = O(1). Define

M =
⋃
Q

μQ ∪ S0 ∪ {βα}α∈Sn
0
.

ClaimGiven a set M as above, there is a uniformly bounded number of possi-
bilities for the homotopy class of a triangulation T , triangulating S\Sc

0, where
the curves in M and T have representatives with the following properties:

1. curves in M have no self intersections and intersect each other minimally.
2. for any α ∈ Sc

0, i(T, α) = 0.
3. for any γ ∈ μQ , i(T, γ ) = O(1).
4. for α ∈ Sn

0 , twistα(T, βα) = O(1), and i(T, α) = O(1).

To see the claim, note that the curves in M divide S into a uniformly bounded
number of complementary regions, each one is either a polygon or an annulus
parallel to a curve α ∈ Sc

0. Choose a representative of the homotopy class
of T that intersects curves in M minimally. There are a uniformly bounded
number of possibilities for the location of vertices of T . Once the vertices of
T are fixed, there are a uniformly bounded number of possibilities for any
given arc, with end points on these vertices, that can appear as an edge of T .
This is because there are a uniformly bounded number of possibilities for the
intersection pattern of the given arc with the complementary regions. Also,
each region is either a polygon where there is a unique arc (up to homotopy)
connecting any two edges (or a vertex to an edge) or an annulus neighborhood
of a curve α ∈ Sc

0 where there are two possibilities (edges of T are simple and
disjoint from curves in Sc

0).
It remains to show, that for every (q, τ )-regular triangulation Tq on (X, q)

where X ∈ U , there is a set of simple closed curves Mq so that Tq and Mq
satisfy the above properties and then to bound the number of possibilities for
the set Mq .
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Let (X, q) be a quadratic differential so that X ∈ U . We construct Mq as
follows: The curves Sq = S ≥τ

q ∪S ≤τ
q have a uniformly bounded length in X0

hence there are a uniformly bounded number of possibilities for these sets. For
each thick subsurface Q of q, choose a q-short marking μQ in Q. Curves in
μQ have a uniformly bounded length on X and hence a uniformly bounded
length in X0. Hence there are only a uniformly bounded number of choices
for these as well. Now for each α, let βq

α be the shortest q transverse curve to
α. Lemma 3.16 implies that twistα(X0, β

q
α)

∗≺ 1
ExtX0 (α)

. Hence the number of

possible choices for β
q
α is of the order of 1

ExtX0 (α)
. Define

Mq =
⋃
Q

μQ ∪ Sq ∪ {βq
α }α∈S ≤τ

q
.

Bu construction, the total number of possible sets Mq chosen as above is of
the order of G(X0). However, up to twisting around SX0 there are only finitely
many choices. For a (q, τ )-regular triangulation Tq in (X, q), we need to check
that the conditions (1)–(4) hold for Tq and Mq . Perturb the q-geodesic rep-
resentative of curves in Mq so that they have no self-intersections, intersect
each other minimally and the intersection number with T does not increase.
Condition (2) follows from the construction of (q, τ )-regular triangulations.
Condition (3) follows fromLemma 3.17. The first part of condition (4) is a con-
sequence of Lemma 3.18 and the second part again follows from Lemma 3.17.

��

4 Intersection bounds between regular triangulations

As before, letQ(σ ) be the stratum of quadratic differentials of type σ . In this
section,we establish some intersection bounds for (q, τ )-regular triangulations
associated to a pair of quadratic differentials that appear at the end points of a
geodesic segment in Q(σ ).

Recall, from Remark 3.2, that there is an implicit assumption that the con-
stant τ is large. That is, there is a uniform constant τ0 so that all statements in
this section hold as long as τ ≥ τ0. In particular, the implied constant in our
estimates do not get worst as τ gets larger.

4.1 Notation

First we need to establish some notations.
1. For afixed constant r0, defineB(Q(σ ), X, τ ) to be the set of points Z ∈ T (S)

so that there is a Teichmüller geodesic
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GZ : [a, b] → Q1T (σ ), GZ (t) = (Xt , qt ),

such that

dT (Xa, X) ≤ r0, dT (Xb, Z) ≤ r0, b − a ≤ τ.

and

(Xt , qt ) ∈ Q(σ ).

One could think of B(Q(σ ), X, τ ) as a ball of radius τ centered at X , except
that one is allowed only to move in the direction of Q(σ ). Since r0 is fixed,
we refer to any constant that depends on r0 as a uniform constant. The value
of r0 will be determined in Sect. 6.2 depending on the choice of the net N .

2. We use the notation of Eq. (5) for qa and denote the flat and expanding
annuli associated to a curve α by Ea

α , F
a
α and Ga

α and distances between their
boundaries by ea , f a and ga . Let υa be an arc of length f a connecting the
boundaries of Fα . Also, let la = �qa (α) and let da = max(ea, f a, ga) be the
maximum distance between the boundaries of these annuli. As a consequence
of Eqs. (5) and (6) we have

1

ExtX (α)

∗≺ da

la
and

1

ExtX (α)

∗� f a

la
. (13)

3. Let Ta be a (qa, τ )-regular triangulation and Tb be a (qb, τ )-regular tri-
angulation. The geodesic flow induces a one-to-one correspondence between
saddle connections of qa and qb. Hence, we can consider Tb as a union of sad-
dle connections in qa . Then Ta and Tb have identical vertex sets and their edges
are either identical or intersect transversally. The slope of a saddle connection
in qa (or in qb) is a well defined number in the interval [0,∞].
Definition 4.1 Let ωa be a saddle connection in qa and let ωb be a saddle
connection in qb. We say ωb intersects ωa positively, if when considering
them both in qa (or qb), the slope of ωb is larger than the slope of ωa . We
say ωb intersects ωa essentially positively if either ωb intersects ωa positively
or i(ωa, ωb) = O(1). We use similar terminology for intersection between a
saddle connection and a cylinder curve and two cylinder curves.

4.2 Intersection and twisting bounds between Ta and Tb

For the rest of this subsection, we assume that qa and qb, Ta and Tb are as
described in the beginning of the section.
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Lemma 4.2 Let α ∈ S ≤τ
qa , ωb ∈ Tb and αb ∈ SZ , then

twistα(qa, ωb) = O(1) and twistα(qa, αb) = O(1).

Similarly, let α ∈ S ≤τ
qb , ωa ∈ Ta and αa ∈ SX , then

twistα(qb, ωa) = O(1) and twistα(qb, αa) = O(1).

Proof Let να be the arc connecting the boundaries of Fa
α and is perpendicular

to them. Then, by definition of S ≤τ
q ,

�qa (να)

�qa (α)
= Mod(Fa

α )
∗≺ e−2τ .

Therefore

�qb(να)

�qb(α)

∗≺ 1.

That is, να twists around α in qb a bounded number of times. But the same
is true for ωb. This gives a bound on i(ωb, να) and thus on twistα(qa, ωb).
Also, the curve αb is short in Z and hence in qb. A short curve can not twist
around any other curve. Hence i(αb, να) is uniformly bounded. Which means
twistα(qa, αb) is uniformly bounded. The proofs of the other two assertions
are similar. ��
Remark 4.3 Themain consequence of this lemma is that the twisting condition
of Lemma 3.17 is satisfied and can be applied freely.

Lemma 4.4 Let ωa and ωb be edges of Ta and Tb respectively. Then ωb inter-
sects ωa essentially positively and

i(ωa, ωb)
∗≺ eτ .

Proof Let Qa be the thick subsurface of qa with the smallest size that intersects
ωa and let sa be the size of the subsurface Qa . Recall that, by the definition of
a (qa, τ )-regular triangulation, we have

�qa (ωa)
∗≺ sa.

We denote the horizontal and the vertical lengths of ωa by xa and ya . Let Qb,
sb, xb and yb be similarly defined. The length of ωa in Qb is

√
(xaeτ )2 + (yae−τ )2

∗� xae
τ + yae

−τ .
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If i(ωa, ωb) = O(1) we are done. Otherwise, Considering ωa and ωb in Qb,
in view of Remark 4.3, Lemma 3.17 implies that

i(ωa, ωb)
∗≺ �qb(ωa)

sb
+ O(1).

However, since i(ωa, ωb) is large,
�qb (ωa)

sb
is large and we can incorporate the

additive error into the multiplicative error. That is,

i(ωa, ωb)
∗≺ �qb(ωa)

sb

∗� xaeτ + yae−τ

sb
. (14)

Similarly, considering ωa and ωb in Qa we get

i(ωa, ωb)
∗≺ �qa (ωb)

sa

∗� xbe−τ + ybeτ

sa
(15)

Observing that xa, ya
∗≺ sa and xb, yb

∗≺ sb, we can multiply the two
inequalities and take a square root to get i(ωa, ωb)

∗≺ eτ .
Now assume that ωb does not intersect ωa positively. This means that the

slope of ωa in qb is larger than the slope of ωb. That is

yae−τ

xaeτ
≥ yb

xb
�⇒ xa yb e

2τ ≤ xbya.

From the product of inequalities in Eq. (14) and Eq. (15), we have

i(ωa, ωb)
2 ∗≺ xaxb + ya yb + xa yb e2τ + xbyae−2τ

sasb
∗≺ xa yb e2τ

sasb

∗≺ xbya
sasb

= O(1).

��
For a simple closed curve α and a triangulation T , we say T intersects

α essentially positively if any saddle connection in T intersects any saddle
connection in the geodesic representative of α essentially positively.

Lemma 4.5 If α ∈ SX and α /∈ SZ then α intersects Tb essentially positively
and

twistα(X, Z) i(α, Tb)
∗≺ eτ

√
ExtX (α)

.
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Similarly, if α ∈ SZ and α /∈ SX then α intersects Ta essentially positively
and

twistα(X, Z) i(α, Ta)
∗≺ eτ

√
ExtZ (α)

.

Proof Let α be a simple closed curve in SX\SZ . Applying Lemma 3.16 to the
pair X and qa and to the pair Z and qb, we get

twistα(X, Z)
∗≺ twistα(qa, qb)+ 1

ExtX (α)
. (16)

(The term 1
ExtZ (α)

is omitted from the right hand side because it is bounded
and can be absorbed in the multiplicative error.) Hence, to prove the lemma, it
is sufficient to show that the expression eτ√

ExtX (α)
is an upper-bounds for both

i(α, Tb)

ExtX (α)
and twistα(qa, qb) i(α, Tb).

Let ωb be an edge of Tb and let Qb be the thick subsurface of qb with the
smallest size intersecting ωb. Let sb be the size of Qb (thus �qb(ωb)

∗≺ sb, by
the definition of a (qb, τ )-regular triangulation). Applying Lemma 3.17 to ωb
and α in qb, we get

i(α, ωb)− O(1)
∗≺ �qb(α)

sb
≤ eτ l

a

sb
. (17)

Also, each subsegment of ωb with end points in α has a length larger than da .
Hence,

i(α, ωb)− 1 ≤ �qa (ωb)

da
∗≺ eτ sb

da
.

Multiplying these two equations, taking the square root we and summing over
all arcs in Tb we get

i(α, Tb)− O(1)
∗≺ eτ

√
la

da
.

In view of Eq. (13), we obtain

i(α, Tb)− O(1)
∗≺ eτ

√
ExtX (α).
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Dividing both sides by ExtX (α) we obtain

i(α, Tb)

ExtX (α)

∗≺ eτ + O(1)√
ExtX (α)

∗≺ eτ

√
ExtX (α)

. (18)

This is the first estimate we required.
We now find an upper-bound for twistα(qa, qb) i(α, Tb) by finding separate

upper bounds for twistα(qa, qb) and i(α, Tb). The argument involved in this
new upper bound for i(α, Tb) is somewhat similar to above, but the two bounds
do not imply each other. We need to consider the image of Fa

α in qb under the
Teichmüller geodesic flow.Denote this cylinder by Fb

α , the distance between its
boundaries by f b and let υb

α be an arc of length f b connecting the boundaries
of Fb

α . Let l
b = �qb(α). Note that the area of Fa

α and Fb
α are equal, that is

la f a = lb f b.

Consider again the arc ωb in Tb of qb-length of order sb. Then the qb-length
of every component of ωb ∩ Fb

α is larger than f b. Therefore

i(α, ωb)
∗≺ sb

fb
= sb lb

la f a
.

As before, applying Lemma 3.17 to ωb and α in qb we have

i(α, ωb)
∗≺ lb

sb
+ O(1)

∗≺ lb

sb
.

The reason we can ignore the additive errors here is that since α is not short in
Z , it has to either be an essential curve in Qb or intersect some boundary curve
of Qb. In either case, lb

∗� sb, in the first case by definition of the size and in
the second case by Corollary 3.6. Hence, the additive error can be absorbed
into the fraction lb

sb
. Multiplying the last two inequalities, taking the square

root and summing over all arcs in Tb, we obtain

i(α, Tb)
∗≺ lb√

la f a
. (19)

We now argue that a component of ωb ∩ Fα can intersect υb
α at most a

uniformly bounded number of times: since α is not short in Z , �qb(α)
∗� sb

and �qb(ωb)
∗≺ sb, which means the intersection number between ωb and υb

α is

at most
�qb (ωb)

�qb (α)
= O(1). Therefore, the relative twisting of qa and qb around α
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is comparable to the intersection number between υa
α and υb

α which is at most
the qa-length of υb

α divided by the qa-length of α. That is

twistα(qa, qb)− O(1) ∗� i(υa
α, υb

α) ≤ eτ f b

la
.

Taking a product and using the second part of Eq. (13) we get:

twistα(qa, qb) i(α, Tb)− O(i(α, Tb))
∗≺ eτ

(
lb f b

la

)
1√
la f a

∗≺ eτ

√
f a

la
∗≺ eτ

√
ExtX (α)

. (20)

By Eq. (18), we have i(α, Tb) is much smaller than eτ√
ExtX (α)

. Hence,

twistα(qa, qb) i(α, Tb)
∗≺ eτ

√
ExtX (α)

. (21)

The estimate in the Lemma follows from Eqs. (16), (18) and (21).
It remains to show that ωb and α intersect essentially positively. Let ωa be a

saddle connection of α that intersects ωb many times. Then, by Lemma 3.17,
�qb(ωa) ≥ sb. However, �qb(ωb)

∗≺ sb and hence �qb(ωa)
∗� lqb(ωb). If the

slope ofωα was smaller thanωb (say in qb) thenwewould also have �qa (ωa)
∗�

�qa (ωb). Hence,ωa intersectsωb at most twice (its length is less than da). This
proves that ωb intersects ωα essentially positively. But this is true for every
saddle connection of α. Thus ωb intersects α essentially positively. The case
when α ∈ SZ can be treated similarly. ��
Lemma 4.6 Let α ∈ SX and α0 ∈ SZ . Then

1. If α0 �= α, then

i(α, α0) twistα0(X, Z) twistα(X, Z)
∗≺ eτ

√
ExtX (α)ExtZ (α0)

,

2. If α = α0, then

twistα(X, Z)
∗≺ eτ

√
ExtX (α)ExtZ (α0)

.

Proof It is enough to prove that

twistα(X, Z)
√
ExtX (α)ExtZ (α)

∗≺ eτ . (22)
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If α = α0, this is equivalent to Eq. (22). Also, if α �= α0 and α ∈ SZ , then
the inequality (1) trivially holds (the left hand side is 0). Otherwise, from
Theorem 3.14 (estimating ExtZ (α)) we have

i(α, α0)
√
ExtZ (α0) twistα0(X, Z)

∗≺ √
ExtZ (α). (23)

Multiplying the above equation to Eq. (22) we obtain part (1) of the lemma.
By Corollary 3.15, (replace X with Z , γ with α and β with β0) there always

exits a simple closed curve β0 so that twistα(β0, Z) = O(1) and

√
ExtZ (β0)ExtZ (α)

∗≺ i(α, β0). (24)

On the other hand, from Theorem 2.1 we have
√
ExtX (β0)

∗≺ eτ
√
ExtZ (β0), (25)

and from Theorem 3.14 (this time estimating the length of β0 is X ) we have

i(α, β0) twistα(X, β0)
√
ExtX (α)

∗≺ √
ExtX (β0). (26)

Since twistα(β0, Z) = O(1), we can replace twistα(X, β0) with twistα(X, Z)

in the above inequality. Now, Eq. (22) is obtained by successive substitution
using Eqs. (23), (24), (25) and (26). ��

4.3 Relations between intersections numbers

So far, we have provided upper-bounds for the intersection numbers between
the edges of Ta and the edges of Tb. But these intersection numbers are not
independent. The fact that the edges in Ta intersect edges in Tb essentially
positively allows us to find relations between these intersection numbers. In
this section we will describe these relations. There are two kinds of relations.

Lemma 4.7 For every triangle in Ta with edgesω1,ω2 andω3, there are sings
ς1, ς2, ς3 ∈ {−1,+1} so that, for every edge ωb in Tb (respectively, for any
αb ∈ S ≥τ

qb ), we have the relation:

∑
i=1,2,3

ςi i(ωi , ωb) = O(1)

⎛
⎝respectively,

∑
i=1,2,3

ςi i(ωi , αb) = O(1)

⎞
⎠ .

(27)

Theadditive error depends on the constant involved in the definitionof essential
positively.
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Proof There is a leaf of the vertical foliation that passes through a vertex of the
given triangle before entering it. Assume this leaf intersects the interior of ω3
and makes an acute angle with ω1 inside of the triangle. We claim that, since
ωb intersects ω1 essentially positively, the number of sub-arcs of ωb going
from ω1 to ω2 is uniformly bounded. This is because either the slope of ωb is
larger than the slope of ω1 and every time ωb intersects ω1 it has to intersect
ω3 next, or it intersect ω1 a bounded number of times. Hence, we have

i(ω1, ωb)+ i(ω2, ωb) = i(ω3, ωb)+ O(1).

Note that the signs ς1 = 1, ς2 = 1 and ς3 = −1 depend only on the triangle
and are independent of ωb. The proof for αb is similar. ��

For each α ∈ S ≥τ
qa , consider a saddle connection βα connecting the bound-

aries of Fα . Let

Ua = Ta ∪
⋃

α∈S ≥τ
qa

βα.

We can choose the arcs βα so that twistα(qa,Ua) = O(1). After orienting the
arcs in Ua , we can think of them as elements of H1(S, �) where � is the set
critical points of qa . In fact, arcs in Ua generate H1(S, �).

Lemma 4.8 Assume that the vertical foliation of qa is not orientable. Then,
there is a set B of edges of Ua and for ω ∈ B there is a sign ςω ∈ {−1,+1} so
that, for everyωb in Tb (respectively, for any αb ∈ S ≥τ

qb ), we have the relation:

∑
ω∈B

ςω i(ω, ωb) = O(1)

(
respectively,

∑
ω∈B

ςω i(ω, αb) = O(1)

)
.

(28)

Furthermore, this relation is independent of all the relations in Lemma 4.7.

Proof Choose a minimum number of edges of Ua so that the complement is
simply connected. Denote the set of all these edges by B and orient them in
some arbitrary way. Minimality implies that the compliment P is connected.
We can visualize P as a polygon in C with the vertical foliation parallel to the
imaginary axis. Each edge of B has two representatives in the boundary of P .
The two vectors are equal up to a multiplication by ±1. Let B be the subset
of B where the two representatives are negatives of each other (Fig. 5). Note
that B is non-empty since the vertical foliation in qa is not orientable.

Now consider a double cover of qa constructed as follows. Take a second
copy P ′ of P . Glue the edges that were not in B as before and glue the edges
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Fig. 5 Polynomial P . The
set B = {a, b, c}
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Fig. 6 Polynomials P and P ′. The set B̃ = {a, a′, b, b′, c, c′}

in B to the corresponding edge in P ′. Let B̃ be the set of lifts of edges in B
to this cover. We now orient edges in B̃ so that, for every ω̃ ∈ B̃, P is in the
same side of ω̃ (say, the left side). Denote this double cover by q̃a = P ∪ P ′.

Let S̃ be the underlying surface for q̃a and �̃ be the pre-image of �. Con-
sidering oriented saddle connections as elements of H1(S̃, �̃) we let î(�, �)
denote the algebraic intersection number. Note that q̃a is the unique double
cover of qa where q̃a is a square of an abelian differential. Hence, for every
two oriented saddle connections ω̃ and ω̃′ in q̃a , all the intersection points have
the same signature. That is,

i(ω̃, ω̃′) = |î(ω̃, ω̃′)|.
Consider ω ∈ B and its lift ω̃. Note that ω̃ has an orientation and hence

is identified with vector in C. We define ςω to be +1 if ω̃ has a positive x-
coordinate and−1 otherwise. Letωb ∈ Tb and let ω̃b be a lift ofωb. We choose
an orientation for ω̃b so it has a positive y-coordinate. We will show that

∑
ω∈B

ςω i(ω, ωb) = O(1).

Consider an intersection point of ω̃b and ω̃ where ςω = 1. If the absolute
value of the slope of ω̃b is larger than that of ω̃ then ω̃b is to the left of ω̃ and

123



Counting closed geodesics in strata

hence ω̃ intersects ω̃b with a positive signature. Otherwise, ω̃ and ω̃b intersect a
uniformly bounded number of times (ω̃b and ω̃ intersect essentially positively)
(Fig. 6). The opposite of this is true if ςω = −1; either ω̃ intersects ω̃b with a
negative signature or a uniformly bounded number of times. If ω̃, ω̃′ ∈ B̃ are
lifts of the same arc ω ∈ B then, choosing orientations for ω̃ and ω̃′ as above,
we have

i(ω, ωb) = i(ω̃, ω̃b)+ i(ω̃′, ω̃b)
+� ςω

(
î(ω̃, ω̃b)+ î(ω̃′, ω̃b)

)
. (29)

To reiterate, this is because the number of intersection points that do not have
the same sign as ςω is uniformly bounded.

But arcs in B̃ separate q̃a . Thus,

∑
ω̃∈B̃

î(ω̃, ω̃b) ≤ 1.

This is because every time ω̃b exits P it intersects the boundary with the
opposite signature than when it enters it. The sum is not necessarily zero
because ω̃b may start inside P and end in P ′. Therefore, summing Eq. (29)
over ω ∈ B, we get

∑
ω∈B

ςω î(ω, ωb) = O(1).

The proof for the case of a simple closed curve αb ∈ S ≥τ
qb is similar.

Finally, we note that the relations of the type (27) are also relations in the
relative homology with Z2-coefficients. But the edges in B are independent
in Z2-relative homology. Hence, this new relation is independent from the
previous ones. ��

5 Main counting statement

This section contains themain combinatorial counting arguments with the goal
of proving Theorem 5.1. Recall the definition of B(Q(σ ), X, τ ) from Sect. 4.1.
Define

Bj (Q(σ ), X, τ ) ⊂ B(Q(σ ), X, τ )

to be the set of points Z ∈ T (S) so that, for the associated quadratic differen-
tials qa and qb, there is a (qa, τ )-regular triangulation Ta and a (qb, τ )-regular
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triangulation Tb that have j common homologically independent saddle con-
nections. Now let,

B(Q(σ ), X, Y, τ ) = B(Q(σ ), X, τ ) ∩ (�(S) · Y ),
and

Bj (Q(σ ), X, Y, τ ) = Bj (Q(σ ), X, τ ) ∩ (�(S) · Y ).
That is, Bj (Q(σ ), X, Y, τ ) is the intersection of the orbit of Y with
Bj (Q(σ ), X, τ ). Also, recall from Sect. 2.6 that (when SX is empty, G(X) =
2):

G(X) = 1+
∏

α∈SX

1√
ExtX (α)

∗�
∏

α∈SX

1√
ExtX (α)

.

Notice that if g · Y ∈ Bj (Q(σ ), X, Y, τ ) then g−1 · X ∈ Bj (Q(σ ), Y, X, τ ).
Thus, the number of points in Bj (Q(σ ), X, Y, τ ) is the same as the number
of points in Bj (Q(σ ), Y, X, τ ). We prove the following upper-bound for the
size of Bj (Q(σ ), Y, X, τ ):

Theorem 5.1 Consider the stratum Q(σ ). Given X, Y ∈ T (S)

∣∣Bj (Q(σ ), X, Y, τ )
∣∣ ∗≺ τ |SX |+|SY |e(h− j)τG(X)G(Y ),

where h = dimQ(σ )
2 .

Remark 5.2 First we make a few remarks

1. If, in the definition of Bj (Q(σ ), X, Y, τ ), we replace the assumption on
the number of common homologically independent saddle connections
with an assumption on the number of common homologically independent
simple closed curves, the same statement would still holds. However, the
theorem is strictly stronger. For example, assume SX ∩ SY contains only
one homologically trivial simple closed curvesα.We can still conclude that
j ≥ 1 because the geodesic representative of α in any quadratic differential
q contains a (homologically) non-trivial arc. That is, the number points Y ,
where the geodesic connecting X to Y follows Q(σ ) and contains a short
curve throughout, is smaller than expected even when α is a homologically
trivial curve.

2. The statement appears to be correct even without the term τ |SX |+|SY |. How-
ever, the proof would become significantly more complicated.
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5.1 Sketch of the proof Theorem 5.1

Here is a an outline of our strategy:

1. We define a notion of a marking for the surface S and what it means for
a marking to have a bounded length in a Riemann surface X . A marking
contains a partial triangulation of S, a set of short simple closed curves with
their lengths and some twisting information. Fixing a Riemann surface X ,
every quadratic differential q where the underlying conformal structure is
near X defines a marking that has a bounded length in X . A marking takes
the lengths of the short simple closed curves and the twisting information
around short cylinder curves from X and the triangulation and twisting
around the non-cylinder short simple closed curves from q. Up to some
twisting information, there are a uniformly bounded number of markings
that have bounded length in a given Riemann surface X .

2. Fixing a marking �0, a relation is a formal linear combination of edges
of �0 with integer coefficients. Given �0 and �1 and a set of relations
R we will define a set MR(�0, �1, τ ) consisting of all markings � such
that � is a homeomorphic image of �1, its weighted intersection number
with �0 is less than eτ and so that the intersection patterns between � and
�0 satisfy the relations in R. The weights depend on the length and the
twisting information of each short simple closed curve. This is similar to
assuming that there is a geodesic segment in a the stratum Q(σ ) starting
near X and ending near Y . Lemma 5.8 provides and upper-bound for the
number of elements in MR(�0, �1, τ ).

3. We then let R be the set of relation of the type described in Lemma 4.7
and Lemma 4.8. Each Z ∈ Bj (Q(σ ), X, Y, τ ) can then be mapped to a
marking in � ∈ MR(�0, �1, τ ) for some marking �1 that has bounded
length in Y and some marking �0 that has both a bounded length and a
bounded twisting in X . This map is finite-to-one except for some twisting
information. An estimate for the number of possible markings �0 and �1
provides the desired upper-bound for the size of Bj (Q(σ ), X, Y, R).

As is apparent from the outline, the main complication is to keep careful
track of all the different twisting informations. Otherwise, the argument is
relatively elementary.

5.2 Markings on S

Fix a set of points � on S. A partial triangulation T of S with the vertex set
� is an embedding of a graph to S where vertices are mapped onto � and
the complementary components are either triangles or annuli. Even though
the vertex set is fixed, we think of T as representing a free homotopy class of
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triangulations. We say a curve γ is carried by T if the free homotopy class of
γ can be represented by tracing the edges of T . We define a combinatorial
length of a simple closed curve γ in S to be the minimum number of arcs of
T that can appear in a representative of γ and we denote it by �T (γ ).

Recall that a set of curves fill a subsurface Q os S if every essential curve
in Q intersects one of these curves. We say a partial triangulation T fills a
subsurface Q of S if, again, every essential curve in Q intersects T (their free
homotopy classes do not have disjoint representatives). The two notions are
related:

Lemma 5.3 There is a constant B such that, if T fills a subsurface Q of S,
then the set of simple closed curves γ carried by T with �T (α) ≤ B also fill
the subsurface Q. ��
Definition 5.4 A marking � = �

(
S, {E(α)}, T ) for S is:

• a free homotopy class of oriented curve system S (pairwise disjoint curves)
together with a notion of zero twisting for each curve α ∈ S, (that is, the
expression twistα(�, �) makes sense),

• a length E(α) associated to each simple closed curve α ∈ S, and
• a homotopy class of a partial triangulation T with the vertex set � such
that the core curve of any annulus in the complement of T is in S.

• for each α ∈ S intersecting T , twistα(�, T ) = O(1).

We denote the set of simple closed curves that are disjoint from T by Sc and
the remaining curves in S by Sn (the set Sc is a place holder for large cylinder
curves and the setSn is a place holder for non-cylinder curves or small cylinder
curves).

We say a marking � = (
S, {E(α)}, T ) has a bounded length in X if:

1. S = SX .
2. For α ∈ S, E(α) = ExtX (α).
3. For α ∈ Sc, twistα(�, X) = O(1).
4. For each simple closed curve γ /∈ SX that is disjoint from SX , �X (γ )

∗�
�T (γ ).

We say � has bounded length in X with τ -bounded twist if we further have

5. For α ∈ Sn , twistα(�, X) = O(τ ).

Example 5.5 We continue Example 3.4 of a surface (X, q) described by a
gluing of a polygon inR2. As it was discussed, there are two thick subsurfaces
in the complement of curves α and β (Fig. 2). A (q, τ )-regular triangulation
of (X, q) is depicted in Fig. 7. Here S ≤τ

q = {α} and S ≥τ
q = {β}.

Here a marking � that has bounded length in X can be obtained as follows:
The set S is the set {α, β} of short curves in X (depicted as blue curves in

123



Counting closed geodesics in strata

Fig. 7 A (q, τ )-regular triangulation

Fig. 8 The curves and the triangulation in the marking �

Fig. 8), the triangulation T is the (q, τ )-regular triangulation (depicted as the
red triangulation) and E(α) and E(β) are the extremal length of α and β in
X respectively. The condition (4) for � to have a bounded length in X is a
consequence of T being a (q, τ )-regular triangulation.

Lemma 5.6 Let M(X, τ ) be the set of markings� that have a bounded length
in X with τ -bounded twist. Then

|M(X, τ )| ∗≺ τ |SX |.

Proof The set S and the lengths {E(α)} and the twisting around curves in Sc

are determined by definition. By Lemma 3.19, there is a uniformly bounded
number of possibilities for T up to twisting around curves in Sn . But each of
these twisting parameters is bounded by multiple of τ (condition (5) in the
definition Definition 5.4). This finishes the proof. ��
Definition 5.7 Consider the markings

� = {S, {E(α)}, T } and �0 = {S0, {E0(α0)}, T0}.
Recall that T and T0 have the same vertex set �. For every α ∈ Sc, let βα be
an arc with end point in � and disjoint from T that crosses α so that T ∪ βα

has bounded twisting around α. Denote

U = T ∪
⋃

α∈Sc

βα.
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Let R[U ] be the vector space of formal sums with real coefficient of edges in
U . Let R be a finite subset of R[U ] with integer coefficients. We define the
set

MR(�, �0, τ )

to be the set of markings � = {S, {E(α)}, T } such that:
(I) � is a homeomorphic image of �0, and for every α ∈ Sc

that is the image
of α0 ∈ Sc

0, we have E0(α0) = E(α).
(II) For every element

∑
aωω ∈ R and every arcω ∈ T (respectively,α ∈ Sc

),
we have

∑
ω∈U

aω i(ω, ω) = O(1),

(
respectively,

∑
ω

aω i(ω, α) = O(1)

)
.

(III) Given α ∈ Sc, α ∈ Sc
, ω ∈ T and ω ∈ T , we have the following bounds

on the intersection numbers:

i(ω, ω)
∗≺ eτ (30)

twistα(�, �)
√
E(α) i(α, T )

∗≺ eτ (31)

twistα(�, �)
√
E(α) i(α, T )

∗≺ eτ (32)

i(α, α) twistα(�, �) twistα(�, �)

√
E(α)E(α)

∗≺ eτ (33)

and finally if α = α ∈ Sc ∩ Sc
we have:

twistα(�, �)

√
E(α)E(α)

∗≺ eτ . (34)

Note that the partial triangulations in � and � are defined up to homotopy.
By above intersection bounds we mean that the homotopy class of two partial
triangulations have representations with vertex set � so that the above bounds
hold simultaneously.

Let 〈R〉 be the subspace of R[U ] generated by elements inR. We give the
following upper bound for such markings:

Lemma 5.8 Let hR = dim(R[U ]/〈R〉). Then

|MR(�, �0, τ )| ∗≺ ehRτ
∏

α∈Sc

1√
E(α)

∏
α0∈Sc

0

1√
E0(α0)

.
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Proof For � ∈ MR(�, �0, τ ) consider the weighted graphs

W = T +
∑
α∈Sc

m(α, �) α,

where the weights on the edges of T are 1 and the weight m(α, �) ∈ N are
defined to be

m(α, �) =
⌊
twistα(�, �)

√
E(α)

⌋
.

Define W to be the set of weighted graphs induced by elements of
MR(�, �0, τ ):

W =
{
W
∣∣∣� ∈ MR(�, �0, τ )

}
.

The weighted graph W essentially determines � except that, for α ∈ Sc
,

the value of m(α, �) determines twistα(�, �) only up to 1√
E(α)

= 1√
E0(α0)

possibilities (we have used the floor function in defining m(α, �)). Hence,

|MR(�, �0, τ )| ≤
∏

α0∈Sc
0

1√
E0(α0)

|W|. (35)

We proceed in two steps:
Step 1 Consider the set E ⊂ U that forms a basis for the space R[U ]/〈R〉.
First, we claim that the map

I : W → N
hR, W →

(
i(W , ω)

)
ω∈E

is finite to one, where i(W , ω) is defined to be

i(W , ω) =
∑
ω∈T

i(ω, ω)+
∑
α∈Sc

m(α, �) i(α, ω).

Note that in general a weighted graph W is determined by the intersection
numbers of its edgeswith all the edges ofU . ThemapI records the intersection
number with arcs in E . To prove the claim, we need to show that, there are
only finitely many possibilities for the intersection number ofW with the other
edges of U .

We can consider an υ ∈ U as the element 1 · υ ∈ R[U ]. Then υ can
be written as a linear combination elements in the generating set E (which
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generates R[U ]/〈R〉)) and R (the relations). That is, there are constants cω

and dR so that

υ =
∑
ω∈E

cωω +
∑
R∈R

dRR.

But the intersection number is linear hence, for every ω ∈ W , we have

i(υ, ω) =
∑
ω∈E

cω i(ω, ω)+ O

(∑
R∈R

dR

)
.

But the constants dR depend only on the set R and otherwise are uniformly
bounded. Hence, there are only finite number of possibilities for i(υ, ω). This
proves the claim.
Step 2 We bound the size of I(W) ⊂ N

h by obtaining upper bounds on
intersection numbers of W with arcs ω ∈ E .
• First, if ω ∈ T , Eq. (30) implies that

i(T , ω)
∗≺ eτ . (36)

Also, for α ∈ Sc − Sc the Eq. (31) implies

m(α, �) i(α, ω)
∗≺ twistα(�, �)

√
E(α) i(α, ω)

∗≺ eτ .

Hence,

i(W , ω)
∗≺ eτ . (37)

• For arc βα ∈ U where α ∈ Sc, and arc ω ∈ W by Eq. (32) we have

i(βα, ω)
∗≺ i(α, ω) twistα(�, �)

∗≺ eτ

√
E(α)

. (38)

And for α ∈ Sc − Sc, by Eq. (33) we have

m(α, �) i(α, α)
∗≺ twistα(�, �)

√
E(α) i(α, α)

∗≺ eτ

√
E(α)

. (39)

Finally, if α = α ∈ Sc ∩ Sc
, by Eq. (34)

m(α, �) i(α, βα)
∗≺ eτ

√
E(α)

. (40)
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Now from Eqs. (37), (38), (39) and (40), we get:

|W| ∗≺ |I(W)| ∗≺
∏

α∈Sc

βα∈E

eτ

√
E(α)

×
∏

ω∈T∩E
eτ

≤ e|E|τ
∏

α∈Sc

1√
E(α)

.

Now, applying Eq. (35), we get

|MR(�, �0, τ )| ∗≺ ehRτ
∏

α∈Sc

1√
E(α)

∏
α0∈Sc

0

1√
E0(α0)

,

which is as we claimed. ��
Proof of Theorem 5.1 Let Z ∈ Bj (Q(σ ), X, Y, τ ) and let (Xa, qa) and
(Xb, qb) be the initial and the terminal quadratic differentials for the Teich-
müller geodesic in Q(σ ) starting near X and finishing near Z ∈ � · Y , as
before. There may be many choices for these quadratic differentials. We need
to be a bit careful. ��
ClaimWe can choose (Xa, qa) and (Xb, qb) so that for any α ∈ S ≤τ

qa ,

twistα(X, qa) = O(τ ). (41)

Proof of claim Assume (Xâ, qâ) and (Xb̂, qb̂) are some choice of initial and
terminal points with associated regular triangulations Tâ and Tb̂ that have j
common saddle connection. But, assume that they do not satisfy Eq. (41). We
define (Xa, qa) to be the image of (Xâ, qâ) under an appropriate number of
Dehn twists around curves in S ≤τ

qâ
to ensure (41) and let (Xb, qb) be the image

of (Xb̂, qb̂) under the same homeomorphism. We will show that Xa and Xb
are still near X and Z .

For α ∈ S ≤τ
qâ

, if 1
ExtX (α)

∗≺ τ , by Lemma 3.16.

twistα(Xâ, qâ)
∗≺ 1

ExtX (α)
.

Hence, using the triangle inequality and Theorem 2.2

twistα(X, qâ)
+≺ twistα(X, Xâ)+ twistα(Xâ, qâ) = O

(
1

ExtX (α)

)

= O(τ ). (42)

123



A. Eskin et al.

Therefore, (41) is holds and no modification is required.
Now, assume 1

ExtX (α)

∗� τ . Since α is a non-cylinder curve, 1
ExtXt (α)

changes
at most linearly with time (Eq. (7)). Hence, for τ large enough, we have

1

ExtX (α)

∗� 1

ExtZ (α)
. (43)

Again by Lemma 3.16, the number of Dehn twists nα around α that needs to
be applied to qâ to ensure Eq. (41) is at most O(1/ExtX (α)). That is,

Xa =
∏

α∈S ≤τ
qâ

Dnα
α Xq0,

where Dα is a Dehn twist around α and nα
∗≺ 1

ExtX (α)
. By, Theorem 2.2

dT (Xâ, Xa)
∗�

∑
α∈S ≤τ

qâ

nα ExtX (α)
∗≺ 1.

and

dT (Yb̂, Xb)
∗�

∑
α∈S ≤τ

qâ

nα ExtZ (α)
∗≺ 1.

Hence, (Xa, qa) and (Xb, qb) are as desired. Also, the images Ta and Tb of Tâ
and Tb̂ are still regular triangulations and have j arcs in common. ��

For the rest of the proof, we assume Eq. (41) holds. To the pair (Xa, qa) we
associate the marking � = {S, {E(α)}, T } as follows:
• Let S be the set of short curve in X and set E(α) = ExtX (α).
• Let T be the (qa, τ )-regular triangulation Ta which has j edges in common
with the triangulation Tb.

• If α ∈ S ≥τ
qa then set the twisting around α in � so that

twistα(�, X) = O(1).

• If α ∈ S ≤τ
qa then set the twisting around α in � so that

twistα(�, T ) = O(1).

The result is a marking that has bounded length in X and [by Eq. (41)] has
τ -bounded twist in X . Also, note that Sc = S ≥τ

qa and Sn = S ≤τ
qa .
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We can similarly associate a marking � to the pair (Xb, qb). Here we can
only conclude that� is bounded in Z (not with bounded twist); this is because
the inequality (41) does not necessarily hold for Z and qb. Instead, similar to
Eq. (42), we have

twistα(Z , qb)
∗≺ 1

ExtZ (α)
. (44)

Assume Z = g(Y ), for g ∈ �(S). Let �0 = g−1(�). Then �0 in bounded
in Y . Also, let R be the elements in R[U ] coming from Lemma 4.7, (and
Lemma 4.8 in case quadratic differentials in Q(σ ) are not orientable) and the
j edges in T that are present in the (qb, τ )-regular triangulation Tb. Taking this
Tb is the partial triangulation in �, we have � ∈ MR(�, �0, τ ). The number
of possible choices for � is O(τ |SX |) (Lemma 5.6) and there are finitely many
choices of for the homeomorphism type of�0. Lemma 5.8 provides an upper-
bound for the size of the set MR(�, �0, τ ). Also, using the fact that � is
bounded in Z and Eq. (44), similar to Lemma 5.6, we can conclude that the

association Z �→ � is at most O
(∏

α∈S ≤τ
qb

1
ExtZ (α)

)
-to-one.

To summarize, we have defined a map from Bj (Q(σ ), X, Y, τ ) to the union
of sets of markings MR(�, �0, τ ), where � is bounded X with τ -bounded
twist and �0 is bounded in Y . The map is not one-to-one but we have a bound
on the multiplicity.

The size of Bj (Q(σ ), X, Y, τ ) is comparable to the product of the following:
the number of choices for �, the number of choices for the homeomorphism
class of �0, the maximum multiplicity of the association Z �→ � and the size
of MR(�, �0, τ ). That is,

|Bj (Q(σ ), X, Y, τ )| ∗≺ |M(X, τ )| × O(1)×
∏

α∈S ≤τ
qb

1

ExtZ (α)
× |MR(�,�0, τ )|

∗≺ τ |SX | ∏
α∈S ≤τ

qb

1

ExtZ (α)
ehRτ

∏
α∈Sc

1√
E(α)

∏
α0∈Sc

0

1√
E0(α0)

∗≺ τ |SX |+|SY |ehRτ
∏
α∈S

1√
E(α)

∏
α0∈S0

1√
E0(α0)

.

The last line follows from the previous line because, for every term in the
product

∏
α∈S ≤τ

qb

1
ExtZ (α)

we either have 1
ExtZ (α)

= O(τ ) or, as in Eq. (43),

1

ExtZ (α)

∗≺ 1√
ExtZ (α)

1√
ExtX (α)

, and α ∈ S ≤τ
qa ∩ S ≤τ

qb = Sn ∩ Sn
0 .
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That is, each term can either be counted in the power of τ in the beginning
of last line or it can be divided into a term in each of the last two products.
The proof is finished after checking that hR = (h − j). This is true because
all the relations in Lemma 4.7 are also relations in H1(S, �). The fact that
the j arcs we have fixed in Ta are homologically independent implies that
these arcs and the other relations in homology are independent in R[U ]. In
fact, Lemma 4.8 is used only when ς = −1. But this is accounted for in the
definition of h (see Sect. 2.9). Hence, the dimension of R[U ]/〈R〉 is exactly j
less than h = dim C+1

2 . ��

6 Geodesics in the thin part of moduli space

In this section we prove Theorem 1.5 and Theorem 1.5. The main idea, which
is due to Margulis, is to prove an inequality, which shows that the flow (or
more precisely an associated random walk) is biased toward a compact part of
the space. Consider the stratum Q(σ ). We discretize the projection

π(Q(σ )) ⊂ T (S),

by fixing an appropriate net Ñ in T (S). Then, we consider the random walk
{λi }i≥0 on the points in Ñ and apply Theorem 5.1 to show that the projection
of this random walk inM(S) is biased towards the compact subset ofM(S).
Moreover, we show that quadratic differentials {q(λi , λi+1)}i≥0 (see Sect. 2.2)
tend not to have short saddle connections. See Lemma 6.4 for the precise
formulation.

These estimates implyTheorem1.5; this is because, roughly speaking, every
closed geodesic in C can be approximated by a path along the net points.

6.1 Short saddle connections and simple closed curves

For a quadratic differential (X, q) ∈ Q1T (S), recall the set of short saddle
connections �q(ε) (Definition 3.8). Define s(q, ε) to denote the maximum
number of homologically independent disjoint saddle connections in �q(ε).
Given the tuple σ , define

Q j,ε(σ ) =
{
(X, q) ∈ Q(σ )

∣∣∣ s(q, ε) ≥ j
}
⊂ Q1T (S).

For the rest of this section, with fix σ and denoteQ j,ε(σ ) simply byQ j,ε . Also,
recall the definition of B(Q(σ ), X, τ ) from Sect. 4.1 and Bj (Q(σ ), X, τ ) from
Sect. 5. We would like to refine the definition of Bj (Q(σ ), X, τ ). Roughly
speaking, we are interested in a ball of radius τ centered at X that is allowed
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to move in the directionQ j,ε only. Namely, define B(Q j,ε, X, τ ) to be the set
Z ∈ T (S) so that

• Z ∈ B(Q(σ ), X, τ )

• for the associated quadratic differential qa , we have s(qa, ε) ≥ j .

One can similarly define B(Q j,ε, X, Y, τ ) as in Sect. 5. Recall the choice of
ε1(τ ) from Lemma 3.13.

Lemma 6.1 For any τ > 0, there is ε2(τ ) < ε1(τ ) such that for ε < ε2(τ ),
any integer j ≥ 0, and any X, Y ∈ T (S), we have

B(Q j,ε, X, τ ) ⊂ Bj (Q(σ ), X, τ ), (45)

and

B(Q j,ε, X, Y, τ ) ⊂ Bj (Q(σ ), X, Y, τ ). (46)

Proof It is enough to let ε2(τ ) = e−2τ ε1. Assume, Z ∈ B(Q j,ε, X, τ ), qa and
qb are the associated quadratic differentials and (b − a) < τ . Let ω1, . . . , ω j
be disjoint homologically independent saddle connections counted in s(qa, ε).
Then, for each i , by Eq. (8),

∣∣∣∣ 1

Extqa (ωi )
− 1

Extqb(ωi )

∣∣∣∣ ≤ τ,

and by Theorem 2.1 the extremal length of any short curve α containing ωi
changes by at most a factor of at most e2τ . That is, ωi ∈ �qb(ε1). The arcs
ωi are still disjoint and homologically independent in qb. Hence, the set {ωi }
can be extended to both a (qa, τ )-regular triangulation Ta and a (qb, τ )-regular
triangulations Tb (Lemma 3.13). Thus, by the definition Z ∈ Bj (Q(σ ), X, τ ).
The proof of Eq. (46) is similar. ��

6.2 Choosing a net

By a (c, 2c)-separated net N ⊂ M(S) we mean a set of points in M(S) so
that:

• the Teichmüller distance between any two net points inN is at least c, and
• any point inM(S) is within distance 2c of a point in N .

Let

N (X, τ ) = p(B(X, τ )) ∩N .

Then, it is easy to check (see Lemma 3 in [16]):
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Lemma 6.2 There exists a constant c0 > 0 such that for any c > c0, and
(c, 2c) net Ñ as above, we have

|N (X, τ )| ∗≺ τ 3g−3+p. (47)

Let Ñ = p−1(N ). We assume the r0 > 2c, where r0 is the constant used
to define B(Q(σ ), X, τ ) (see Sect. 4.1). We denote the intersection of a ball in
Teichmüller space, B(�), with Ñ by Ñ (�). That is, for X, Y ∈ T (S),

Ñ (Q(σ ), X, τ ) = B(Q(σ ), X, τ ) ∩ Ñ ,

Ñ (Q j,ε, X, τ ) = B(Q j,ε, X, τ ) ∩ Ñ ,

Ñ (Q(σ ), X, Y, τ ) = B(Q(σ ), X, Y, τ ) ∩ Ñ ,

andÑ (Q j,ε, X, Y, τ ) = B(Q j,ε, X, Y, τ ) ∩ Ñ .

6.3 The main inequality

For a real-valued function f : M(S) → R, consider the average function

(
Aτ
j,ε f

) : T (S) → R,

defined by

(
Aτ
j,ε f

)
(X) = e−hτ

∑
Z∈Ñ (Q j,ε ,X,τ )

f (Z).

Here, as before

h = dim C + 1

2
.

Our main tool is the following (ε2(τ ) is as in Lemma 6.1):

Proposition 6.3 Given τ > 0, and ε < ε2(τ ) we have

(
Aτ
j,εG

)
(X)

∗≺ τme− jτG(X). (48)

where G is as in Eq. (4) and m depends only on the topology of S.

Proof Enumerate the elements of N (X, τ ) as y1, . . . , yk and let Yi ∈ T (S)

be a pre-image of yi , i = 1, . . . , k. By Lemma 2.3, every net point in Z ∈
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B(Q j,ε, Ñ , X, Yi , τ ) is near at most G(Yi ) points in B(Q j,ε, X, Yi , τ ). That
is,

∣∣∣Ñ (Q j,ε, X, Yi , τ )

∣∣∣G(Yi )
2 ∗�

∣∣∣B(Q j,ε, X, Yi , τ )

∣∣∣ (49)

Hence, we have

(
Aτ
j,εG

)
(X) = e−hτ

∑
Z∈Ñ (Q j,ε ,X,τ )

G(Z)

= e−hτ

k∑
i=1

∑
Z∈Ñ (Q j,ε ,X,Yi ,τ )

G(Yi )

∗� e−hτ
k∑

i=1

∣∣∣B(Q j,ε, X, Yi , τ )

∣∣∣
G(Yi )

(Equation (49))

∗≺ e−hτ

k∑
i=1

τ |SX |+|SY |e(h− j)τG(X) (Theorem 5.1 and (46))

≤ e− jτ τmG(X). (Equation (47))

Here, m = (9g − 9+ 3p) ≥ |SX | + |SY | + (3g − 3+ p). ��
Trajectories of the random walk Suppose R >> τ and let n be the integer
part of R/τ . By a trajectory of the random walk we mean a map

λ : {0, n} → Ñ ⊂ T (S)

such that, for all 0 < k ≤ n, we have dT (λk, λk−1) ≤ τ , where λk = λ(k). Let
Pτ (X, R) denote the set of all trajectories for which dT (λ0, X) = O(1). For
j ∈ N, let Pθ,τ (Q j,ε, X, R) denote the set of all trajectories λ ∈ Pτ (X, R) so
that,

• for 1 ≤ k ≤ n

λk ∈ Ñ (Q(σ ), λk−1, τ ).

123



A. Eskin et al.

• ∣∣∣{k | 1 ≤ k ≤ n, λk ∈ B(Q j,ε, λk−1, Ñ , τ )
}∣∣∣ ≥ θ · n.

Given X, Y ∈ T , let Pθ,τ (Q j,ε, X, Y, R) denote the set of all trajectories
λ ∈ Pθ,τ (Q j,ε, X, R) such that

dT
(
p(Y ),p(λn)

) = O(1).

We say that a trajectory is almost closed in the quotient if

dT
(
p(λ0),p(λn)

) = O(1).

Finally, let P̂θ,τ (Q j,ε, X, R) = Pθ,τ (Q j,ε, X, X, R) denote the subset of these
trajectories starting from X which are almost closed in the quotient. Let ε2(τ )

be as in Lemma 6.1 and Proposition 6.3.

Lemma 6.4 For any δ0 > 0 there is τ0 > 0 so that for τ > τ0, 0 ≤ θ ≤ 1
and ε < ε2(τ0) we have

∣∣Pθ,τ (Q j,ε, X, Y, R)
∣∣ ∗≺ e(h− jθ+δ0)R G(X)

G(Y )
. (50)

In particular,

∣∣P̂θ,τ (Q j,ε, X, R)
∣∣ ∗≺ e(h− jθ+δ0)R . (51)

Proof Define

qk(λ) =
∣∣∣{i ∣∣ 1 ≤ i ≤ k, λi ∈ Ñ (Q j,ε, λi−1, τ )

}∣∣∣.
This keeps track of the number of steps in the trajectory λ (amount the first k
steps) that can be approximated by a segment in Q j,ε . For 0 < r = kτ < R,
let P̂θ,τ (Q j,ε, X, Y, R, r) be the set of trajectories obtained from a trajectory
λ ∈ P̂θ,τ (Q j,ε, X, Y, R) but truncated after k = r/τ steps. Define

Vτ (R, r) =
∑

λ∈Pθ,τ (Q j,ε ,X,Y,R,r)

G(λk)e
j qk(λ)τ .

Also, let R = nτ , q(λ) = qn(λ) and

Vτ (R) =
∑

λ∈Pθ,τ (Q j,ε ,X,Y,R)

G(λn)e
jq(λ)τ .
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Note that G(Y )
∗� G(λn) and q(λ)τ ≥ θR. Therefore,

|Pθ,τ (Q j,ε, X, Y, R)| ∗≺ Vτ (R)

G(Y )e jθR
. (52)

If λk+1 ∈ Ñ (Q j,ε, λk, τ ) then qk+1(λ) = qk(λ)+ 1 and qk+1(λ) = qk(λ)

otherwise. Hence,

Vτ (R, r + τ) =
∑

λ∈Pθ,τ (Q j,ε ,X,Y,R,r+τ)

G(λk+1)e jqk+1(λ)τ

≤
∑

λ∈Pθ,τ (Q j,ε ,X,Y,R,r)

⎛
⎝ ∑

λk+1∈Ñ (Q j,ε ,λk ,τ )

G(λk+1)e j (qk(λ)+1)τ+

+
∑

λk+1 /∈Ñ (Q j,ε ,λk ,τ )

G(λk+1)e jqk(λ)τ

⎞
⎠ .

The two summands inside of the parenthesis are similar to the average defined
above. Using Eq. (48), the first term is less than (up to a multiplicative error)

e j (qk(λ)+1)τ ehτ (Aτ
j,εG)(λk)

∗≺ e j (qk(λ)+1)τ ehτ τme− jτG(λk).

and the second term is less than (again, up to a multiplicative error)

e jqk(λ)τ ehτ (Aτ,0G)(λk)
∗≺ e jqk(λ)τ ehτ τmG(λk).

Note that the right hand sides of the above two equations are the same. Hence,

Vτ (R, r + τ)
∗≺ τmehτ

∑
λ∈Pτ (C,X,R,r)

e jqk(λ)τG(λk)

= τm ehτ Vτ (R, r). (53)

Now iterating (53) n = R/τ times we get

Vτ (R) ≤ (C τ)mn G(X) ehnτ = G(X)e(h+m(log(τ )+log(C))
τ

)R, (54)

where C > 0, and m ∈ N are uniform constants. We choose τ large enough
so that

m log(τ )+ log(C)

τ
< δ0.
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The lemma follows from Eq. (52) and Eq. (54). ��
Let Nθ (Q j,ε, X, Y, R) be the number points Z ∈ B(Q(σ ), X, Y, R) (see

Sect. 5 for definition) so that associated geodesic (Xt , qt ) spends θ proportion
of time in Q j,ε . Similarly, for x ∈ M(S), let Nθ (C j,ε, x, R) be the number
of conjugacy classes mapping classes associated to closed geodesics g in C of
length at most R which pass within a uniformly bounded distance of the point
x and so that for at least θ fraction of the points (xt , qt ) ∈ g, s(qt , δ) ≥ j (see
Sect. 6.1). As we shall see in the proof of the lemma below, for x = p(X),
Nθ (Q j,ε, X, X, R) may be much larger than Nθ (C j,ε, x, R).

Lemma 6.5 For any δ1 > 0, there is τ1 so that, for τ > τ1 X ∈ T (S) and any
sufficiently large R (depending only on δ1, τ ) we have

Nθ (C j,ε,p(X), (1− δ1)R)
∗≺
∣∣∣Pθ,τ (Q j,ε, X, R)

∣∣∣, (55)

and

Nθ (Q j,ε, X, Y, (1− δ1)R)
∗≺
∣∣∣Pθ,τ (Q j,ε, X, Y, R)

∣∣∣ G(Y )2. (56)

Proof Recall the definition of

IX =
{
g ∈ �(S)

∣∣ dT (X, g · X) = O(1)
}
.

from Lemma 2.3. Consider a closed geodesic g in C which intersects a uni-
formly bounded neighborhood of x = p(X). Let [g] denote the corresponding
conjugacy class in �(S). Then there are approximately |IX | lifts of [g] to Tg
which start within a bounded distance of X . Each lift G is a geodesic segment
of length equal to the length of g.

We can mark points distance τ apart on G, and replace these points by the
nearest net points in Ñ . (This replacement is the cause of the δ1R error). This
gives a map � from lifts of geodesics to trajectories. If the original geodesic g
has length at most (1− δ1)R and has s(qt , δ) ≥ j for θ fraction of its points,
then the resulting trajectory belongs to Pθ,τ (Q j,ε, X, R).

If two geodesic segments map to the same trajectory, then the segments
fellow travelwithinO(1)of each other. In particular ifg1 andg2 are the pseudo-
Anosov elements corresponding to the two geodesics, then dT (g−12 g1X, X) =
O(1), thus g−12 g1 ∈ IX .
We now consider all possible geodesics contributing to Nθ (C j,ε, x, (1 −

δ1)R); for each of these we consider all the possible lifts which pass near X ,
and then for each lift consider the associated random walk trajectory. We get:

|IX | Nθ (C j,ε, x, (1− δ1)R)
∗≺ |IX |

∣∣Pθ,τ (Q j,ε, X, R)
∣∣.
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The factor of |IX | on the left hand side is due to the fact that we are considering
all possible lifts which pass near X , and the factor of |IX | on the right is the
maximum possible number of times a given random walk trajectory can occur
as a result of this process. Thus, the factors of |IX | cancel, and the lemma
follows. Note that by Lemma 2.3 (see also, Theorem 5.1) |I (Y )| ∗≺ G(Y )2.
An argument similar to the proof of the first part implies Eq. (56). ��

We need he following lemma which is due to Veech [48].

Lemma 6.6 Suppose g is a closed geodesic of length at most R on M(S).
Then for any x ∈ g, any X so that p(X) = x and every simple closed curve α

ExtX (α)
∗� e−(6g−4+2p)R.

Proof of Theorem 1.5 Let δ > 0. Choose δ0, δ1 ≤ δ/3. Now choose τ ≥
max{τ0, τ1} and let R be large enough so that Eqs. (51) and (55) hold. We get,

Nθ (C j,ε, x, R)
∗≺ e(h− jθ+2δ/3)R. (57)

Finally

Nθ (C j,εR) ≤
∑
x∈N

Nθ (Q j,ε, x, R),

where N is the net chosen above. In view of Lemma 6.6 and Lemma 6.2, the
number of relevant points in the net is at most polynomial in R. However, for
R large enough, this polynomial is less than eδR/3. Thus Theorem 1.5 follows.

��
Proof of Theorem 1.5 Let g be a closed geodesic in C\K. By taking K large
enough we can assure that every quadratic differential along g has an arbitrary
short saddle connection. We choose K so that Lemma 3.9 implies that any
such quadratic differential (x, q), �q(ε) is non-empty for ε ≤ ε2(τ ). Hence
the number of disjoint homologically independent saddle connections in�q(ε)

is at least one. That is, g is counted in Nθ (C j,ε, R) for j = 1 and θ = 1. The
theorem now follows from Theorem 1.5. ��
Proof We can use the argument applied in the proof of Theorem 1.5. Let
0 < δ0, δ1 ≤ δ/3. Choose a net satisfying Lemma 6.2. Then choose τ ≥
max{τ0, τ1} and let R be large enough so that Eqs. (50) and (56) hold. As in
the proof of Theorem 1.5, Eq. (1) follows from Lemma 6.2 and Lemma 6.6.

��
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7 The Hodge norm and the Hodge distance

In this section, we use the Hodge norm [19] to show that in any compact subset
of C the geodesic flow is uniformly hyperbolic: see [5] and Remark 7.5 below.
There are many approaches to proving hyperbolic like behavior for the Teich-
müller geodesic flow in different settings, see for example [7,8,19,22,48].

Let H1T (S) be the bundle of area one abelian differentials over T (S). We
also denote by gt the geodesic flow on H1T (S) (where we square an abelian
differential to get a quadratic differential).

7.1 Hodge norm

Fix a point (X, φ) inH1T (S), where X ∈ T (S) and φ is an abelian differential
on X . Let π : H1T (S) → T (S) and p : H1T (S) → H1M(S) be natural
maps as in Sect. 2.3. Let ‖�‖H,t denote the Hodge norm on the surface Xt =
π(gtφ). Also, for each abelian differential φ, let �(φ),�(φ) ∈ H1(X, R) be
forms obtained by the real part and the imaginary part of the holonomy.

The following fundamental result is due to Forni [19, §2]:

Theorem 7.1 For any λ ∈ H1(X,R) and any t ≥ 0,

‖λ‖H,t ≤ et‖λ‖H,0.

If, in addition, λ ∧ �(φ) = λ ∧ �(φ) = 0 and, for some compact subset K of
H1M(S), the segment [φ, gtφ] starts and ends in p−1(K) and spends at least
half the time in p−1(K), then we have

‖λ‖H,t ≤ e(1−α)t‖λ‖H,0,

where α > 0 depends only on K.

Theorem 7.1 gives a partial hyperbolicity property of the geodesic flow on
spaces of abelian differentials. In our application, we need a similar property
for compact subsets of the spaces Q1M(σ ) of quadratic differentials.

7.2 Quadratic and abelian differentials

Here, we briefly treat the case when q ∈ QM(S) is not the global square
of an abelian differential. A standard construction, given X ∈ T (S) and q a
quadratic differential on X , is to pass to the possibly ramified double cover on
which the foliation defined by q is orientable. More precisely, we consider the
canonical (ramified) double cover φ : X̃ → X such that φ∗(q) = φ2. (See the
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proof of Lemma 4.8 for the explicit construction.) The set of critical values of
φ coincides with the set of zeros of q with odd degree.

This yields a surface X̃ with an abelian differentialφ. However, even if p(X)

belongs to a compact subset of M(S), there may be a curve that has a very
small extremal length in X̃ . This may occur since the flat structure defined by
q may have an arbitrarily short saddle connection connecting distinct zeroes.
Such a saddle connection lifts to a very short loop in the double cover. Let
�min(q) denote the length of the shortest saddle connection in the flat metric
defined by q. We have,

�min(φ) ≥ �min(q).

That is, if q does not have any short saddle connection, then φ also does not
have any short saddle connections.

7.3 The Hodge norm on relative cohomology

Let (X, q) ∈ Q1T (σ ) and let � be the set of singularities of q. Let X̃ be as
before and �̃ be the pre-image of �. On X̃ , q̃ has a canonical square root
which we denote by φ. To simplify the notation, if q is a square of an abelian
differential, let X̃ = X, �̃ = �.

Let j : H1(X̃ , �̃,R) → H1(X̃ ,R) denote the natural map. We define a
norm ‖�‖ on the relative cohomology group H1(X̃ , �̃,R) as follows:

‖λ‖ = ‖j(λ)‖H +
∑

(p,p′)∈�×�

∣∣∣∣∣
∫

γp,p′
(λ− h)

∣∣∣∣∣ , (58)

where ‖�‖H denotes the Hodge norm on H1(X̃ ,R), h is the harmonic repre-
sentative of the cohomology class j(λ) and γp,p′ is any path connecting the
zeroes p and p′. Since j(λ) and h represent the same class in H1(X̃ ,R), the
Eq. (58) does not depend on the choice of γp,p′ .

Let qt , Xt and φt be defined as usual and let ‖�‖t denote the norm (58) on
the surface X̃t = π(gtφ). We have the following analogue of Theorem 7.1:

Theorem 7.2 Let K be a compact subset Q1M(σ ). Then there is t0 > 0 so
that for t > t0 the following holds. Suppose p(q0),p(qt ) ∈ K and that the
geodesic segment [q0, qt ] spends at least half the time in p−1(K). Suppose
λ ∈ H1(X̃ , �̃,R) with

j(λ) ∧ �(φ) = j(λ) ∧ �(φ) = 0.
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Then we have

‖λ‖t ≤ e(1−ᾱ)t‖λ‖0,

where ᾱ > 0 depends only on K.

This theorem is essentially in [6] (Lemma 4.4).We reproduce the proof here
for the convenience of the reader.

Proof of Theorem 7.2 Since K is compact, quadratic differentials in K have
no short saddle connections. Hence, for u ∈ [0, t], p(qu) ∈ K implies that X̃u
is thick (has no curves with short extremal lengths). Therefore, there exist a
constant cK such that for any u with p(qu) ∈ K, any harmonicψ ∈ H1(X̃u,R)

and any arc γ on X̃u with end points in �̃,

∣∣∣∣
∫

γ

ψ

∣∣∣∣ ≤ cK ‖ψ‖H,u
(
1+ �u(γ )

)
, (59)

where �u(γ ) is the length of γ in flat metric associated to φu .
Under the assumptions of Theorem 7.2, there exists s ∈ [0.1t, 0.9t] such

that p(qs) ∈ K. Fix p, p′ ∈ �. Since X̃0 is thick, there exists a path γ0
connecting p and p′ with �0(γ0) = O(1). Similarly, since X̃s and X̃t are
thick there are paths γs and γt connecting p and p′ such that �s(γs) = O(1),
�t (γt ) = O(1). Then,

�0(γs) = O(es) and �s(γt ) = O(et−s).

Suppose λ ∈ H1(X̃ , �̃,R) with j(λ) ∧ �(φ) = j(λ) ∧ �(φ) = 0. Let
ψ = j(λ). For 0 ≤ u ≤ t , let ψu denote the harmonic representative of the
cohomology class ψ on X̃u . We have

‖λ‖t − ‖λ‖0 ≤ ‖ψ‖H,t − ‖ψ‖H,0 +
∑

p,p′∈�×�

∣∣∣∣∣
∫

γp,p′
ψt − ψ0

∣∣∣∣∣
≤ e(1−α)t‖ψ‖H,0 +

∑
p,p′∈�×�

∣∣∣∣∣
∫

γp,p′
ψt − ψ0

∣∣∣∣∣ , (60)

where we have used Theorem 7.1. Since the integral in Eq. (60) is independent
of the choice of γp,p′ , we use γp,p′ = γs . Then, by Eq. (59),

∣∣∣∣
∫

γs

ψ0

∣∣∣∣ ≤ cK ‖ψ‖H,0(1+ �0(γs))
∗≺ cK ‖ψ‖H,0 e

s . (61)
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Also,

∣∣∣∣
∫

γs

ψt

∣∣∣∣ =
∣∣∣∣
∫

γs−γt

ψt +
∫

γt

ψt

∣∣∣∣
=
∣∣∣∣
∫

γs−γt

ψs +
∫

γt

ψt

∣∣∣∣
≤
∣∣∣∣
∫

γs

ψs

∣∣∣∣+
∣∣∣∣
∫

γt

ψs

∣∣∣∣+
∣∣∣∣
∫

γt

ψt

∣∣∣∣
∗≺ cK

(
‖ψ‖H,s + ‖ψ‖H,se

t−s + ‖ψ‖H,t

)
.

where to pass from the first line to the second we used the fact that ψs and
ψt represent the same cohomology class in H1(X̃ ,R), and in the last line we
used Eq. (59) to estimate each term. Then, using Eq. (61), we have

∣∣∣∣
∫

γs

ψt − ψ0

∣∣∣∣ ∗≺ cK
(
‖ψ‖H,s + ‖ψ‖H,se

t−s + ‖ψ‖H,t + ‖ψ‖H,0e
s
)

≤ cK
(
e(1−α)s + e(1−α)s+t−s + e(1−α)t + es

)
‖ψ‖H,0

∗≺ cK e(1−0.1α)t‖ψ‖H,0,

where in the second line we used Theorem 7.1 and in the last line we use the
fact that s ∈ [0.1t, 0.9t]. Substituting into Eq. (60) we get

‖λ‖t − ‖λ‖0 ≤ cK e(1−0.1α)t‖ψ‖H,0 ≤ cK e(1−0.1α)t‖λ‖0.

Assuming t is large enough, we can assume that the multiplicative error is less
than eα0t for some α0 ≤ 0.1α. The theorem then holds for ᾱ ≤ (0.1α − α0).

��

7.4 The Hodge distance

Let gt be the Teichmüller flow on Q1M(σ ). To each quadratic differential q,
we associate its imaginary and real measured foliations η−(q), and η+(q).

The flow gt admits the following foliations:

1. F ss , whose leaves are sets of the form
{
(X, q) | η+(q) = const

}
;

2. Fuu , whose leaves are sets of the form
{
(X, q) | η−(q) = const

}
.

In other words, for (X0, q0) ∈ Q(σ ), a leaf of F ss is given by

αss(X0, q0) = {(X, q) ∈ Q(σ ) | η+(q) = η+(q0)},
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and a leaf of Fuu is given by

αuu(X0, q0) = {(X, q) ∈ Q(σ ) | η−(q) = η−(q0)}.
Note that the foliations F ss , Fuu are invariant under both gt and �(S); in
particular, they descend to the moduli space Q1M(σ ).

We also consider the foliation Fu whose leaves are defined by

αu(q) =
⋃
t∈R

gtα
uu(q)

and F s whose leaves are defined by

αs(q) =
⋃
t∈R

gtα
ss(q).

If C is a subset of moduli space of abelian differentials, we can locally identify
a leaf of F ss (or Fuu) with a subspace W− (or W+) of H1(X, �,R). In fact,
for ψ ∈ W− (or ψ ∈ W+), we have

j(ψ) ∧ �(ψ) = 0 and j(ψ) ∧ �(ψ) = 0. (62)

See §1 and §2 of [19] for more details.
If γ is a map from [0, r ] into some leaf of F ss , then we define the Hodge

length �(γ ) of γ as
∫ r
0 ‖γ ′(t)‖ dt , where ‖�‖ is the Hodge norm. Finally:

• If two abelian differentials φ and φ′ belong to the same leaf of F ss , then
we define dH (φ, φ′) to be the infimum of �(γ ) where γ varies over paths
connecting φ and φ′ and staying in the leaf of F ss ⊂ Q(σ ). We make the
same definition if φ and φ′ are on the same leaf of Fuu .

• By taking a ramified double cover (see Sect. 7.2), we can define dH (q, q ′)
for any q, q ′ on the same leaf of F ss in Q(σ ).

Lemma 7.3 Let K be a compact subset of C. Suppose (X, q), (X ′, q ′) ∈
p−1(K) are in the same leaf of F ss . Let γ be a Hodge length minimizing
path connecting q to q ′. Suppose t > t0 is such that for all q ′′ ∈ γ ,

{
s ∈ [0, t] | gsq ′′ ∈ p−1(K)

} ≥ t/2. (63)

Then

dH (gtq, gtq
′) ≤ e−c tdH (q, q ′),

where c depend only on K.
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Proof This follows from Theorem 7.2 and Eq. (62). ��
We now show that the above condition holds whenever the projections of

gtq and gtq ′ to C are also close. See also Lemma 5.4 of [16].

Lemma 7.4 Let K be a compact subset of C. Then there is a larger compact
subsetK′ ⊂ C and a covering ofKwith a finite family of open setsU so that the
following holds. LetU1,U2 ⊂ Q(σ ) be connected open sets so thatp(Ui ) ∈ U ,
i = 1, 2. Let (X, q), (X ′, q ′) ∈ U1 and t > 0 be such that gt (q), gt (q ′) ∈ U2.
Further, assume that

{
s ∈ [0, t] | p(gsq) ∈ K

} ≥ t/2. (64)

Then,

{
s ∈ [0, t] | p(gsq

′) ∈ K′
} ≥ t/2. (65)

Proof Let ρ > 0.Wecan find an open coverU ofK so that the following holds.
LetU be connected open sets so thatp(U ) ∈ U , and let (X1, q1), (X2, q2) ∈ U .
Then for any saddle connection ω, we have

1

ρ
�q1(ω) ≤ �q2(ω) ≤ ρ �q1(ω). (66)

Let U1,U2 ⊂ Q(σ ) be connected open sets so that p(Ui ) ∈ U , i = 1, 2. Let
(X, q), (X ′, q ′) ∈ U1 and t > 0 be such that gt (q), gt (q ′) ∈ U2. We first
claim that (66) is true for quadratic differentials qs = gs(q) and q ′s = gs(q ′)
as well for a larger constant ρ′ = 2ρ. Assume, for contradiction that

�qs (ω) > ρ′�q ′s (ω).

for some s ∈ [0, t]. Assume ω is mostly vertical in qs . That is,

�(holqs (ω)) >
1

2
�qs (ω).

Then

�q(ω) ≥ �(holq(ω))

= es�(holqs (ω))

>
1

2
es�qs (ω)

>
1

2
esρ′ �q ′s (ω) ≥ 1

2
ρ′ �q ′(ω).
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Which contradicts Eq. (66). In case ω is mostly horizontal, we move forward
in time and argue the same way. This proves the claim.

Now let ε be such that the length of any saddle connection in q ∈ K is larger
than ε, and letK′ be the compact subset ofC consistingof quadratic differentials
where the length of every saddle connection is larger than ε′ = ε/ρ′. Then
(65) follows from the above length comparison. ��
Remark 7.5 We have essentially shown that under the assumption Eq. (64) we
have exponential contraction along the foliationF ss (and similarly exponential
expansion along the foliation Fuu).

8 Outline of the proof of Theorem 1.2

In this section, we prove Theorem 1.2. We only outline the arguments here
since they arewell known amore detailed version is already present in [22].We
essentially follow the work of Margulis [30]. First, we need a closing lemma.

Lemma 8.1 (Closing Lemma) Let K be a compact subset of C consisting of
non-orbifold points. Given a quadratic differential (x, q) ∈ K and δ > 0,
there exist constants L0 > 0, and open neighborhoods U ⊂ U ′ ⊂ C of (x, q)

with the following property. For L > L0, suppose that g : [0, L] → C is a
Teichmüller geodesic segment such that

(a) g(0), g(L) ∈ U and
(b) g spends more than half of its length in K.

Let g1 be the closed path in C which is the union of g and a segment connecting
g(L) to g(0) in U. Then there exists a unique closed geodesic g′ ⊂ C with the
following properties:

(I) g′ and g1 have lifts in T (S) which stay δ-close with respect to the Teich-
müller metric.

(II) The length of g′ is within δ of L,
(III) g′ passes through U ′.

Remark 8.2 We remark that in Lemma 8.1 if we remove the assumption that
K consists of non-orbifold points then there are at most a uniformly bounded
number of closed geodesics satisfying conditions (I–III). A version of the
closing lemma can be found in [22].

Outline of the proof of Lemma 8.1 Consider the stable and unstable foliations
for the geodesic flow. Our goal is to show that if U is small enough, the first
return map on these foliations will define a contraction with respect to the
Hodge distance function. As a result, we find a fixed point for the first return
map in U ′; this is the same as a closed geodesic going through U ′.
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In view of Lemma 7.3 and Lemma 7.4 there is in fact a neighborhood
of (x, q) such that the time L geodesic flow restricted to the neighborhood
expands along the leaves of Fuu and contracts along the leaves of F ss .

Then, the contraction mapping principle (applied first to the map on F ss

and then to the inverse of the map on Fuu) allows us to find a fixed point for
the geodesic flow near (x, q) (in a slightly bigger neighboorhood). In other
words, there are neighborhoods U ⊂ U ′ of (x, q) such that:

• if g : [0, L] → C satisfies properties (a) and (b) then in view of the
hyperbolicity statement (Lemma 7.3)
the time L geodesic flow restricted to U expands along the leaves of Fuu

and contracts along the leaves of F ss , in the metric dH ,
• for any q1, q2 ∈ U, if q1 ∈ F ss(q2) or q1 ∈ Fuu(q2) then dH (q1, q2) ≤ δ.

We can apply the contraction mapping principle to F ss to find (x0, q0) ∈ U ′
such that gL(q0) ∈ Fuuq0. Now we can consider the first return map of the
map g−t on Fuu(q0). ��
Proof of Theorem 1.2 Note that by the bound proved in Theorem 1.5, we only
need to consider the set of closed geodesics going through a fixed compact
subset of C. We have

• by Theorem 2.4, the geodesic flow on C is mixing, and
• on a fixed compact subset of Q1M(S, σ ) the geodesic flow is uniformly
hyperbolic.

• every nearly closed orbit approximates a close orbit (Lemma 8.1).

Hence, all the ingredients are in place to drive Theorem 1.2 following the work
of Margulis [30]. (See also §20.6 in [27].) ��
Acknowledgements Wewould like to thanks the referee for many useful comments that have
improve the exposition of the paper at several places.
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