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The shadow of a Thurston geodesic to the curve graph

Anna Lenzhen, Kasra Rafi and Jing Tao

Abstract

We study the geometry of the Thurston metric on Teichmüller space by examining its geodesics
and comparing them to Teichmüller geodesics. We show that, similar to a Teichmüller geodesic,
the shadow of a Thurston geodesic to the curve graph is a reparameterized quasi-geodesic.
However, we show that the set of short curves along the two geodesics are not identical.

1. Introduction

In [22], Thurston introduced a metric on Teichmüller space in terms of the least possible value
of the global Lipschitz constant between two hyperbolic surfaces of finite volume. Even though
this is an asymmetric metric, Thurston constructed geodesics connecting any pair of points
in Teichmüller space that are concatenations of stretch paths. However, there is no unique
geodesic connecting two points in Teichmüller space T (S). We construct some examples to
highlight the extent of non-uniqueness of geodesics:

Theorem 1.1. For every D > 0, there are points X,Y,Z ∈ T (S) and Thurston geodesic
segments G1 and G2 starting from X and ending in Y with the following properties.

(1) Geodesics G1 and G2 do not fellow travel each other; the point Z lies in path G1 but is
at least D away from any point in G2.

(2) The geodesic G1 parameterized in any way in the reverse direction is not a geodesic. In
fact, the point Z is at least D away from any point in any geodesic connecting Y to X.

In view of these examples, one may ask whether geodesics connecting X to Y have any
common features. There is a mantra that all notions of a straight line in Teichmüller space
behave the same way at the level of the curve graph. That is, the shadow of any such line to the
curve graph is a reparameterized quasi-geodesic. This has already been shown for Teichmüller
geodesics [15], lines of minima [8], grafting rays [7], certain geodesics in the Weil–Petersson
metric [6], and Kleinian surface groups [18]. (See also [2] of an analogous result in Outer
Space.)

In this paper, we show the following theorem.

Theorem 1.2. The shadow of a Thurston geodesic to the curve graph is a reparameterized
quasi-geodesic.

Since the curve graph is Gromov hyperbolic [15], quasi-geodesics with common endpoints
fellow travel. Hence:
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Corollary 1.3. The shadow to the curve graph of different Thurston geodesics connecting
X to Y fellow travel each other.

This builds on the analogy established in [14] between Teichmüller geodesics and Thurston
geodesics. We showed that if the Teichmüller geodesic connecting X and Y stays in the thick
part of Teichmüller space, so does any Thurston geodesic connecting X to Y and in fact all
these paths fellow travel each other. However, this analogy does not extend much further; we
show that the converse of the above statement is not true:

Theorem 1.4. There is an ε0 > 0 such that, for every ε > 0, there are points X,Y ∈ T (S)
and a Thurston geodesic connecting X to Y that stays in the ε0-thick part of Teichmüller
space, whereas the associated Teichmüller geodesic connecting X to Y does not stay in the
ε-thick part of Teichmüller space.

In particular, this means that the set of short curves along a Teichmüller geodesic and a
Thurston geodesic are not the same.

1.1. Outline of the proof

To prove Theorem 1.2, one needs a suitable definition for when a curve is sufficiently horizontal
along a Thurston geodesic. This is in analogy with both the study of Teichmüller geodesics and
geodesics in Outer space after [2, 15]. In the Teichmüller metric, geodesics are described by a
quadratic differential, which in turn defines a singular flat structure on a Riemann surface. The
flat metric is then deformed by stretching the horizontal foliation and contracting the vertical
foliation of the flat surface. If a curve is not completely vertical, then its horizontal length grows
exponentially fast along the Teichmüller geodesic. Similarly, for Outer space, the geodesics are
described as folding paths associated to train-tracks. If an immersed curve has a sufficiently
long legal segment at a point along a folding path, then the length of the horizontal segment
grows exponentially fast along the folding path. These two facts, respectively, play important
roles in the proofs of the hyperbolicity of curve complexes and free factor complexes.

The notion of horizontal foliation in the setting of Teichmüller geodesics is replaced by
the maximally stretched lamination in the setting of Thurston geodesics (see Subsection 2.9).
However, it is possible for a curve α on the surface to fellow travel the maximally stretched
lamination λ for a long time only to have its length go down later along the Thurston geodesic.
That is, the property of fellow-traveling λ geometrically does not persist (see Example 4.4).

In Section 4, we define the notion of a curve α being sufficiently horizontal along a Thurston
geodesic to mean that α fellow travels λ for sufficiently long time both topologically and
geometrically. We show that if a curve is sufficiently horizontal at a point along a Thurston
geodesic, then it remains sufficiently horizontal throughout the geodesic, with exponential
growth of the length of its horizontal segment (Theorem 4.2). In Section 5, we define a projection
map from the curve complex to the shadow of a Thurston geodesic sending a curve α first to
the earliest time in the Thurston geodesic where α is sufficiently horizontal and then to a curve
of bounded length at that point. We show in Theorem 5.6 that this map is a coarse Lipschitz
retraction. Theorem 1.2 follows from this fact using a standard argument. In Section 6, we
construct the examples of Thurston geodesics that illustrate the deviant behaviors of Thurston
geodesics from Teichmüller geodesics, as indicated by Theorems 1.1 and 1.4.

The proof is somewhat technical, because all we know about a Thurston geodesic is that
the length of the maximally stretched lamination (which may not be a filling lamination) is
growing exponentially. Using this and some delicate hyperbolic geometry arguments, we are
able to control the geometry of the surface. For the ease of exposition, we have collected several
technical lemmas in Section 3. These statements should be intuitively clear to a reader familiar
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with hyperbolic geometry and the proofs can be skipped in the first reading of the paper.
Section 6 is also less technical and can be read independently from the rest of the paper.

2. Background

We briefly review some background material needed for this paper. We refer the reader to
[13, 19, 22] and the references therein for background on hyperbolic surfaces and the Thurston
metric on Teichmüller space.

2.1. Notation

We adopt the following notation to simplify some calculations. Call a constant C universal if
it depends only on the topological type of a surface, and not on a hyperbolic metric on the
surface. Then, given a universal constant C and two quantities a and b, we write

(i) a
∗≺ b if a � Cb;

(ii) a ∗� b if a
∗≺ b and b

∗≺ a;
(iii) a

+
≺ b if a � b+ C;

(iv) a
+� b if a

+
≺ b and b

+
≺ a;

(v) a ≺ b if a � Cb+ C;
(vi) a � b if a ≺ b and b ≺ a.

We will also write a = O(1) to mean a
∗≺ 1.

2.2. Coarse maps

Given two metric spaces X and Y, a multivalued map f : X → Y is called a coarse map if the
image of every point has uniformly bounded diameter. The map f is (coarsely) Lipschitz if
dY(f(x), f(y)) ≺ dX (x, y) for all x, y ∈ X , where

dY(f(x), f(y)) = diamY(f(x) ∪ f(y)).

Given a subset A ⊂ X , a coarse Lipschitz map f : X → A is a coarse retraction if dX (a, f(a)) =
O(1) for all a ∈ A.

2.3. Curve graph

Let S be a connected oriented surface of genus g with p punctures with 3g + p− 4 � 0. By
a curve on S we will mean an essential simple closed curve up to free homotopy. Essential
means the curve is not homotopic to a point or a puncture of S. For two curves α and β,
let i(α, β) be the minimal intersection number between the representatives of α and β. Two
distinct curves are disjoint if their intersection number is 0. A multicurve on S is a collection
of pairwise disjoint curves. A pair of pants is homeomorphic to a thrice-punctured sphere. A
pants decomposition on S is a multicurve whose complement in S is a disjoint union of pairs
of pants.

We define the curve graph C(S) of S as introduced by Harvey [11]. The vertices of C(S) are
curves on S, and two curves span an edge if they intersect minimally on S. For a surface with
3g + p− 4 > 0, the minimal intersection number is 0; for the once-punctured torus, the minimal
intersection number is 1; and for the four-times punctured sphere, the minimal intersection
number is 2. The curve graph of a pair of pants is empty since there are no essential curves.
By an element or a subset of C(S), we will always mean a vertex or a subset of the vertices
of C(S).

Assigning each edge of C(S) to have length 1 endows C(S) with a metric structure. Let
dC(S)(�, �) be the induced path metric on C(S). The following fact will be useful for bounding
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curve graph distances [21]: for any α, β ∈ C(S),

dC(S)(α, β) � log2 i(α, β) + 1. (1)

By [15], for any surface S, the graph C(S) is hyperbolic in the sense of Gromov. More
recently, it was shown contemporaneously and independently by [1, 5, 9, 12] that there is a
uniform δ such that C(S) is δ-hyperbolic for all S.

2.4. Teichmüller space

A marked hyperbolic surface is a complete finite-area hyperbolic surface equipped with a fixed
homeomorphism from S. Two marked hyperbolic surfaces X and Y are considered equivalent
if there is an isometry from X to Y in the correct homotopy class. The collection of equivalence
classes of all marked hyperbolic surfaces is called the Teichmüller space T (S) of S. This space
T (S) equipped with its natural topology is homeomorphic to R

6g−6+2p.

2.5. Short curves and collars

Given X ∈ T (S) and a simple geodesic ω on X, let �X(ω) be the arc length of ω. Since X
is marked by a homeomorphism to S, its set of curves is identified with the set of curves
on S. For a curve α on S, let �X(α) = �X(α∗), where α∗ is the geodesic representative of α
on X. A curve is called a systole of X if its hyperbolic length is minimal among all curves.
Given a constant C, a multicurve on X is called C-short if the length of every curve in the
set is bounded above by C. The Bers constant εB = εB(S) is the smallest constant such that
every hyperbolic surface X admits an εB-short pants decomposition. In most situations, we
will assume a curve or multicurve is realized by geodesics on X.

We state the well-known Collar Lemma with some additional properties (see [13,
Subsection 3.8]).

Lemma 2.1 (Collar Lemma). Let X be a hyperbolic surface. For any simple closed geodesic
α on X, the regular neighborhood about α

U(α) =
{
p ∈ X | dX(p, α) � sinh−1 1

sinh(0.5�X(α))

}
is an embedded annulus. If two simple closed geodesics α and β are disjoint, then U(α) and
U(β) are disjoint. Moreover, given a simple closed geodesic α and a simple geodesic ω (not
necessarily closed, but complete), if ω does not intersect α and does not spiral toward α, then
it is disjoint from U(α).

We will refer to U(α) as the standard collar of α. There is a universal upper and lower bound
on the arc length of the boundary of U(α) provided that α is εB-short.

Using the convention

log(x) =

{
ln(x) if x � e,

1 if x � e,
(2)

we note that, for 0 � x � εB ,

sinh−1(1/ sinh(0.5x))
+� log(1/x).

A consequence of the Collar Lemma is the existence of a universal constant δB such that if
a curve β intersects an εB-short curve α, then

�X(β) � i(α, β)δB .



SHADOW OF A THURSTON GEODESIC TO THE CURVE GRAPH 1089

Also, for any geodesic segment ω,

�X(ω) � (i(α, ω) − 1)δB .

We will refer to δB as the dual constant to the Bers constant εB .

2.6. Various notions of twisting

In this section, we will define several notions of relative twisting of two objects or structures
about a simple closed curve γ. The notation will always be twistγ(�, �).

First suppose A is a compact annulus and γ is the core curve of A. Given two simple arcs η
and ω with endpoints on the boundary of A, we define

twistγ(η, ω) = i(η, ω),

where i(η, ω) is the minimal number of interior intersections between isotopy classes of η and
ω fixing the endpoints pointwise.

Now suppose that γ is a curve in S. The annular cover Â of S corresponding to 〈γ〉 < π1(S)
can be compactified in an intrinsic way. Let γ̂ be the core curve of Â. Given two simple geodesics
or curves η and ω in S, let η̂ and ω̂ be any lifts to Â that join the boundary of Â (such lifts
exist when η and ω intersect γ). The relative twisting of η and ω about γ is

twistγ(η, ω) = twistγ̂(η̂, ω̂).

This definition is well defined up to an additive error of 1 with different choices of η̂ and ω̂.
Now suppose X ∈ T (S) and let ω be a geodesic arc or curve in X. We want to measure

the number of times ω twists about γ in X. To do this, represent γ by a geodesic and lift
the hyperbolic metric of X to the annular cover Â. Let τ̂ be any geodesic perpendicular to γ̂
joining the boundary of Â. We define the twist of ω about γ on X to be

twistγ(ω,X) = i(ω̂, τ̂),

where ω̂ is any lift of ω joining the boundary of Â. Since there may be other choices of τ̂ , this
notion is well defined up to an additive error of at most one. Note that if twistγ(ω,X) = 0 and
twistγ(η, ω) = n, then twistγ(η,X)

+� n.
When γ is εB-short, fix a perpendicular arc τ to the standard collar U(γ), then the quantity

i(ω, τ) differs from twistγ(ω,X) by at most one [17, Lemma 3.1].
Given X,Y ∈ T (S), the relative twisting of X and Y about γ is

twistγ(X,Y ) = i(τ̂X , τ̂Y ),

where τ̂X is an arc perpendicular to γ̂ in the metric X, and τ̂Y is an arc perpendicular to
γ̂ in the metric Y . Again, choosing different perpendicular arcs changes this quantity by at
most one.

2.7. Subsurface projection and bounded combinatorics

Let Σ ⊂ S be a compact and connected subsurface such that each boundary component of Σ is
an essential simple closed curve. We assume that Σ is not a pair of pants or an annulus. From
[16], we recall the definition of subsurface projection πΣ : C(S) → P(C(Σ)) from the curve
graph of S to the space of subsets of the curve graph of Σ.

Equip S with a hyperbolic metric and represent Σ as a convex set with geodesic boundary.
(The projection map does not depend on the choice of the hyperbolic metric.) Let Σ̂ be the
Gromov compactification of the cover of S corresponding to π1(Σ) < π1(S). There is a natural
homeomorphism from Σ̂ to Σ, which allows us to identify C(Σ̂) with C(Σ). For any curve α on
S, let α̂ be the closure of the lift of α in Σ̂. For each component β of α̂, let Nβ be a regular
neighborhood of β ∪ ∂Σ̂. The isotopy class of each component β′ of ∂Nβ , with isotopy relative
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to ∂Σ̂, can be regarded as an element of P(C(Σ)); β′ is the empty set if β′ is isotopic into ∂Σ̂.
We define

πΣ(α) =
⋃

β⊂α̂

⋃
β′⊂∂Nβ

{β′}.

The projection distance between two elements α, β ∈ C(S) in Σ is

dC(Σ)(α, β) = diamC(Σ)(πΣ(α) ∪ πΣ(β)).

Given a subset K ⊂ C(S), we also define πΣ(K) =
⋃

α∈K πΣ(α), and the projection distance
between two subsets of C(S) in Σ is likewise defined. For any Σ ⊂ S, the projection map πΣ is
a coarse Lipschitz map [16].

For any X ∈ T (S), a pants decomposition P on X is called short if
∑

α⊂P �X(α) is
minimized. Note that a short pants decomposition is always εB-short, and two short pants
decompositions have bounded diameter in C(S).

Let X1,X2 ∈ T (S). For i = 1, 2, let Pi be a short pants decomposition on Xi. We will say
X1 and X2 have K-bounded combinatorics if there exists a constant K such that the following
two properties hold.

(i) For Σ = S, or Σ a subsurface of S,

dC(Σ)(P1,P2) � K.

(ii) For every curve γ in S
twistγ(X1,X2) � K.

2.8. Geodesic lamination

Let X be a hyperbolic metric on S. A geodesic lamination μ is a closed subset of S which is a
union of disjoint simple complete geodesics in the metric of X. These geodesics are called leaves
of μ, and we will call their union the support of μ. A basic example of a geodesic lamination
is a multicurve (realized by its geodesic representative).

Given another hyperbolic metric on S, there is a canonical one-to-one correspondence
between the two spaces of geodesic laminations. We therefore will denote the space of geodesic
laminations on S by GL(S) without referencing to a hyperbolic metric. The set GL(S) endowed
with the Hausdorff distance is compact. A geodesic lamination is said to be chain-recurrent if
it is in the closure of the set of all multicurves.

A transverse measure on a geodesic lamination μ is a Radon measure on arcs transverse to
the leaves of the lamination. The measure is required to be invariant under projections along
the leaves of μ. When μ is a simple closed geodesic, the transverse measure is just the counting
measure times a positive real number. It is easy to see that an infinite isolated leaf spiraling
toward a closed leaf cannot be in the support of a transverse measure.

The stump of a geodesic lamination μ is a maximal (with respect to inclusion) compactly
supported sublamination of μ which admits a transverse measure of full support.

2.9. Thurston metric

In this section, we will give a brief overview of the Thurston metric, sometimes referred to
as the Lipschitz metric or Thurston’s ‘asymmetric’ metric in the literature. All facts in this
section are due to Thurston and contained in [22]. We also refer the reader to [19] for additional
reference.

Given X,Y ∈ T (S), the distance from X to Y in the Thurston metric is defined to be

dTh(X,Y ) = log L(X,Y ),
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where L(X,Y ) is the infimum of Lipschitz constants over all homeomorphisms from X to Y in
the correct homotopy class. Since the inverse of a Lipschitz map is not necessarily Lipschitz,
there is no reason for the metric to be symmetric. In fact, L(X,Y ) is in general not equal to
L(Y,X), as shown in the example on page 5 of [22].

Thurston showed that the quantity L(X,Y ) can be computed using ratios of lengths of curves
on S.

Theorem 2.2 [22]. For any X,Y ∈ T (S),

L(X,Y ) = sup
α

�Y (α)
�X(α)

,

where α ranges over all curves on S.

The length function extends continuously to measured laminations, and the space of
projectivized measured laminations is compact. Hence there is a measured lamination that
realizes the supremum above. It might not be unique, but one can assign to an ordered
pair (X,Y ) a geodesic lamination μ(X,Y ) admitting a transverse measure that contains the
supports of all the measured laminations realizing the supremum.

For any sequence {αi} of curves on S with limi→∞ �Y (αi)/�X(αi) → L(X,Y ), let α∞ be a
limiting geodesic lamination of {αi} in the Hausdorff topology. Set

λ(X,Y ) =
⋃

{α∞},
where the union on the right-hand side ranges over the limits of all such sequences. Thurston
showed that λ(X,Y ) is a geodesic lamination, called the maximally stretched lamination
from X to Y , which contains μ(X,Y ) as its stump. Moreover, there is a L(X,Y )-Lipschitz
homeomorphism from X to Y in the correct homotopy class that stretches λ(X,Y ) by L(X,Y )
and whose local Lipschitz constant outside λ(X,Y ) is strictly less than L(X,Y ). In particular,
the infimum is realized in the definition of L(X,Y ) and dTh(X,Y ). The existence of such a map
follows from the fact that one can connect X to Y by a concatenation of finitely many stretch
paths (see Subsection 2.10), all of which contain λ(X,Y ) in its stretch locus. We will call a
homeomorphism f : X → Y optimal if f is a L(X,Y )-Lipschitz map. Note that our sense of
‘optimal’ is more in the sense of L∞ metric than L1, since we only require the global Lipschitz
constant to be minimized.

Thurston showed that T (S) equipped with the Thurston metric is a (asymmetric) geodesic
metric space. That is, for any X,Y ∈ T (S), there exists a geodesic from X to Y , that is,
a parameterized path G : [0, d] → T (S) such that d = dTh(X,Y ), G(0) = X, G(d) = Y , and
for any 0 � s < t � d, dTh(G(s),G(t)) = t− s. Any geodesic from X to Y is characterized by
the property that the maximally stretched lamination λ(X,Y ) is stretched maximally at all
times. Thus, there is only one such geodesic only when λ(X,Y ) is a maximal lamination (the
complement of λ(X,Y ) are ideal triangles). In general, the set of geodesics from X to Y can
have uncountable cardinality: the idea is that one is free to deform any part of the surface that
is not forced to be maximally stretched. We refer to the proof of Theorem 1.1 in Section 6 for
an example of such deformation.

Given a geodesic segment G : [a, b] → T (S), we will often denote by λG the maximally
stretched lamination from G(a) to G(b). The maximally stretched lamination is well defined for
geodesic rays or bi-infinite geodesics. Suppose G : R → T (S) is a bi-infinite geodesic. Consider
two sequences {tn}n, {sm}m ⊂ R with

lim
n→∞ tn −→ ∞ and lim

m→∞ sm −→ −∞.

Set Xm = G(sm) and Yn = G(tn). The sequence λ(Xm, Yn) is increasing by inclusion as m,n→
∞, hence λ =

⋃
m,n λ(Xm, Yn) is defined. The lamination λ is independent of the sequences Xm
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Figure 1. The annuli A0 and At are obtained by gluing two ideal triangles. The shifts for At

are et times those of A0.

and Yn, hence λ = λG is the maximally stretched lamination for G. Similarly, the maximally
stretched lamination λG is defined for a geodesic ray G : [a,∞) → T (S).

Throughout this paper, we will always assume that Thurston geodesics are parameterized
by arc length.

2.10. Stretch paths

To prove T (S) is a geodesic metric space, Thurston introduced a special family of geodesics
called stretch paths. Namely, let λ be a maximal geodesic lamination (all complementary
components are ideal triangles). Then λ, together with a choice of basis for relative homology,
defines shearing coordinates on Teichmüller space (see [3]). In fact, in this situation, the choice
of basis does not matter. For any hyperbolic surface X, and time t, define stretch(X,λ, t) to
be the hyperbolic surface where the shearing coordinates are et times the shearing coordinates
at X. That is, the path t �→ stretch(X,λ, t) is a straight line in the shearing coordinate system
associated to λ. Thurston showed [22] that this path is a geodesic in T (S).

In the case where λ is a finite union of geodesics, the shearing coordinates are easy to
understand. An ideal triangle has an inscribed circle tangent to each edge at a point which
we refer to as an anchor point. Then the shearing coordinate associated to two adjacent ideal
triangles is the distance between the anchor points coming from the two triangles (see Figure 1).
To obtain the surface stretch(X,λ, t), one has to slide every pair of adjacent triangles against
each other such that the distance between the associated pairs of anchor points is increased by
a factor of et.

2.11. An example

We illustrate some possible behaviors along a stretch path in the following basic example.
Fix a small 0 < ε� 1. Let A0 be an annulus which is glued out of two ideal triangles as

follows. One pair of the sides is glued with a shift of 2, and another pair is glued with a shift
of 2 + 2ε, as in Figure 1. That is, if p, p′ are the anchor points associated to one triangle and
q, q′ are anchor points associated to the other triangle, and the sides containing p and q are
glued, and same for p′ and q′, then the segments [p, q] and [p′, q′] have lengths 2 and 2 + 2ε,
respectively. Note that by adding enough ideal triangles to this construction and gluing them
appropriately, one can obtain a hyperbolic surface of arbitrarily large complexity. For example,
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adding an ideal triangle to the top and to the bottom of A0 with zero shift and then identifying
the top edges with zero shift and the bottom edges with zero shift gives rise to a hyperbolic
surface X0 which is topologically a sphere with four points removed. Also, the sides of the four
ideal triangles define a maximal geodesic lamination λ on X0. When two triangles are glued
with zero shift, the associated shearing coordinate remains unchanged under a stretch map.
Hence, we concentrate on how the geometry of A0 changes only.

Let r and r′ be the midpoints of [p, q] and [p′, q′]. There is an isometry of A0 that switches
the two triangles and fixes r and r′. Hence, if γ is the core curve of the annulus A0, then
the geodesic representative of γ, which is unique and is fixed by this isometry, passes through
points r and r′.

Define Xt = stretch(X0, λ, t). We give an estimate for the hyperbolic length of γ at Xt for
t ∈ R+.

Claim. For t ∈ R+, we have �Xt
(γ) ∗� εet + e−et

.

Proof. Let At be the annulus obtained by gluing two triangles when the shifts are 2et and
(2 + 2ε)et and let pt, qt, rt and r′t be points that are defined similar to p, q, r, and r′ in A0. The
geodesic representative of the core curve of At, which we still denote by γ, passes through the
points rt and r′t. Denote the length of the segment [rt, r′t] by d(rt, r′t). Then

�Xt
(γ) = 2d(rt, r′t).

To estimate d(rt, r′t), we work in one of the ideal triangles. Let st ∈ [pt, qt] be the point that
is on the same horocycle as r′t. Consider the triangle [rt, r′t] ∪ [r′t, st] ∪ [st, rt]. By the triangle
inequality, we have

d(rt, r′t) � d(rt, st) + d(st, r
′
t) � 2max{d(rt, st), d(st, r

′
t)}.

On the other hand, the angle between the segments [r′t, st] and [st, rt] is at least π
2 , which

implies that the side [rt, r′t] is the largest of the triangle. Hence, we also have

d(rt, r′t) � max{d(rt, st), d(st, r
′
t)}.

That is, up to a multiplicative error of at most 4, the length �t(γ) is d(rt, st) + d(st, r
′
t). The

distance d(st, r
′
t) is asymptotically (as t→ +∞) equal to the length of the horocycle between

st and r′t. It is straightforward to see that since d(pt, st) = et(1 + ε), the length of the horocycle
is e−et(1+ε). Also d(rt, st) = εet, and we have

�Xt
(γ) ∗� εet + e−et(1+ε).

The second term in the sum can be replaced with e−et

without increasing the multiplicative
error by much. This is true because the first term εet in the sum is bigger than the second
term when εet is bigger than 1. This proves the claim.

We can now approximate the minimum of �Xt
(γ) for t ∈ R+. At t = 0 and t = log 1

ε the
length of γ is basically 1. If ε is small enough, there is t0 > 0 such that εet0 = e−et0 . Then we
have

�Xt
(γ) ∗�

{
e−et

, t < t0,

εet, t > t0.

This means in particular that the length of γ decreases super-exponentially fast, reaches its
minimum, and grows back up exponentially fast. We will not compute the exact value of t0,
but if we take log twice we see that t0

+� log log(1/ε), with additive error at most log 2. Then
�t0(γ)

∗� ε log(1/ε) and this is, up to a multiplicative error, the minimum of �Xt
(γ).
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The reason the curve γ gets short and then long again is because it is more efficient to twist
around γ when γ is short. To see this, we estimate the relative twisting of X0 and Xt around
γ at t = log(1/ε), that is when the length of γ grew back to approximately 1. The lamination
λ is nearly perpendicular to γ at X0 and does not twist around it. Hence, we need to compute
how many times it twists around γ in Xt.

For a fixed t > 0, choose lifts γ̃ and λ̃ to H of the geodesic representative of γ and of the
leaf of λ containing [pt, qt], such that γ̃ and λ̃ intersect. Let � be the length of the orthogonal
projection of λ̃ to γ̃. Then (see [17, Section 3])

twistγ(λ,Xt)
+� �

�Xt
(γ)

.

To find �, we note that cosh �/2 = 1/sinα, where α is the angle between γ̃ and λ̃. In the triangle
[rt, r′t] ∪ [r′t, st] ∪ [st, rt], α is the angle between segments [st, rt] and [rt, r′t]. Let β be the angle
between [r′t, st] and [st, rt]. Since β is asymptotically π/2, by the hyperbolic sine rule, we have

cosh �/2 ∗� sinh d(r′t, rt)
sinh d(r′t, st)

.

Assuming t = log(1/ε), we have sinh d(r′t, rt)
∗� 1 and sinh d(r′t, st)

∗� e−1/ε which implies �
+�

2/ε. Hence

twistγ(λ,Xlog(1/ε))
∗� 1
ε
.

To summarize, the surface Xlog(1/ε) is close to Dn
γ (X0), where Dγ is a Dehn twist around γ

and n
∗� 1/ε. The stretch path stretch(X0, λ, t) from X0 to Xlog(1/ε) changes only an annular

neighborhood of γ, first decreasing the length of γ super-exponentially fast to ε log(1/ε) and
then increasing it exponentially fast. In fact, further analysis shows that essentially all the
twisting is done near the time t0 when the length of γ is minimum.

2.12. Shadow map

For any X ∈ T (S), the set of systoles on X has uniformly bounded diameter in C(S). We will
call the coarse map π : T (S) → C(S) sending X to the set of systoles on X the shadow map.
The following lemma shows that the shadow map is Lipschitz.

Lemma 2.3. The shadow map π : T (S) → C(S) satisfies, for all X,Y ∈ T (S),

dC(S)(π(X), π(Y )) ≺ dTh(X,Y ).

Proof. LetX,Y ∈ T (S) and letK = L(X,Y ). Let α be a systole onX and let β be a systole
on Y . Recall that εB is the Bers constant and δB its dual constant defined in Subsection 2.5.
We have �X(α) � εB and �Y (β) � εB . Now

i(α, β) � �Y (α)
δB

� K�X(α)
δB

� K
εB
δB
.

Therefore, equation (1) implies dC(S)(α, β) ≺ logK = dTh(X,Y ).

For simplicity, we will often write dC(S)(X,Y ) := dC(S)(π(X), π(Y )).

3. Hyperbolic geometry

In this section, we establish some basic properties of the hyperbolic plane H and hyperbolic
surfaces. Many of these results are known in spirit, but to our knowledge the exact statements
do not directly follow from what is written in the literature.



SHADOW OF A THURSTON GEODESIC TO THE CURVE GRAPH 1095

Recall that H is Gromov hyperbolic, that is, there is a constant δH such that all triangles in
H are δH slim: every edge of a triangle is contained in a δH-neighborhood of the union of the
other two edges.

3.1. Geodesic arcs on hyperbolic surfaces

Let α be a simple closed geodesic on a hyperbolic surface X and let U(α) be the standard collar
of α. When ω is a geodesic segment contained in U(α) with endpoints p and p′, we denote the
distance between p and p′ in U(α) by dU(α)(ω). The following lemma can be read as saying
that all the twisting around a curve α takes place in U(α).

Lemma 3.1. Let P be a pair of pants in a hyperbolic surface X with geodesic boundary
lengths less than εB . For each connected component α ⊂ ∂P, there is an arc τα in U(α)
perpendicular to α such that the following holds. Any finite subarc ω of a simple complete
geodesic λ that is contained in P can be subdivided into three pieces

ω = ωα ∪ ω0 ∪ ωβ

such that

(a) the interior of ω0 is disjoint from every U(γ), for γ ⊂ ∂P, and �X(ω0) = O(1);
(b) the segment ωα, α ⊂ ∂P, is contained in U(α) and intersects any curve in U(α) that

is equidistant to α at most once. That is, as one travels along ωα, the distance to α
changes monotonically. Furthermore,

�X(ωα)
+� i(τα, ω)�(α) + dU(α)(ωα),

(c) the same holds for ωβ (α and β may be the same curve).

Proof. Note that if ω intersects U(α), then by Lemma 2.1, λ either intersects α or spirals
toward α. This implies that ω intersects at most two standard collars, say U(α) and U(β). We
allow the possibility that α = β. Let ωα = ω ∩ U(α), ωβ = ω ∩ U(β), and ω0 be the remaining
middle segment. In P , there is a unique geodesic segment η perpendicular to α and β. Set
τα = η ∩ U(α) and τβ = η ∩ U(β). If α = β, then η is the unique simple segment intersecting
U(α) twice and perpendicular to α, and τα and τβ are the two components of η in U(α). In
the universal cover, a lift ω̃ of ω is in a 2δH-neighborhood of the union of a lift α̃ of α, a lift β̃
of β and a lift η̃ of η.

In fact, a point in ω̃ is either in a δB-neighborhood of α̃ ∪ β̃, where δB is the dual constant
to εB , or is uniformly close to η̃. This fact has two consequences. First, because U(α) and
U(β) have thicknesses bigger than δB , the lift ω̃′ of ω′ is contained in a uniform bounded
neighborhood of η̃ and hence, the length of ω′ is comparable to the length of η outside of U(α)
and U(β), which is uniformly bounded.

Secondly, ω̃α is in a δH-neighborhood of τ̃α and α̃. The portion that is in the neighborhood
of τ̃α has a length that is, up to an additive error, equal to dU(α)(ωα). The portion that is in
the neighborhood of α̃ has a length that is (up to an additive error) equal to

i(τα, ωα)�(α).

The formula in part (b) follows from adding these two estimates.
The only remaining point is that, in the above, the choice of τα depends on β. However, we

observe that the choice of τα is not important and for any other segment τ ′α perpendicular to
α that spans the width of U(α), we have

i(τα, ωα)
+� i(τ ′α, ωα).

This completes the proof.
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Let X ∈ T (S) and P be a pair of pants in X with boundary lengths at most εB . Roughly
speaking, the following technical lemma states that if a subsegment ω of λ intersects a closed
(non-geodesic) curve γ enough times and the consecutive intersection points are far enough
apart, then ω cannot be contained in P .

Lemma 3.2. There exist D0 > 0 and K0 > 0 with the following property. Let γ be a simple
closed curve (γ may not be a geodesic) that intersects ∂P and let ω be a simple geodesic in P
where the consecutive intersections of ω with γ are at least D0 apart in ω. Let ω be a subarc
of ω with endpoints on γ, and let ω1 and ω2 be the connected components of ω�ω. Then at
least one of ω, ω1, or ω2 has length bounded by K0 (�X(γ) + 1).

Proof. For i = 1, 2, let pi be the endpoint of ω that is also an endpoint of ωi. Let αi be
the boundary curve of P with pi ∈ U(αi), where U(αi) is the standard collar of αi. If pi does
not belong in any of the collar neighborhoods of a curve in ∂P , then we choose αi arbitrarily.
For simplicity, denote U(αi) by Ui and let ωi be the component of ω ∩ Ui with endpoint pi (ωi

may be empty). It is enough to show that, for i = 1, 2, we have either

�X(ωi) ≺ �X(γ) or �X(ωi) ≺ �X(γ). (3)

This is because if ω1 and ω2 are both very long, then equation (3) implies that ω1 and ω2 both
have length bounded by �X(γ) up to a small error. Since the middle part of ω has bounded
length (Lemma 3.1), this implies the desired upper bound for the length of ω.

We now prove equation (3). The point pi subdivides Ui into two sets Vi and Wi, where Vi and
Wi are regular annuli (their boundaries are equidistance curves to α) with disjoint interiors
and pi is on the common boundary of Vi and Wi. By part (c) of Lemma 3.1, one of these
annuli contains ωi and the other contains ωi. Also, since γ passes through pi, it intersects both
boundaries of either Vi or Wi.

Let V be either Vi or Wi such that γ intersects both boundaries of V and let η be either ωi

or ωi that is contained in V . We want to show

�X(η) ≺ �X(γ),

which is equivalent to equation (3).
From Lemma 3.1, we have

�X(η)
+� i(η, τβ)�X(α) + dV (η). (4)

Let σ be the geodesic representative of the subarc of γ connecting the boundaries of V . Then

d(η, V )
+
≺ �X(σ) � �X(γ). (5)

The intersection numbers between arcs in an annulus satisfy the triangle inequality up to a
small additive error. Hence,

i(η, τα)
+
≺ i(η, σ) + i(σ, τα) � i(η, γ) + i(σ, τα). (6)

Let D0 > εB be any constant. By assumption, consecutive intersections of ω with γ are at
least D0 apart in ω. We have i(η, γ) � (1/D0)�X(η). Also, i(σ, τα) � �X(σ)/�X(α) + 1. These
facts and equation (6) imply

i(η, τα)
+
≺ 1
D0

�X(η) +
�X(σ)
�X(α)

.



SHADOW OF A THURSTON GEODESIC TO THE CURVE GRAPH 1097

Combining this with equations (4) and (5), we have

�X(η)
+
≺

(
1
D0

�X(η) +
�X(σ)
�X(α)

)
�X(α) + �X(γ)

� εB
D0

�X(η) + 2�X(γ).

That is, (
1 − εB

D0

)
�X(η)

+
≺ 2�X(γ).

The constant 1 − εB/D0 is positive, since D0 > εB . So taking K0 sufficiently larger than
2(1 − εB/D0)−1 completes the proof.

Lemma 3.3. Let X ∈ T (S) and let α be a simple closed geodesic in the hyperbolic metric
of X. Let ω be a simple geodesic arc in X. If

i(ω, α) � 3,

then any curve γ in the homotopy class of α that is disjoint from α intersects ω at least once.

Remark 3.4. Note that the statement is sharp in the sense that if γ is not disjoint from
α or if ω intersects α less than three times, γ can be disjoint from ω.

Proof. Curves α and γ as above bound an annulus A in X. Suppose that ω intersects α at
points p1, p2 and p3, the points being ordered by their appearances along ω. For i = 1, 2, let
[pi, pi+1] be the segment of ω between pi and pi+1. Since α and ω are geodesics, their segments
cannot form bigons. Therefore, one of the segments [p1, p2] and [p2, p3] intersects the interior,
and therefore both boundary components of A.

3.2. We now prove several useful facts about geodesics in the hyperbolic plane.

Proposition 3.5. Let φ : H → H be a hyperbolic isometry with axis γ and translation
length �(φ) � ε for some ε > 0. Suppose that α and β are two geodesic lines such that the
following two conditions hold:

(1) α and β intersect γ at the points a and b, respectively, with dH(a, b) � ε;
(2) let c be the point on β which is closest to α (the intersection point between α and β if

they intersect). Assume dH(c, b) � 2ε.

Fix an endpoint β+ of β and let α+ be the endpoint of α that is on the same side of γ as
β+. Then, there exists k ∈ Z such that α+ is between β+ and φk(β+) and |k|�(φ) � 4ε+ 3.

Proof. We assume that β+ is the endpoint of the ray
−→
cb (see Figure 2). The case when β+

is the endpoint of
−→
bc is similar.

By exchanging φ with φ−1 if necessary, then we may assume that α+ is between β+ and the
attracting fixed point γ+ of φ. Let k be a positive integer with

3ε+ 3 � k�(φ) � 4ε+ 3.

Such a k exists since �(φ) � ε. Let β′ = φk(β), b′ = φk(b) and β′
+ = φk(β+).

Since k�(φ) � ε, we know a is between b and b′. To show α+ is between β+ and β′
+, we need

to show that the rays −−→aα+ and
−−→
b′β′

+ do not intersect. Note that

dH(b′, a) = dH(b′, b) − dH(a, b) � (3ε+ 3) − ε = 2ε+ 3 > dH(a, b).
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Figure 2. An endpoint of α is sandwiched between β and its close translate.

Let A = ∠α−aγ− = ∠α+aγ+ and B = ∠β−bγ+ = ∠β′
+b

′γ−. If α and β are disjoint, then −−→aα+

and
−−→
b′β′

+ are also disjoint and we are done. Hence, we can assume that α and β intersect at c.
Using the law of cosines, −−→aα+ and

−−→
b′β′

+ do not intersect if

sinA sinB cosh dH(a, b′) − cosA cosB � cos 0 = 1. (7)

Since dH(a, b′) � 2ε+ 3,

cosh dH(a, b′) � cosh(2ε+ 3) >
e2ε+3

2
.

Hence, by equation (7), it suffices to show that

e2ε+3

2
� 1 + cosA cosB

sinA sinB
. (8)

Before starting the calculations, we make an elementary observation. For any y > 0, the
function

f(x) =
sinh(x+ y)

sinhx

is decreasing and f(x) � 2ey for all x � y. This is because f ′(x) = − sinh(y)/sinh2(x) < 0.
Hence, for all x � y,

f(x) � f(y) =
sinh 2y
sinh y

= 2 cosh y � 2ey.

We argue in three cases. Suppose A > π/2. Since dH(c, a) � dH(c, b) − dH(a, b) � ε, we have

1 + cosA cosB
sinA sinB

=
1 − cos(π −A) cosB

sinA sinB
� sin2(max{A,B})

sin2(min{A,B})

=
sin2A

sin2B
=

sinh2 dH(c, b)
sinh2 dH(c, a)

�
sinh2

(
dH(c, a) + ε

)
sinh2 dH(c, a)

� 4e2ε.
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Figure 3. There is a lower bound on the distance between any point in Qp and any point in Qq.

Similarly, if B � π/2 instead, then

1 + cosA cosB
sinA sinB

� sinh2(dH(c, b) + �(φ))
sinh2(dH(c, b))

� 4e2ε.

In the case where both A and B are at most π/2, let w be the point on the segment ab which
is the foot of the perpendicular from c to ab. We have

1 + cosA cosB
sinA sinB

� 2
sinA sinB

= 2
sinh dH(c, a)
sinh dH(c, w)

sinh dH(c, b)
sinh dH(c, w)

� 2
sinh2(dH(c, w) + �(φ))

sinh2 dH(c, w)
� 8e2ε.

But 8e2ε < e2ε+3/2 and we are done.

We need some definitions for the next two lemmas. Let γ be a geodesic in H with endpoints
γ+ and γ−. Fix a δ-neighborhood U of γ and let p be any point on the boundary of U . The
geodesic through p with endpoint γ+ and the geodesic through p with endpoint γ− together
subdivide H into four quadrants. The quadrant disjoint from the interior of U will be called the
upper quadrant at p, and the quadrant diametrically opposite will be called the lower quadrant
at p.

Lemma 3.6. For every δ0 > 0 and M > 0, there is d0 > 0 such that the following holds (see
the left-hand side of Figure 3). Fix a geodesic γ in H and let U be the δ-neighborhood of γ with
δ � δ0. Let p and q be points on the same boundary component of U . Suppose dH(p, q) � M .
Then any point in the upper quadrant Qp at p is at least d0 away from any point in the lower
quadrant Qq at q.

Proof. It suffices to find a lower bound for dH(p, ξ), where ξ is the closest boundary
component of Qq to p. Assume that ξ has the endpoint γ−. Note that dH(p, ξ) increases with
dH(p, q), since any geodesic from γ− that intersects the boundary of U between p and q separates
p from ξ.
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Now fix dH(p, q) = M and see the right-hand side of Figure 3 for the rest of the proof. Fix a
perpendicular geodesic ν to γ and let ∂ be a boundary component of the M -neighborhood of ν.
Fix an endpoint ν− of ν and let ∂s be a boundary curve of the s-neighborhood of γ contained
in the complement H�γ determined by ν−. Let qs be the intersection of ν and ∂s and let ps

be the intersection of ∂ and ∂s. Let ξs be the geodesic through qs with endpoint γ− and let
β be the geodesic connecting γ− and ν−. Since β is asymptotic to ν, dH(ps, β) is increasing
as a function of s, and for s big enough, β separates ps from ξs. Therefore, there exist d1 > 0
and s1 � δ0 such that dH(ps, ξs) > dH(ps, β) > d1 > 0 for all s � s1. Finally, since dH(ps, ξs) is
continuous as a function of s and is only zero when s = 0, it is bounded away from zero on the
segment [δ0, s1]. This completes the proof.

Lemma 3.7. Given δ0 > 0 and M > 0, the constant d0 of Lemma 3.6 also satisfies the
following property. Let γ be a geodesic in H. Let U be the δ-neighborhood of γ with δ � δ0.
Let ω1 be a geodesic intersecting γ and let ω2 be the image of ω1 under an isometry fixing γ. Let
pi be the intersection of ωi with a fixed boundary component of U . Let ω+

1 be the component
of ω1 contained in the upper quadrant at p1. Suppose dH(p1, p2) � M . Then dH(ω+

1 , ω2) � d0.

Proof. Let ω+
2 be the component of ω2 contained in the upper quadrant at p2. By

Lemma 3.6, it is enough to show dH(ω+
1 , ω

+
2 ) � d0. Let ri be the point on ωi such that dH(r1, r2)

realizes the distance between ω1 and ω2. Because of the symmetry of ω1 and ω2 relative to a
rotation fixing γ, either both r1 and r2 are contained in U , and hence each ri is contained in the
lower quadrant at pi, or one is in the lower quadrant and the other is in the upper quadrant.

Identify the space of pairs of (x, y), where x ∈ ω1 and y ∈ ω2, with R
2. Then the function

R
2 → R sending (x, y) to dH(x, y) is a convex function realizing its minimum at (r1, r2) ∈ R

2.
In the first case, since dH(pi, ω

+
3−i) � d0 by Lemma 3.6 and the distance between ω+

1 and ω+
2

increases from p1 and p2 on, and we can conclude dH(ω+
1 , ω

+
2 ) � d0. In the second case, invoking

Lemma 3.6 again implies dH(r1, r2) � d0, hence dH(ω+
1 , ω

+
2 ) � d0 by minimality of dH(r1, r2).

4. A notion of being sufficiently horizontal

Let I be a closed connected subset of R, let G : I → T (S) be a Thurston geodesic and let λG
be its maximally stretched lamination. The main purpose of this section is to develop a notion
of a closed curve α being sufficiently horizontal along G, such that if α is horizontal, then it
remains horizontal and its horizontal length grows exponentially along G.

Definition 4.1. Given a curve α, we will say that α is (n,L)-horizontal at t ∈ I if there
exist an εB-short curve γ on Xt = G(t) and a leaf λ in λG such that the following statements
hold (see Figure 4).

(H1) In the universal cover X̃t
∼= H, there exists a collection of lifts {γ̃1, . . . , γ̃n} of γ and a

lift λ̃ of λ intersecting each γ̃i at a point pi (the points pi are indexed by the order of their
appearances along λ̃) such that dH(pi, pi+1) � L for all i = 1, . . . , n− 1.
(H2) There exists a lift α̃ of α such that α̃ intersects γ̃i at a point qi with dH(pi, qi) � εB for

each i.

We will call γ an anchor curve for α and α̃ an (n,L)-horizontal lift of α.

Set G(t) = Xt. The main result of this section is the following.

Theorem 4.2. There are constants n0, L0 and s0 such that the following holds. Suppose
that a curve α is (ns, Ls)-horizontal at s ∈ I with ns � n0 and Ls � L0. Then we have the
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Figure 4. The curve α is (n, L)-horizontal.

following propositions.

(I) For any t � s+ s0, α is (nt, Lt)-horizontal at t, with

nt
∗� ns, and Lt � Ls.

(II) Furthermore, for any A, if dC(S)(Xs,Xt) � A, then

log
nt

ns
� A and Ltnt

∗� et−sLsns.

Definition 4.3 (Sufficiently Horizontal). Let (n0, L0) be the constants given by Theo-
rem 4.2. A curve α will be said to be sufficiently horizontal at t ∈ I if it is (n,L)-horizontal for
some n � n0 and L � L0.

Example 4.4. Definition 4.1 is a bit technical and warrants some justification. To stay
sufficiently horizontal along a Thurston geodesic G, we require the curve α to fellow-travel λ
both geometrically and topologically for a long time. The following example illustrates why
these requirements are necessary. Namely, we will show that the weaker version of geometric
fellow-traveling does not always persist along a Thurston geodesic.

Referring to the example in Subsection 2.11, for any ε, there exists a Thurston geodesic
G(t) = Xt and a curve γ such that a leaf λ of λG intersects γ and, for t > 0, �Xt

(γ) ∗� εet + 2e−et

.
Consider the following two points along G(t):

X = G(log log(1/ε)) and Y = G(log 1/ε).

On Y , let α be the shortest curve that intersects γ with twistγ(α, Y ) = 0. It was shown in
Subsection 2.11 that

twistγ(λ, Y )
+� 1
ε
.

This implies twistγ(α, λ)
+� 1/ε, so α intersects λ at an angle close to π/2 in Y . Furthermore,

since �Y (γ) ∗� 1, we have �Y (α) = O(1). That is, every large enough segment of any lift of α
to the universal cover Ỹ intersects a lift of λ at a near right angle. Therefore, in Ỹ , no lift of
α will fellow-travel any lift of λ.
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On the other hand, it was also shown in Subsection 2.11 that

�X(γ) ∗� ε log(1/ε).

For a given L, we can choose ε small enough such that the collar neighborhood of γ in X has
width at least L. Since α and λ both pass through this collar, in the universal cover X̃, there
exists a lift α̃ and a lift λ̃ that are O(1)-close for L-length. In other words, α and λ fellow-travel
in X̃ but they do not in Ỹ .

Remark 4.5. For a given t ∈ I, it is possible that there are no sufficiently horizontal curves
at t. For instance, when the stump of λG is a curve that does not intersect any εB-short curve.
But this is the only problem, since if the stump of λG intersects an εB-short curve γ, then
any sequence of curves converging to the stump will eventually be sufficiently horizontal, with
anchor curve γ. In Section 5, we will show that one can always find a sufficiently horizontal
curve after moving a bounded distance in C(S) (Proposition 5.10).

The next proposition will show that the condition (H2) of Definition 4.1 can be obtained by
just assuming that α̃ stays εB-close to the segment [p1, pn] in λ̃. A priori, even if α̃ is εB-close
to [p1, pn], then the distance between pi and qi may still be large if γ̃i is nearly parallel to λ̃
or α̃.

Proposition 4.6. There are constants n0 and L0 such that, for any hyperbolic surface X
and constants n � n0 and L � L0, the following statement holds. Suppose that γ is an εB-short
curve in X, λ is a complete simple geodesic in X, and n lifts {γ̃i} of γ̃ and a lift λ̃ are chosen to
satisfy (H1). If α is a curve in X that has a lift α̃ which stays, up to a bounded multiplicative

error, εB-close to the segment [p1, pn] in γ̃, then there exist indices l and r with r − l
+
� n such

that α̃ intersects γ̃i at a point qi and dH(pi, qi) � εB for all i = l, . . . , r.

Proof. Recall the standard collar U(γ) is a regular neighborhood of γ in X that is an
embedded annulus with boundary length ∗� 1. Let δ be the distance between γ and the boundary
of U(γ). We have (see Section 3)

δ
+� log(1/�X(γ)).

Let L0 satisfy inequality

εBe
−L0 < δ.

The distance between α̃ and λ̃ is a convex function that essentially either increases or
decreases exponentially fast. Hence, we can choose a segment α of α and index i0 such that α
is within εBe−L-Hausdorff distance of λ = [pi0 , pn−i0 ]. The index i0 can be chosen independent
of n or L because the distance between pi and pi+1 is at least L. Let n0 � 2i0 + 2.

Let Ui be the δ-neighborhood of γ̃i. By the choice of δ, Ui and Uj are disjoint for i �= j.
Since εBe−L < δ, endpoints of α are contained in Ui0 and Un−i0 . Also, for i0 < i < n− i0,
Ui separates Ui0 and Un−i0 in H

2. Hence α intersects every γ̃i. Consider such an i and, for
simplicity, set γ̃ = γ̃i, U = Ui, p = pi and q = qi. To prove the Proposition, we need to show
that dH(p, q) � εB . We refer to Figure 5 in the following.

Assume, for contradiction, that dH(p, q) > εB . Let φ be a hyperbolic isometry with axis γ̃
and translation length �X(γ). Then, since γ is εB-short, up to replacing φ with φ−1, the point
o = φ(p) is strictly between p and q.

Since λ̃ and φ(λ̃) are disjoint, for some boundary component of U , that we will denote by
∂U , the following holds. For p′ = λ̃ ∩ ∂U and q′ = α̃ ∩ ∂U , the point o′ = φ(p′) of intersection
of ∂U and φ(λ̃) is between p′ and q′. The curve ∂U is equidistant to γ̃ and the distance function
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Figure 5. If dH(p, q) � εB , then q is far from λ̃, which is a contradiction.

dH is convex along this curve, therefore

dH(q′, p′) � dH(o′, p′) = �X(∂U) ∗� 1. (9)

Let r be the closest point on λ̃ to q′. The point r is contained in one of the quadrants at p′,
hence dH(q′, r)

∗� 1 by Lemma 3.6. But for sufficiently large L0, this will contradict that q′ is
εBe

−L0 close to λ̃. Hence dH(p, q) � εB and we are done.

Proof of Theorem 4.2. Let ns � n0 and Ls � L0, n0, L0 to be determined later. Let α be
an (ns, Ls)-horizontal curve at Xs. As in the definition, we have an anchor curve γ, a lift α̃ of
α, a lift λ̃ of a leaf of λG and ns-lifts {γ̃i} of γ, such that dH(pi, qi) � εB and dH(pi, pi+1) � Ls,
where pi is the intersection of γ̃i with λ̃, and qi the intersection of γ̃i with α̃.

Throughout the proof, we will add several conditions on n0, s0 and L0. Let n0 and L0 be at
least as big as the corresponding constants obtained in Proposition 4.6.

Let c be the point on λ̃ to which α̃ is closest. To be able to apply Proposition 3.5 to the
curve γi, we need c to have a distance of at least 2εB from pi. Assuming L0 > 4εB , we have c
is 2εB-close to at most one pi. That is, we can choose indices l and r, with (l, r) = (1, ns − 1)
or (l, r) = (2, ns), such that c has a distance at least 2εB from both pl and pr.

See Figure 6 for the following. Applying a Möbius transformation if necessary, we can assume
that the center of the disk o is the midpoint between pl and pr. Let λ̃+ and λ̃− be, respectively,
the endpoints of λ̃ determined by the rays −→opl and −→opr. Let α̃+ be the endpoint of α̃ closest to
λ̃+. Let φ be the hyperbolic isometry with axis γ̃l and translation length �(φ) = �s(γ). Let k
be the constant of Proposition 3.5 and let

λ̃′ = φk(λ̃), λ̃′+ = φk(λ̃+) and p′l = φk(pl).

We have that α̃+ is sandwiched between λ̃+ and λ̃′+ and dH(pl, p
′
l)

∗≺ εB . Similarly, by
considering the hyperbolic isometry ψ with axis γ̃r, we can sandwich α̃− between λ̃− and
λ̃′′− with dH(pr, p

′
r)

∗≺ εB , where

λ̃′′ = ψk(λ̃), λ̃′′− = ψk(λ̃−) and p′r = ψk(pr).

Let s0 � 0, t � s+ s0 and f : Xs → Xt be an optimal map, that is, an et−s-Lipschitz map.
Since λG is in the stretch locus of f , there is a lift f̃ : X̃s → X̃t of f such that f̃(λ̃) = λ̃ and
f̃(λ̃±) = λ̃±.



1104 ANNA LENZHEN, KASRA RAFI AND JING TAO

Figure 6. The endpoints of f̃(α̃) are sandwiched between the endpoints of geodesics f̃(λ̃),
f̃(λ̃′) and f̃(λ̃′′).

Claim 4.7. The geodesic representative α′ of f̃(α̃) stays O(εB)-close to λ̃ from f̃(pl+1) and
f̃(pr−1).

Proof. Composing with a Möbius transformation if necessary, we may assume f̃(o) = o.
Note that f̃(λ̃′) is a geodesic and f̃(α̃+) is sandwiched between λ̃+ and f̃(λ̃′+). Similarly,

f̃(α̃−) is sandwiched between λ̃− and f̃(λ̃′−). Consider the sector V+ between the rays
−−→
o λ̃+

and
−−−−→
of̃(p′l) and the sector V− between the rays

−−→
o λ̃− and

−−−−→
o f̃(p′r). The geodesic α′ connecting

f̃(α̃+) and f̃(α̃−) stays in a bounded neighborhood of the union V+ and V−.
Note that

dH(f̃(pl), f̃(pl+1) � L0e
t−s and dH(f̃(pl), f̃(p′l)) � et−sεB .

Also, the distance between intersecting geodesics increases exponentially fast. Hence

dH(α′, f̃(pl+1))
+
≺ e−dH(f̃(pl),f̃(pl+1))dH(f̃(pl), f̃(p′l))

� e−L0et−s

et−sεB � εB .

The last inequality holds as long as L0 � 1. Similarly, dH(α′, f̃(pr−1)) � εB .

We next show that the projection to Xt of any long enough piece of the segment of λ̃ between
f̃(pl) and f̃(pr) intersects a lift of an εB-short curve.

Claim 4.8. For any l � i � r − 3, let ω̃ be the arc connecting f̃(pi) and f̃(pi+3), and let
ω be the projection of ω̃ to Xt. Then ω intersects an εB-short curve.

Proof. Recall the dual constant δB > 0 to εB , which is a lower bound for the length of any
curve that intersects an εB-short curve.

If ω is not simple, then λ̃ is a lift of a closed curve λ and ω wraps around λ. By definition
λ intersects an εB-short curve in Xs which implies that �Xs

(λ) � δB and �Xt
(λ) � δBe

t−s.
If t− s � s0 > log(εB/δB), then �Xt

(λ) � εB and λ has to intersect an εB-short curve in Xt.
Thus, ω will also intersect an εB-short curve.

Now assume that ω is simple. Let γ′ = f(γ). Note that γ′ is not necessarily a geodesic in
the metric Xt. If ω misses all the curves of length at most εB , then it is contained in a pair
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of pants P in Xt with boundary lengths at most εB . Since endpoints of ω lie on γ′, γ′ ∩ P is
non-empty.

First, we assume that γ′ does not intersect ∂P . Then γ′ ⊂ P and it is homotopic to a
boundary component of P . That is, the geodesic representative γ∗ of γ′ in Xs is εB-short. The
arc f−1(ω) is a geodesic in Xs and intersects γ (which is a geodesic in Xs) at least three times,
and so, by Lemma 3.3, f−1(ω) intersects f−1(γ∗) at least once. This implies ω intersects γ∗

which proves the claim.
Now assume that γ′ intersects ∂P . For j = 0, 1, 2, let ωj be the subarc of ω coming from

projecting [f̃(pi+j), f̃(pi+j+1)] to Xt. Let D0 and K0 be the constants of Lemma 3.2. Note
that if a subarc of λ intersects γ′, then the arc length between two consecutive intersections is
at least δBet−s � δBe

s0 . Assuming s0 � log D0
δB

, we have, for each j, �t(ωj) is at least L0e
t−s,

while �t(γ′) is at most εBet−s. Let L0 be bigger than K0(εB + 1). Then, by Lemma 3.2, at
least one of wj has

�t(ωj) � K0 · (�t(γ′) + 1) < L0e
t−s

which is impossible and hence ω intersects one of the pants curves.

Claim 4.8 implies that, for some εB-short curve (call it γt) and some nt
∗� ns, the projection

of [f̃(pl+1), f̃(pr−1)] to Xt intersects γt at least nt times where the arc length between every two
intersection points is at least Lt = Lse

t−s. And Claim 4.7 implies that there is a large segment
of α that remains O(εB)-close to the segment [f̃(pl+1), f̃(pr−1)]. Applying Proposition 4.6, we
conclude that α is (nt, Lt)-horizontal, which proves part (I).

We now prove part (II) of the Theorem 4.2. Suppose

dC(S)(Xs,Xt) � A. (10)

We need to show that nt lifts of an εB-short curve intersect the segment [f̃(pl+1), f̃(pr−1)],
where log(nt/ns) � A such that any two consecutive intersections are at least Lt

∗� Lsnse
t−s/nt

away.
Let P be an εB-short pants decomposition on Xt and m = minβ∈P i(β, γ). From equation (1),

we have

A
∗≺ logm.

Note that, for small values of A, part (II) follows from Part (I). Hence, we assume that A is
large, which implies in particular that γ intersects every curve in P. Even though part (II)
seems to be more general, this last condition is used in an essential way in the proof of Part
(II) and the proof does not naturally extend to prove part (I).

We also have

m
∗≺ �Xt

(γ)
δB

� et−s εB
δB

∗≺ et−s.

Cut the segment [f̃(pl), f̃(pr)] into mns equal pieces and let ω̃ be one of them. Denote the
projection of ω̃ to Xt by ω. We would like to show that ω intersects a curve in P. As in the proof
of Claim 4.8, if ω is not simple, then it wraps around a simple closed λ ∈ λG and assuming
s0 > log(εB/δB), it has to intersect a curve in P. Hence we assume that ω is simple.

Assume for a contradiction that ω is disjoint from P. Then ω ⊂ P for some pair of pants
P with εB-short boundaries. It follows from Lemma 3.1 that there is β ⊂ ∂P such that U(β)
contains an endpoint of ω and such that

�Xt
(ω)

+
≺ 2(i(ω, τβ)�Xt

(β) + �Xt
(τβ)). (11)
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Then γ intersects β at least m times. Pick any of the subarcs σ of γ that connect both
boundary components of U(β). Then,

i(ω, τβ)
+
≺ i(ω, σ) + i(σ, τβ)

+
≺ 1
m

i(ω, γ) + i(σ, τβ). (12)

The last inequality holds because ω intersects every component of γ	 ∩ U(β) essentially the
same number of times. Also,

i(σ, τβ) �t(β) + �Xt
(τβ)

+
≺ �Xt

(σ)
+
≺ 1
m
�Xt

(γ). (13)

and

I(ω, γ)
+
≺ �Xt

(ω)
δB et−s

. (14)

From the last four equations and using �t(γ) � εBe
t−s and �Xt

(β) � εB , we have

�Xt
(ω)

+
≺ �Xt

(ω)
2εB

mδBet−s
+

2εBet−s

m
.

But et−s ∗� m. Hence, for some uniform constant C

�Xt
(ω)

(
1 − 2εB

mδBet−s

)
� Cet−s

m
. (15)

The expression in parentheses on the left-hand side is strictly positive since we have assumed
s0 > log(εB/δB). Finally, if we choose L0 such that

L0

(
1 − εB

δBes0

)
> C,

then equation (15) contradicts

�Xt
(ω) � Lse

t−s

m
.

Contradiction proves that ω intersects some curve in P.
There are at least m(ns − 4) such subsegments in [f̃(pl+1), f̃(pr−1)] and each intersects a

lift of a curve in P. If we choose every other segment, then we can guarantee that the distance
along λ between these intersection points is larger than Lt = et−sLs. Color these segments
according to which curve in P their projection to Xt intersects and let β be the curve used
most often. Then the number nt of segments intersecting a lift of β satisfies nt

∗� mns. Applying
Proposition 4.6 finishes the proof.

5. Shadow to the curve graph

To show that the shadow of a Thurston geodesic to the curve graph is a quasi-geodesic, we
construct a retraction from the curve graph to the image of the shadow sending a curve α to
the shadow of the point in the Thurston geodesic where α is balanced.

5.1. Balanced time for curves

Let n0 and L0 be the constants of Theorem 4.2.

Definition 5.1 (Balanced time). Let G : [a, b] → T (S) be a Thurston geodesic segment.
For any curve α, let

tα = inf{t ∈ [a, b] | α is (n0, L0)-horizontal at G(t)}
Let tα = b if the above set is empty. We refer to tα as the balanced time of α along G.
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Figure 7. Corridor generated by γ and ω.

Recall the shadow map π : T (S) → C(S) from Section 2.12. The following theorem asserts
that the shadow map is a coarse Lipschitz map.

Theorem 5.2. Let G : [a, b] → T (S) be a Thurston geodesic and let π : T (S) → C(S) be
the shadow map. Suppose α and β are disjoint curves with tβ � tα. Then π ◦ G([tα, tβ ]) has
uniformly bounded diameter in C(S).

In the following, we develop some notions that will be used to prove Theorem 5.2.
Let X be a hyperbolic surface. A rectangle R in X is the image of a continuous map

φ : [0, a] × [0, b] → X such that φ is a homeomorphism on the interior of [0, a] × [0, b] and the
image of each boundary segment of [0, a] × [0, b] is a geodesic arc in X.

Definition 5.3. Let γ be a simple closed geodesic on X, ω be a geodesic arc and R be a
rectangle given by φ : [0, a] × [0, b] → X. We say R is an (n,L)-corridor generated by γ and ω
(Figure 7) if the following conditions are satisfied.

(i) Edges {0} × [0, b] and {a} × [0, b] are mapped to subarcs of ω.
(ii) There are 0 = t1 < · · · < tn = b such that each [0, a] × {ti} is mapped to a subarc of γ,

for all i = 1, . . . , n.
(iii) Arcs φ([ti, ti+1] × {0}) and φ([ti, ti+1] × {a}) have lengths at least L.

Lemma 5.4. Let X be a hyperbolic surface and γ be an εB-short curve on X. For any
constants n and L, let ω be a simple geodesic arc (possibly closed) with endpoints on γ such
that

i(γ, ω) � C(n,L) = (6|χ(X)| + 1)n
⌈
L

δB

⌉
+ 3|χ(X)| + 1.

Then there exists an (n,L)-corridor generated by γ and ω.

Proof. Fix n and L, and let C = C(n,L). Let i(ω, γ) = N � C. The closure of each
connected component of X�{γ ∪ ω} is a surface with a piecewise geodesic boundary. Let Q
be a complementary component. We refer to points in the boundary of Q where two geodesic
pieces meet as an angle. Define the total combinatorial curvature of Q to be

κ(Q) = χ(Q) − # of angles in ∂Q
4

.

We can represent X combinatorially with all angles having value π/2 to obtain∑
Q

κ(Q) = χ(X).
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Note that, for every component Q that is not a rectangle, κ(Q) < − 1
2 and hence, the number

of components that are not rectangles is bounded by 2|χ(X)|. In fact, the number of angles
that appear in non-rectangle components is at most 12|χ(X)|, because the ratio of the number
of angles to Euler characteristic is maximum in the case of a hexagon. Since the total number
of angles is 4N − 4 (there are only two angles at the first and the last intersection points), the
number of rectangles is at least

(4N − 4) − 12|χ(X)|
4

= N − 3|χ(X)| − 1 � (6|χ(X)| + 1)n
⌈
L

δB

⌉
.

We will say two rectangle components can be joined if they share an arc of γ. A maximal
sequence of joined rectangles is a sequence {Y1, . . . Ys} of rectangles in X�{ω ∪ γ} such that
Yi and Yi+1 can be joined for i = 1, . . . , (s− 1) and such that Y1 and Ys share a boundary with
a non-rectangle component. The number of edges of rectangles that share with a non-rectangle
component is at most two more than the number of angles of non-rectangle components (again
coming from the first and last intersection points of γ and ω). That is, the number of maximal
sequences of joined rectangles is at most

2 · (# of rectangles)
12|χ(X)| + 2

.

Therefore, there must be at least one maximal sequence of joined rectangles {Y1, Y2, . . . , YM}
where M � n�L/δB�. For each i = 1, . . . ,M , the sides of Yi coming from arcs of ω have
endpoints on γ and thus are at least δB long. Therefore, the union

⋃M
j=1 Yi is an (n,L)-corridor

for γ after letting ti be the point that maps to the intersection number i · �L/δB�.

Proposition 5.5. Let n0 and L0 be the constants from Theorem 4.2. There exists a
constant n1 such that, for any n � n1 and L � L0, if α is (n,L)-horizontal at G(t) = Xt, then
any curve β disjoint from α is either (n0, L0)-horizontal at Xt or dC(S)(Xt, β) = O(1).

Proof. Let n1 = 3C(n0, L0) (see Lemma 5.4). Also let n � n1 and L � L0.
Suppose that α is (n,L)-horizontal at Xt. Let γ be an εB-short curve on Xt, λ̃ be a lift of

a leaf of λG , α̃ be a lift of α and {γ̃1, . . . , γ̃n} be n-lifts of γ̃ together satisfying Definition 4.1.
Choose a most central segment ω̃ ⊂ α̃ between γ̃1 and γ̃n such that ω̃ intersects C(n0, L0) lifts
of γ, including two intersections coming from the endpoints of ω̃. Let ω be the projection of ω̃
to Xt. If i(ω, γ) < C(n0, L0), then ω = α and we are done since

dC(S)(Xt, β)
+
≺ dC(S)(γ, α)

∗≺ logC(n0, L0) = O(1).

Otherwise, by Lemma 5.4, there exists (n0, L0)-corridor R generated by γ and ω. Let φ : [0, a] ×
[0, b] → Xt be the map whose image is R satisfying the conditions of Definition 5.3.

Lift φ to the map

φ̃ : [0, a] × [0, b] −→ X̃t with φ̃({0} × [0, b]) = ω̃.

Note that φ̃({a} × [0, b]) is a translate of a subarc ω̃′ of α̃ by an isometry of H
2 fixing λ̃. Also,

ω̃′ intersects the same number of γ̃i, and ω̃′ and ω̃ intersect. But n � 3C(n0, L0) and ω̃ was
central. Thus ω̃′ is still between γ̃1 and γ̃n and hence is εB-close to λ̃.

Since β is disjoint from α, if β intersects R it has to enter from the edge φ([0, a] × {0}), travel
through the corridor and exit from the edge φ([0, a] × {b}). Therefore, there must exist a lift
β̃ of β passing through φ̃((0, a) × [0, b]) intersecting every φ̃([0, a] × {ti}). That is, β̃ intersects
n0 of γi at a distance at most εB from λ̃. Thus, by Proposition 4.6 β is (n0, L0)-horizontal at
Xt if β intersects R.

Now suppose that β is disjoint from R. Fix a parameterization ψ : [0, c] → Xt for ω. Let
ω1 = φ({0} × [0, b]) and ω2 = φ({a} × [0, b]). The parameterization ψ traverses ω1 or ω2 either
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in the same or opposite direction as φ and either traverses ω1 before ω2 or vice versa. We assume
that ψ traverses ω1 in the same direction and speed as φ and ψ traverses ω1 before ω2 (the
proofs in the other cases are similar). Let

0 � s < t < s+ b < t+ b � c

be such that ω1 = ψ([s, s+ b]) and ω2 = ψ([t, t+ b]). Let ω′ = ψ([s, t]) and γ′ = φ([0, a] × {0}).
Consider the curve η that is a concatenation of ω′ and γ′. Topologically, η is a non-trivial simple
closed curve with i(η, γ) � i(ω, γ) = C(n0, L0). Since β is disjoint from R, it is disjoint from η.
Therefore,

dC(S)(Xt, β)
+
≺ dC(S)(γ, η) = O(1).

This concludes the proof of the proposition.

Proof of Theorem 5.2. The proof now follows from Proposition 5.5 and Theorem 4.2.
Let n1 be as in Proposition 5.5 and L0 be as in Theorem 4.2. Let s > tα be the first time

in [a, b] that α is (n1, L0)-horizontal at s (let s = b if this never happens). By Theorem 4.2,
π ◦ G([tα, s]) has uniformly bounded diameter in C(S). If s � tβ , then we are done. Otherwise,
s < tβ and, for any t ∈ [s, tβ), by Proposition 5.5, dC(S)(Xt, β) = O(1). Therefore, π ◦ G([s, tβ ])
also has uniformly bounded diameter in C(S).

5.2. Retraction

Theorem 5.6. Given a Thurston geodesic G : [a, b] → T (S), the map C(S) → π ◦ G([a, b])
⊂ C(S) taking a curve α to π(Xtα

) is a coarse Lipschitz retraction.

Before proving Theorem 5.6, we show how to derive Theorem 1.2. First we give a precise
definition of reparameterized quasi-geodesic.

Fix a constant K > 0. We will call a path φ : [a, b] → X in a metric space X a K-quasi-
geodesic if, for all a � s � t � b,

1
K

(t− s) −K � dX (φ(s), φ(t)) � K(t− s) +K.

We will say φ is a reparameterized K-quasi-geodesic if there is an increasing function
h : [0, n] → [a, b] such that φ ◦ h is a K-quasi-geodesic. Furthermore, for all i ∈ [0, n− 1],
we have diamX ([φ(h(i)), φ(h(i+ 1))]) � K. In the case that h is not onto, we also require
that diamX ([φ(a), φ(h(0))]) � K and diamX ([φ(h(n)), φ(b)]) � K. A collection {φi}i∈I of
reparameterized quasi-geodesics is uniform if there is a constantK that works for the collection.

The following is a restatement of Theorem 1.2.

Theorem 5.7. The collection of {π ◦ G : [a, b] → C(S)} ranging over Thurston geodesics
G : [a, b] → T (S) is a uniform family of reparameterized quasi-geodesics in C(S).

Proof. This argument is standard [4] and follows easily from Theorem 5.6.
Let G : [a, b] → T (S) be a Thurston geodesic. Let α ∈ π ◦ G(a) and α′ ∈ π ◦ G(b) be two

curves. Choose a geodesic α = α0, . . . , αn = α′ in C(S). Let ti be the balanced time of αi along
G, and let tn+1 = b. By Theorem 5.6, diamC(S)([G(ti),G(ti+1)]) is uniformly bounded. The times
ti may not occur monotonically along [a, b], but, for each 0 � i � n, there exists j � i, such that
tj � ti � tj+1, and diamC(S)([G(ti),G(tj+1)]) � diamC(S)([G(tj),G(tj+1)]) = O(1). Thus, there
is a sequence 0 = i0 < i1 < · · · < ik = n, such that tij+1 > tij

and diamC(S)([G(tij
),G(tij+1)])

is uniformly bounded. We will call such a sequence admissible and choose one with minimal
length k. For simplicity, we will relabel each tij

by tj .
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Now let h : [0, k] → [a, b] be defined by sending each subinterval [j, j + 1] to [tj , tj+1] by
a linear map for all j = 0, . . . , k − 1. By Theorem 5.6, diamC(S)([G(a),G(t0)]) = O(1) and
diamC(S)([G(tk),G(b)]) = O(1). Set Gi = G ◦ h(i). By construction, diamC(S)([Gi,Gi+1]) = O(1)
for all i ∈ [0, k − 1] and k � n = dC(S)(α, β). Therefore, for all 0 � i � i′ � k, we have

dC(S)(Gi,Gi′) ≺ i′ − i.

The only thing remaining to check is that the lower bound for the definition of quasi-geodesic,
that is, for all 0 � i � i′ � k, we will show

i′ − i � dC(S)(Gi,Gi′) + 2.

It is enough to prove this for i, i′ ∈ {0, . . . , k}. For 0 � i < i′ � k, let β ∈ π ◦ Gi = π ◦ G(ti)
and β′ ∈ π ◦ Gi′ = π ◦ G(ti′). Let m = dC(S)(β, β′) and choose a geodesic β = β0, . . . , βm = β′

in C(S). Let si be the balance time of βi along G. After choosing a subsequence, we may assume
that si appear monotonically along [a, b] and that ti < s0 and sm < ti′ . We can modify the
admissible sequence

t0 < · · · < ti < · · · < ti′ < · · · < tk

by

t0 < · · · < ti < s0 < · · · < sm < ti′ < · · · < tk,

which is still admissible. By minimality of k, we must have i′ − i � m+ 2 which proves what
we want.

The proof of Theorem 5.6 requires some technical results about hyperbolic surfaces.
Given a hyperbolic surface X, consider a simple closed geodesic γ that is εB-short and a

simple geodesic λ on X. Assuming that λ intersects γ many times, we would like to find a
simple closed curve α with a uniformly bounded intersection number with γ that is (n0, L0)-
horizontal. The argument here is somewhat delicate since there are essentially two possible
situations; either λ twists around a relatively short curve α or α is somewhat longer and a long
subsegment of it stays close to λ in the universal cover.

We find the appropriate curve α by applying surgery between λ and γ such that α contains
a long subsegment of λ. But we also need to have some control such that after pulling α tight,
it still stays close to λ. The following two lemmas will give the needed control.

In the following, orient the curve γ so that the left-hand side and the right-hand side of γ are
defined. We will say an arc ω with endpoints on γ hits γ on opposite sides if the two endpoints
of ω are on different sides of γ; otherwise, ω hits γ on the same side.

Lemma 5.8. Let γ and λ be as above and let α = η ∪ ω be a closed curve in X that is
obtained from concatenation of a subarc η of γ and a subarc ω of λ. Also, assume that η hits
ω on opposite sides and L = �X(ω) � 4εB . Then, α∗, the geodesic representative of α in X,
stays in an O(εB)-neighborhood of α.

Proof. This is a well-known fact in hyperbolic geometry. We sketch the proof here. Consider
the lift of α to H

2 as a concatenation of segments ηi and ωi that are lifts of η and ω, respectively.
Since ω is a subarc of a complete simple geodesic inX, the segments ωi lie on complete geodesics
ω̃i in H

2 that are disjoint. The condition that η hits ω on opposite sides means that ωi+1 does
not backtrack along ωi.

Fixing o, the center of segment ω0, as the center of the Poincaré disk, the Euclidean distance
between and endpoints of geodesics ω̃i in ∂H

2 form a Cauchy sequence (in fact, they decrease
exponentially fast) and hence they converge. Namely, the visual angle at o of the endpoint
of ω̃1 is at most O(εBe−L/2) and the visual angle at o between the endpoints of ω̃i and ω̃i+1
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decrease exponentially with |i|. Hence the lift of γ∗ starts and ends near the endpoints of ω̃0

with a visual angle of O(εBe−L/2). Therefore, an O(εB)-neighborhood of lift of γ∗ contains ω0.
This completes the proof.

Lemma 5.9. Let β and β′ be simple closed curves in X (possibly β = β′) with lengths
longer than δB and let η be a geodesic segment that is disjoint from both. Let γ and γ′ be two
segments of length O(1) connecting the endpoints of η to β and β′, respectively, so the curve
α obtained by the concatenation

β ∪ γ ∪ η ∪ γ′ ∪ β′ ∪ γ′ ∪ η ∪ γ

is simple. Let α∗ be the geodesic representative of α. Then, in the universal cover, any lift of η
is contained in a bounded neighborhood of the union of a lift of α∗, a lift of β and a lift of β′.

Proof. The lemma is non-trivial because two copies of η are used and they may backtrack
each other. It is essential that there is a lower bound on the lengths of β and β′ and the lemma
essentially follows from Lemma 3.7.

Consider a lift of α to the universal cover. Ignoring the lifts of γ and γ′ which have bounded
length, we consider the segments βi ∪ ηi ∪ β′

i ∪ ηi, where ηi and ηi are lifts of η, βi are lifts of
β, β′

i are lifts of β′ and endpoints of every segment are in a uniformly bounded neighborhood
of an endpoint of the next segment.

The segments ηi and ηi lie on geodesics λi and λi that are disjoint. In fact, there is an
isometry of H

2, associated to the curve β′, whose axis contains β′
i and sends ηi to ηi. Let δ0

be large enough such that the δ0-neighborhood of β′ contains the standard collar U(β′). Then
δ0 is a universal constant since there is a lower bound on the length of β′. Let Uδ0(β

′) be the
δ0-neighborhood of β′ and Ui be the lift that contains β′

i. There is a universal lower bound
on the length of the boundary of Uδ0(β

′), which means there is a lower bound on the distance
between the intersection points of ηi and ηi with Ui. It now follows from Lemma 3.7 that there
is a lower bound of d0 for the distance between the subsegments of ηi and ηi that are outside
of Ui. That is, if ηi is not near βi, it cannot be too close to ηi and hence ηi and ηi do not
fellow-travel for a long time outside of a uniform neighborhood of β′

i. A similar statement is
true for ηi, ηi+1 and βi.

Since H is Gromov hyperbolic, the lift of α∗ is contained in a uniform neighborhood of
segments βi ∪ ηi ∪ β′

i ∪ ηi. In fact, each point in any of these segments is either close to the
lift of α∗ or close to a point in some other segment. We have shown that ηi and ηi do not
fellow-travel for a large subsegment. This means that any point in ηi is close to either βi, β′

i,
or to the lift of α∗.

We would like to show that, at every time t, there is a curve α which has balanced time
tα = t and whose distance in C(S) from the shadow of Xt is uniformly bounded. The next
proposition shows that a coarse version of this statement holds.

Proposition 5.10. Let G : [a, b] → T (S) be a Thurston geodesic segment. For any t ∈
[a, b], if λG intersects some short curve on Xt = G(t), then there exists an (n0, L0)-horizontal
curve α onXt such that i(α, γ) = O(1) for any εB-short curve γ. Furthermore, dC(S)(Xtα

,Xt) =
O(1).

Proof. First, we will construct α. Let

N0 = n0

⌈
L0

δB

⌉
+K,

where K is the additive error coming from Lemma 5.9.
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Figure 8. Case (1) and (2) of Proposition 5.10.

If λG has a closed leaf λ that intersects every short curve onXt at most 5N0 times, then α = λ
has the desired properties. Otherwise, we can fix a leaf λ in the stump of λG that intersects
some εB-short curve more than 5N0 times.

Fix a segment ω of λ such that ω has endpoints on a short curve γ with i(γ, ω) = 5N0, and
ω intersects all other short curves at most 5N0 times. Orient γ such that we can talk about
the two sides of γ. We will show that, applying a surgery between ω and γ, we can obtain a
simple closed curve α that still intersects γ and stays close to λ for a long time. Unfortunately,
this process is delicate and depending on the intersection pattern of γ and ω, we may have to
apply a different surgery. The conclusion will follow if either of the following two cases occur.

Case (1): There is a subarc η of ω that hits γ on opposite sides with i(η, γ) � N0, and the
endpoints of η can be joined by a segment of γ that is disjoint from the interior of η.

In this case, the geodesic representative α of the concatenation of η and a segment of γ is
(n0, L0)-horizontal by Lemma 5.8 (see the left-hand side of Figure 8).

Case (2): There is a subarc η of ω and a closed curve β disjoint from η, such that i(η, γ) � N0

and �X(β) � δB , and the endpoints of η are close to the same point on β. Furthermore, each
endpoint of η can be joined to a nearby point on β by a segment of γ that is disjoint from β
and the interior of η.

In this case (see the right-hand side of Figure 8), let α be the curve obtained by closing up η
with β and one or two subarcs of γ. If η twists around β N0 times, then β is (n0, L0)-horizontal
by Proposition 4.6; otherwise, by Lemma 5.9, α has a segment that intersects γ N0 times and
stays close to η, in which case α is (n0, L0)-horizontal by Proposition 4.6.

Case (3): There is a subarc η of ω and there are two closed curves β and β′ that are disjoint
from η, such that i(η, γ) � N0, �X(β) � δB and �X(β′) � δB , and the two endpoints of η are
close to β and β′. Furthermore, there exists a segment of γ joining one endpoint of η to β and
a segment of γ joining the other endpoint of η to β′, such that both segments are disjoint from
β, β′ and the interior of η.

In this case (see Figure 9), let α be the curve obtained by gluing two copies of η, β, β′ and
a few sub-arcs of γ. If η twists around either β or β′ N0 times, then either β or β′ is (n0, L0)-
horizontal by Proposition 4.6; otherwise, by Lemma 5.9, α has a segment that intersects γ N0

times and stays close to η, in which case α is (n0, L0)-horizontal by Proposition 4.6.
We now show that at least one of these three cases happens.
Let p0 and q0 be the endpoints of ω. Let p−1 and p1 be the adjacent intersection points

along γ to p0 and q−1 and q1 be the adjacent intersection points along γ to q0. By relabeling if
necessary, we may assume that ω passes from p0 to p1 and then to p−1. Assume that ω passes
from q0 to q1 and then to q−1. We allow the possibility p−1 = q0 and q−1 = p0, or p−1 = q−1.

Let ω0 be the subarc of ω from p0 to p1 and let ω1 be the subarc from p1 to p−1. Suppose
ω0 ∪ ω1 intersects γ at least 2N0 times. In this situation, we have several possibilities that will
yield case (1) or (2). If ω0 ∪ ω1 hits γ on opposite sides, as in the left-hand side of Figure 8,
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Figure 9. Case (3) of Proposition 5.10.

then we are in case (1) with η = ω0 ∪ ω1. Otherwise, one of ωi hits γ on opposite sides and the
other one hits γ on the same side. Assume that ω0 hits γ on opposite sides, as in the right-hand
side of Figure 8. We are again in case (1) if ω0 intersects γ at least N0 times. If not, let β be
the closed curve obtained from closing up ω0 with an arc of γ. Since ω0 has endpoints on γ
and β stays close to ω0 by Lemma 5.8, �X(β) � δB . We are now in case (2) with η = ω1. The
dotted line in the right-hand side of Figure 8 represents the closed curve obtained from this
surgery.

Similarly, let ω′
0 be the subarc of ω from q0 to q1 and let ω′

1 be the arc from q1 to q−1. As
above, we are done if ω′

0 ∪ ω′
1 intersects γ at least 2N0 times.

Since ω intersects γ 5N0 times, if neither ω0 ∪ ω1 nor ω′
0 ∪ ω′

1 intersects γ at least 2N0

times, then the arc η from p−1 to q−1 must have at least N0 intersections with γ. If η hits γ
on opposite sides, then we are in case (1). Otherwise, at least one of ω0, ω1, or ω0 ∪ ω1 hits
γ on opposite sides. Close this arc to obtain a closed curve β which has length at least δB .
Similarly, let β′ be a closed curve obtained from closing up either ω′

0, ω
′
1 or ω′

0 ∪ ω′
1. We are

now in case (3). In Figure 9, we have illustrated the situation when ω0 ∪ ω1 forms β and ω′
0

forms β′.
It remains to show dC(S)(Xtα

,Xt) = O(1). By definition, tα � t and α is (n0, L0)-horizontal
on Xtα

. Assume t− tα � s0, where s0 is the constant of Theorem 4.2. Let γα be an anchor
curve for α at time tα. The assumption implies dC(S)(Xt, α) = O(1), so it is enough to show
dC(S)(γα, α) = O(1). Define D = dC(S)(γα, α). Recall that D � log2 i(α, γα) + 1.

Let λ̃ and α̃ be as in Definition 4.1, let ω and τ be the segments of λ̃ and α̃ which are at
most εB Hausdorff distance apart and which intersect n0 lifts of γα. We may assume i(α, γα)
is large enough such that τ projects to a proper subarc of α, that is, the length of τ is smaller
than the length of α. Let f̃ be the lift of an optimal map f : Xtα

→ Xt. By the proof of
Theorem 4.2, up to a multiplicative error f̃(ω) intersects n02D lifts of a short curve γ′ on
Xt. Moreover, a segment τ ′ of the geodesic representative of f̃(α̃) is εB-close to f̃(λ̃) and also
intersects the n02D lifts of γ′ up to a bounded error. The length of α on Xt is bigger than the
length of τ ′, hence i(α, γ′)

∗� n02D. But i(α, γ′) = O(1) by assumption, therefore D must be
bounded.

Proof of Theorem 5.6. By Theorem 5.2, π is a coarse Lipschitz map. Let α be any short curve
onXt and λG be the maximally stretched lamination. We will show diamC(S)([Xt,Xtα

]) = O(1).
If (the stump of) λG is a short curve, it may not intersect any other short curve at Xt. Let

s be the first time λG intersects some short curve γ in Xs. Since λG is a short curve in the
interval [t, s], we have diamC(S)([Xt,Xs])

+� dC(S)(α, γ) = O(1).
We now show diamC(S)([Xs,Xtα

]) = O(1). Since λG intersects a short curve γ on Xs, by
Proposition 5.10, there exists a curve β on Xs with i(β, γ) = O(1) and diamC(S)([Xtβ

,Xs]) =
O(1). We have dC(S)(α, β) � dC(S)(α, γ) + dC(S)(γ, β) = O(1), which implies by Theorem 5.2
that diamC(S)([Xtα

,Xtβ
]) = O(1). The conclusion follows by the triangle inequality.
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6. Examples of geodesics

In this section, we construct several examples of geodesics in the Thurston metric demonstrating
various possible behaviors, proving Theorems 1.1 and 1.4 from the introduction. The main idea
in all these examples is that it is possible for the maximally stretched lamination associated to
some Thurston geodesic to be contained in some subsurface W where the lengths of all curves
disjoint from W (including ∂W ) stay constant along the geodesic. This contrasts the behavior
of a Teichmüller geodesic, where in a similar situation the length of ∂W would get short along
the geodesic [20]. Our construction can be made to be very general. However, in the interest of
simplicity, we make an explicit construction when W is a torus with one boundary component.

For a constant �, let T (S1,1, �) be the space of hyperbolic structures on a torus with one
geodesic boundary where the length of the boundary curve is �. Note that we can equip
T (S1,1, �) with the Thurston metric as usual (see [10] for details).

Let μ be any irrational measured lamination on S1,1. There is a unique way to complete μ
to a complete lamination λ, such that the complement are two ideal triangles, by adding two
bi-infinite leaves both tending to the cusp in one direction and wrapping around μ in the other.
Hence, for any U0 ∈ T (S1,1), there exists a unique stretch path from U0 with μ the stump of
the maximally stretched lamination. We will denote by stretch(U0, λ, t) this stretch path.

Proposition 6.1. There is a constant �0 such that the following holds. For any U0 ∈
T (S1,1), any irrational measured lamination μ on S1,1 and the associated stretch path

Ut = stretch(U0, λ, t), Ut ∈ T (S1,1),

where λ is the unique complete lamination containing μ as its stump, there is a bi-infinite
Thurston geodesic Wt ∈ T (S1,1, �0), t ∈ R, where the stump of the maximally stretched
lamination is still μ and, for any other curve α in S1,1,

�Wt
(α) ∗� �Ut

(α).

Proof. We will refer the reader to Figure 10 for this proof.
Choose U0 ∈ T (S1,1) and represent μ as a geodesic lamination on U0. Let λ be the unique

completion of μ and let A and B be the ideal triangles in the complement of λ in U0. Each A
and B has two sides a and b coming from the two leaves of λ tending toward the cusp, and a
third side that wraps around the stump μ. There is an involution of U0 fixing λ and switching
A with B. Hence, the two anchor points of A at a and b are glued, respectively, to the two
anchor points of B at a and b. See the upper right-hand side of Figure 10.

Now we double this picture. Let U+
0 = U0 and let U−

0 be an orientation-reversing copy of
U+

0 . We also label A = A+, B = B+, a = a+, b = b+ and μ = μ+ and we label the associated
objects in U−

0 by A−, B−, a−, b− and μ−. Cut U±
0 open along a± and b±. Via a reflection

map, glue b+ of A+ to a− of A− such that the anchor point of A+ in b+ is glued to the anchor
point of A− in a−. Similarly, via a reflection map, glue b+ to b−, a+ to b− and a+ to a− gluing
the corresponding anchor points. Note that the third sides of A± and B± wrap about μ± in
U±. This yields a genus two surface Ũ0 with a geodesic lamination λ̃ that contains μ± as its
stump and has two extra leaves each wrapping about μ+ in one direction and wrapping about
μ− in the other direction.

In each A± or B±, there is a geodesic arc connecting the midpoint of a± to the midpoint of
b±. Because the gluing maps were reflections, the angles of these arcs with a± and b± match
and the four arcs glue together to form a separating geodesic γ in Ũ0. Let �0 be the length of
γ. By construction, �0 is independent of the irrational lamination μ and U0.

Let Ũt = stretch(Ũ , λ̃, t). Then Ũt is also obtained from the doubling of Ut as above. Along
the stretch paths, the length of geodesic arcs connecting the midpoint of a± to the midpoint
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Figure 10. We can double the stretch path on a punctured torus to obtain a stretch path in a
surface of genus two. The length of the curve γ remains unchanged along the stretch path.

of b± does not change. Hence, they glue the same way in Ũt to form a separating geodesic of
the same length. That is, the length of γ along Ũt remains the constant �0.

The proposition now holds where Wt is the subsurface of Ũt with boundary γ. The stretch
map from Us to Ut doubles to an et−s-Lipschitz homeomorphism between Ũs and Ũt that fixes
γ pointwise. Hence, the length of curves grow by at most a factor of et−s both from Ũs to Ũt

and from Ws to Wt.
To see the last assertion in the proposition, we note that there is a contraction map fromWt to

Ut. Consider the restriction of A− and B− in Wt and foliate it with horocycles perpendicular to
the boundary. Then collapse these regions sending each horocycle to a point. This is a distance-
decreasing map: the derivative in the direction tangent to the horocycles is zero and in the
direction perpendicular to the horocycles is 1. Since stretch paths preserve these horocycles,
this collapsing map commutes with the stretch maps and the image of Wt under the collapsing
map is exactly Ut. Hence, the length of a curve α in Wt is longer than the length of its image
in Ut under the collapsing map, which is longer than the length of the geodesic representative
of α.

This proposition is the building block for all the examples we construct in this section.
Essentially, we can glue Wt to a family of surfaces with desired behavior to obtain various
examples.

Proof of Theorem 1.1. Let μ be a simple closed curve and let U0 be a point in T (S1,1) where
the length of μ is ε for some small ε > 0. Let Wt be the family obtained by Proposition 6.1.
Also, choose V ∈ T (S1,1, �0) to be a point in the thick part. Let β be a curve of bounded length
in V and define V n = Dn

βV , where Dβ is the Dehn twist around the curve β. (The values of ε
and n are to be determined below.)
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Let s be the time when μ has length 1 in Ws. Define

X = W0 ∪ V, Y = Ws ∪ V and Z = Ws/2 ∪ V n.

By ∪, we mean glue the two surfaces along the boundary and consider them as an element of
T (S2,0). We mark the surfaces so that they have bounded relative twisting along the gluing
curve γ. (Note that relative twisting is only well defined up to an additive error). We claim
that if log 1/ε� n, then

dTh(X,Z) = dTh(Z, Y ) = s/2.

First consider X and Z. Indeed, since the length of μ grows exponentially in Wt, s/2 is a lower
bound for the distance dTh(X,Z). We need to show that the length of any other curve grows by
a smaller factor. This is true for any curve contained in Wt by Proposition 6.1. For any other
curve α, let αW be the restriction of α to W0 and let ᾱW be the restriction to the complement
of W0. Any representative of α in Z is no shorter than the geodesic representative. Therefore,
there is a uniform constant C such that

�Z(α) � es/2�X(αW ) + C(�X(ᾱW ) + n�X(β)i(α, β)).

But �X(ᾱW )
∗� i(α, β). Hence, if es/2 � C + n, then we obtain

es/2�X(ᾱW ) � (C + n)(�X(ᾱW ) + �X(β)i(α, β)).

Therefore, for sufficiently large s, we have

�Z(α) � es/2(�X(αW ) + �X(ᾱW )) = es/2�X(α).

That is, μ is the maximally stretched lamination from X to Z. The argument for the distance
from Z to Y is similar.

Now define
G1(t) = Wt ∪ V,

and let G2(t) be the geodesic obtained by a concatenation of the geodesic connecting X to Z
and Z to Y . Let α be a curve disjoint from Wt that has a bounded length in X. Then, for all t,

�G1(t)(α) = �X(α) ∗� 1.

But the length of α in Z = G2(s/2) is of order n. That is,

dTh(G1(t), Z) � log
�Z(α)
�G1(t)(α)

+� log n,

which can be chosen to be much larger than D. Note that a lower bound for the distance in
the other direction can also be found by replacing α with D−n

β (α).
To obtain the second part of Theorem 1.1, we note that the distance from Y to X is only of

order log log(1/ε) if ε is small enough. We now choose n and ε such that

log
1
ε
� log n, log n

+� D D � log log
1
ε
.

This way, if s � 2D, then Z = G2(s/2) has distance at least D to any point on any geodesic
connecting Y to X. This completes the proof of part 2.

Next, we construct an example showing that the set of short curves in a Thurston geodesic
connecting two points is not the same as the set of short curves along the Teichmüller geodesic.
This is in contrast with the following theorem.

Theorem 6.2 [14]. For every K > 0 and ε > 0 there exists ε′ > 0 such that whenever
X,Y ∈ T (S) are ε-thick and have K-bounded combinatorics, then any Thurston geodesic G
from X to Y remains in the ε′-thick part.
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Proof of Theorem 1.4. Let φ be a pseudo-Anosov map in the mapping class group of S1,1

and let U0 ∈ T (S1.1) be on the Teichmüller axis of φ. For any n ∈ Z, the maximally stretched
lamination μ from U0 to φn(U0) is irrational, hence the stretch path from U0 to φn(U0) is the
unique Thurston geodesic connecting them. Let Ut = |(U0, μ, t) and let Us = φn(U0). The point
φn(U0) is also on the Teichmüller axis of φ and the Teichmüller geodesic segment connecting
U0 to φn(U0) stays in a uniform thick part (independent of n) of Teichmüller space. From [14],
we know that the Thurston geodesic connecting these two points also stays in this part and
fellow-travels the Teichmüller geodesic.

Let Wt be the family of surfaces in T (S1.1, �0) obtained from Proposition 6.1 and let V be
any point in the thick part of T (S1.1, �0). Now define

G(t) = Wt ∪ V, t ∈ [0, s].

Then G(t) is a Thurston geodesic in T (S2,0). This is because the length of μ is growing
exponentially and the length of every other curve is growing by a smaller factor. (The argument
is an easier version of the arguments in the previous proof and is dropped.)

Since Ut is in the thick part, so is Wt and hence G(t). Let X = G(0) and Y = G(s). But, by
taking n large enough, we can ensure that dW (X,Y ) is as large as desired, where W is the
subsurface of S2,0 associated to Wt. It then follows from [20] that the boundary of W is short
along the Teichmüller geodesic connecting X to Y , in fact, its minimum length is inversely
proportional to dW (X,Y ). That is, ∂W has bounded length along the Thurston geodesic G(t)
but is arbitrarily short along the Teichmüller geodesic. This completes the proof of the theorem.
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Bestvina–Feighn show the projection of a folding path to the free factor graph is a reparame-
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