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Abstract. We show that the sublinearly Morse directions in the visual boundary of
a rank-1 CAT(0) space with a geometric group action are generic in several commonly
studied senses of the word, namely with respect to Patterson-Sullivan measures and sta-
tionary measures for random walks. We deduce that the sublinearly Morse boundary is
a model of the Poisson boundary for finitely supported random walks on groups acting
geometrically on rank-1 CAT(0) spaces. We prove an analogous result for mapping class
group actions on Teichmüller space. Our main technical tool is a criterion, valid in any
unique geodesic metric space, that says that any geodesic ray with sufficiently many (in
a statistical sense) strongly contracting segments is sublinearly contracting.

1. Introduction

A major theme in recent research in metric geometry has been to find evidence of
abundance of hyperbolic behavior in non-hyperbolic spaces. Well studied examples of
such spaces include CAT(0) spaces with rank-1 geodesics: geodesics which do not bound
a flat of infinite diameter. In a sense, these can be considered as geodesics in CAT(0)
spaces exhibiting hyperbolic behavior. To any CAT(0) space one can associate the visual
boundary consisting of asymptotic equivalence classes of geodesic rays. Pairs of points
on the visual boundary defining rank-1 geodesics form an open set invariant under the
isometry group. Thus, they are assigned full weight by any full support measure on the
square of the visual boundary boundary whose class is preserved and which is ergodic
with respect a subgroup of isometries. However, the condition of being rank-1 for geodesic
rays is not invariant under asymptotic equivalence, and thus cannot be used to define a
isometry group invariant subset of the visual boundary. Moreover, the topological type of
the visual boundary is not quasi-isometrically invariant [CK00]. Thus, while genericity of
rank-1 biinfinite geodesics encapsulates abundance of hyperbolic behavior in rank-1 CAT(0)
spaces it is difficult to translate in terms of properties of groups acting on such spaces.

Qing and Rafi [QRT19], showed that a certain subset of the visual boundary consisting
of limits of sublinearly Morse geodesics, when given a topology slightly different from the
one induced from the visual boundary, called the sublinearly Morse boundary is in fact a
quasi-isometry invariant.

In this paper, we show that this subset of the visual boundary is ”generic” in several
reasonable senses of the word. The visual boundary of a CAT(0) space X carries several
natural families of measures corresponding to limits of different averaging procedures over
orbits of a group acting on X properly and cocompactly. One such family is the so-called
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Patterson-Sullivan measure, studied in this context by Ricks [Ric17]. These are the weak
limits of ball averages in the metric on X and are intimately related to the measure of
maximal entropy on the unit tangent bundle of the geodesic flow on X.

Theorem 1.1. Let G y X be a countable group acting properly discontinuously and
by isometries on a geodesically complete rank-1 CAT(0) space X. Assume the action is
temperate (the number of orbit points in a ball grows at most exponentially) and admits a
finite Bowen-Margulis measure. (These assumptions are automatically satisfied when the
action is cocompact). Let ν be the Patterson-Sullivan measure on the visual boundary of
X. Then ν gives measure zero to the complement of sublinearly Morse directions.

The other family consists of stationary measures associated to random walks coming
from finitely supported measures µ on G: these are weak limits of pushforwards in X of
convolutions of µ.

Theorem 1.2. Let G y X be a nonelementary action of a countable group of properly
discontinuous and isometric actions on a rank-1 CAT(0) space X. Assume the action is
temperate. Let ν be the stationary measure on the visual boundary associated to a finitely
supported probability measure µ on G whose finite support generates G as a semigroup.
Then ν gives measure zero to the complement of sublinearly Morse directions.

As a corollary to Theorem 1.2 we obtain:

Corollary 1.3. Let G y X and ν be as in Theorem 1.2. Then for a suitable sublinear
function κ, the κ-Morse boundary of X with either the subspace topology induced from the
visual boundary or the Qing-Rafi topology is a topological model for the Poisson boundary
of (G,µ).

We also prove analogous results for the action of mapping class group on Teichmüller
space equipped with the Teichmüller metric.

Theorem 1.4. Let S be a closed surface of genus at least 2 and let Teich(S) be the Te-
ichmüller space of X with the Teichmüller metric. Let PMF be Thurston’s boundary
of Teichmüller space consisting of projective measured foliations. Let ν be a measure on
PMF which is either a normalized Thurston measure or the stationary measure associated
to a finitely supported probability measure µ on the mapping class groupMCG(S) such that
the semigroup generated by the support of µ is a group containing at least two independent
pseudo-Anosov elements. Then ν gives full measure to foliations associated to sublinearly
Morse geodesics rays.

Corollary 1.5. Let µ be a probability measure on MCG(S) such that the semigroup gen-
erated by the support of µ is a group containing at least two independent pseudo-Anosov
elements. Then, for a suitable sublinear function κ, the κ-Morse boundary of Teich(S) is
a topological model for the Poisson boundary of (MCG(S), µ).

We prove genericity of sublinearly Morse directions of the visual boundary by providing a
criterion asserting that a geodesic ray containing enough strongly contracting subsegments
is sublinearly contracting. More precisely, for any proper geodesic metric space X, we say
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a unit speed parametrized geodesic ray τ : [0,∞)→ X is (N,C)–frequently contracting for
constant N,C > 0 if the following holds. For each L > 0 and θ ∈ (0, 1) there is an R0 > 0
such that for R > R0 and t > 0 there is an interval of time [s− L, s+ L] ⊂ [t, t+ θR] and
an N–contracting geodesic γ (see Definition 2.2) such that,

u ∈ [s− L, s+ L] =⇒ d(τ(u), γ) ≤ C.

Theorem 1.6. A frequently contracting geodesic in any proper geodesic metric space is
sublinearly Morse.

We then use ergodic theoretic methods to prove genericity of frequently contracting
geodesics in the context of rank-1 CAT(0) spaces and the Teichmüller space. For the
Patterson-Sullivan (or normalized Thurston) measure, genericity of frequently contracting
directions is a consequence of the Birkhoff Ergodic Theorem and the ergodicity of the
geodesic flow in rank-1 CAT(0) spaces and the Teichmüller space. For stationary measures
coming from random walks, the genericity of frequently contracting geodesics is derived
from the double ergodicity of the Poisson boundary and is facilitated by a quantitative
version of an argument (in the Teichmüller setting) of Kaimanovich-Masur [KM96], which
was first used by Baik-Gekhtman-Hamenstädt [BGH16].

Related results. Kaimanovich [Kai00] proved that the Poisson boundary of hyperbolic
groups are realized on their Gromov boundary. For CAT(0) groups, Karlson-Margulis
[KM99] showed that random walk tracks geodesic rays sublinearly and thus the visual
boundary realizes the Poisson boundary of CAT(0) spaces on which a CAT(0) group acts
geometrically. However, visual boundaries are in general not QI-invariant and therefore not
group-invariant, as shown by Croke-Kleiner [CK00]. Qing-Rafi-Tiozzo [QRT19] constructed
κ–Morse boundaries for CAT(0) spaces that are QI-invariant and in the case of right-angled
Artin groups, do realizes their Poisson boundaries. For mapping class groups, Kaimanovich-
Masur showed that uniquely ergodic projective measured foliations with the corresponding
harmonic measure can be identified with the Poisson boundary of random walks; Qing-Rafi-
Tiozzo [QRT22] showed that, when κ = log t, the kappa-boundary of the Cayley graph of
the mapping class group can be identified with the Poisson boundary of the associated
random walks.

We expect Theorems 1.1 and 1.2 and Corollary 1.3 to hold in a more general context of
actions admitting a strongly contracting element.

In fact, versions of our Theorems 1.2 and Theorem 1.4 concerning stationary measures
were recently obtained in this more general setting by Inhyeok Choi [Choi], who in place
of our ergodic theoretic and boundary techniques uses a pivoting technique developed by
Gouezel. Meanwhile, a Patterson-Sullivan theory on a certain quotient of the horofunction
boundary for spaces admitting nonelementary group actions with contracting elements
was recently obtained by Coulon [Cou] and Yang [Yan]. However a critical ingredient of
our Theorem 1.1 and Corollary 1.3 involving Patterson-Sullivan (or Thurston) measures,
namely the ergodicity of the square of the Patterson-Sullivan measure, is not known in
that setting.
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2. Sublinearly Morse quasi-geodesic rays in proper metric space

In geometric group theory, we are mainly interested in geometric properties of the asso-
ciated spaces that are group-invariant. In the setting of finitely generated groups, group-
invariance can be interpreted as quasi-isometries between metric spaces and objects, which
we introduce now.

2.1. Quasi-isometries of groups and metric spaces.

Definition 2.1 (Quasi-isometric embedding). Let (X, dX) and (Y, dY ) be metric spaces.
For constants k ≥ 1 and K ≥ 0, we say a map Φ: X → Y is a (k,K)–quasi-isometric
embedding if, for all x1, x2 ∈ X

1

k
dX(x1, x2)− K ≤ dY

(
Φ(x1),Φ(x2)

)
≤ k dX(x1, x2) + K.

If, in addition, every point in Y lies in the K–neighbourhood of the image of Φ, then
f is called a (k,K)–quasi-isometry. When such a map exists, X and Y are said to be
quasi-isometric.

A quasi-isometric embedding Φ−1 : Y → X is called a quasi-inverse of Φ if for every
x ∈ X, dX(x,Φ−1Φ(x)) is uniformly bounded above. In fact, after replacing k and K with
larger constants, we assume that Φ−1 is also a (k,K)–quasi-isometric embedding,

∀x ∈ X dX
(
x,Φ−1Φ(x)

)
≤ K and ∀y ∈ Y dY

(
y,Φ Φ−1(x)

)
≤ K.

Geodesics and quasi-geodesic rays and segments. Fix a base point o ∈ X. A
geodesic ray in X is an isometric embedding τ : [0,∞) → X such that τ(0) = o. That
is, by convention, a geodesic ray is always assumed to start from this fixed base-point.
A quasi-geodesic ray is a continuous quasi-isometric embedding β : [0,∞) → X such that
β(0) = o. That is, there are constants q ≥ 1, Q > 0 such that, for s, t ∈ [0,∞), we have

|s− t|
q
− Q ≤ dX

(
β(s), β(t)

)
≤ q |s− t|+ Q.

The additional assumption that quasi-geodesics are continuous is not necessary, but it
is added for convenience and to make the exposition simpler. One can always adjust a
quasi-isometric embedding slightly to make it continuous (see [BH09, Lemma III.1.11]).

Similar to above, a geodesic segment is an isometric embedding τ : [s, t] → X and a
quasi-geodesic segment is a continuous quasi-isometric embedding β : [s, t]→ X.

Notations. We adopt the following notation for lines and segments in this paper. Suppose
β is a specified path, then

[x, y]β : the segment of β from x ∈ β to y ∈ β.

In the special case where β is a geodesic, we suppress the subscript, i.e. we use [x, y] denote
geodesic segments between the two points. If β emanates from the base-point, then

β|r : the point on β that is distance r from o.
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Contracting geodesics. Let Z be a closed subset of X and x be a point in X. By d(x, Z)
we mean the set-distance between x and Z, i.e.

d(x, Z) := inf
{
d(x, y) | y ∈ Z

}
.

Let

πZ(x) :=
{
y | d(x, y) = d(x, Z)

}
be the set of nearest-point projections from x to Z. Since X is a proper metric space,
πZ(x) is non empty. We refer to πZ(x) as the projection set of x to Z. For a quasi-geodesic
β and x ∈ X, we write xβ to denote any point in the projection set of x to β.

Definition 2.2. We say a closed subset Z ⊂ X is N–contracting for a constant N > 0 if,
for all pairs of points x, y ∈ X, we have

d(x, y) < d(x, Z) =⇒ d(xZ , yZ) ≤ N.

Any such N is called a contracting constant for Z.

2.2. κ-Morse and κ-contracting sets. Now we introduce a large class of quasi-geodesic
rays that are quasi-isometry invariant. Intuitively, these quasi-geodesics have a weak Morse
property, i.e. their quasi-geodesics stay close asymptotically. To begin with, we fix a
function that is sublinear in the following sense:

2.2.1. Sublinear functions. We fix a function

κ : [0,∞)→ [1,∞)

that is monotone increasing, concave and sublinear, that is

lim
t→∞

κ(t)

t
= 0.

Note that using concavity, for any a > 1, we have

(1) κ(at) ≤ a
(

1

a
κ(at) +

(
1− 1

a

)
κ(0)

)
≤ a κ(t).

Remark 2.3. The assumption that κ is increasing and concave makes certain arguments
cleaner, otherwise they are not really needed. One can always replace any sublinear function
κ, with another sublinear function κ so that κ(t) ≤ κ(t) ≤ Cκ(t) for some constant C and
κ is monotone increasing and concave. For example, define

κ(t) = sup
{
λκ(u) + (1− λ)κ(v)

∣∣∣ 0 ≤ λ ≤ 1, u, v > 0, and λu+ (1− λ)v = t
}
.

The requirement κ(t) ≥ 1 is there to remove additive errors in the definition of κ–
contracting geodesics.

Definition 2.4 (κ–neighborhood). For a closed set Z and a constant n define the (κ, n)–
neighbourhood of Z to be

Nκ(Z, n) =
{
x ∈ X

∣∣∣ dX(x, Z) ≤ n · κ(x)
}
.
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o τ

x

xb

n · κ(x)

‖x‖

(κ, n)–neighbourhood of τ

Figure 1. A κ-neighbourhood of a geodesic ray τ with multiplicative con-
stant n.

In this paper, Z is either a geodesic or a quasi-geodesic. That is, we can write Nκ(τ, n)
to mean the (κ, n)–neighborhood of the image of the geodesic ray τ . Or, we can use phrases
like “the quasi-geodesic β is κ–contracting” or “the geodesic τ is in a (κ, n)–neighbourhood
of the geodesic c”.

Definition 2.5. Let β and γ be two quasi-geodesic rays in X. If β is in some κ–
neighbourhood of γ and γ is in some κ–neighbourhood of β, we say that β and γ κ–fellow
travel each other. This defines an equivalence relation on the set of quasi-geodesic rays in
X (to obtain transitivity, one needs to change n of the associated (κ, n)–neighbourhood).
We refer to such an equivalence class as a κ–equivalence class of quasi-geodesics. We de-
note the κ–equivalence class that contains β by [β] or we use the notation b for such an
equivalence class when no quasi-geodesic in the class is given.

A metric space is called a unique geodesic space if any two points can be connected by
a unique geodesic.

Lemma 2.6. [QRT19] Let b : [0,∞)→ X be a geodesic ray in a unique geodesic space X.
Then b is the unique geodesic ray in any (κ, n)–neighbourhood of b for any n. That is to
say, distinct geodesic rays do not κ–fellow travel each other.

We recall the definition of κ–contracting and κ–Morse sets from [QRT22].

Definition 2.7 (weakly κ–Morse). We say a closed subset Z of X is weakly κ–Morse if
there is a function

mZ : R2
+ → R+

so that if β : [s, t]→ X is a (q,Q)–quasi-geodesic with end points on Z then

β[s, t] ⊂ Nκ
(
Z,mZ(q,Q)

)
.

We refer to mZ as the Morse gauge for Z. We always assume

(2) mZ(q,Q) ≥ max(q,Q).

Definition 2.8 (Strongly κ–Morse). We say a closed subset Z of X is strongly κ–Morse
if there is a function mZ : R2 → R such that, for every constants r > 0, n > 0 and every
sublinear function κ′, there is an R = R(Z, r, n, κ′) > 0 where the following holds: Let
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η : [0,∞)→ X be a (q,Q)–quasi-geodesic ray so that mZ(q,Q) is small compared to r, let
tr be the first time ‖η(tr)‖ = r and let tR be the first time ‖η(tR)‖ = R. Then

dX
(
η(tR), Z

)
≤ n · κ′(R) =⇒ η[0, tr] ⊂ Nκ

(
Z,mZ(q,Q)

)
.

Definition 2.9 (κ–contracting). Recall that, for x ∈ X, we have ‖x‖ = dX(o, x). For a
closed subspace Z of X, we say Z is κ–contracting if there is a constant cZ so that, for
every x, y ∈ X

dX(x, y) ≤ dX(x, Z) =⇒ diamX

(
xZ ∪ yZ

)
≤ cZ · κ(‖x‖).

To simplify notation, we often drop ‖�‖. That is, for x ∈ X, we define

κ(x) := κ(‖x‖).

Theorem 2.10 ([QRT22]). Let X be a proper geodesic space and let τ be a quasi-geodesic
ray in X. Then

(1) If τ is κ-contracting then τ is both weakly and strongly κ-Morse.
(2) τ is κ-weakly Morse if an only if τ is strongly κ-Morse.

Lastly, a quasi-geodesic is called sublinearly Morse if it is κ-Morse for some sublinearly
growing function κ. Two parametrized quasi-geodesics γ1, γ2 are said to be equivalent if
their diverge sublinearly, i.e.

d(γ1(t), γ1(t))/t→ 0.

Definition 2.11 (κ-Morse boundary and sublinearly Morse boundary). Given a sublin-
ear function κ, let ∂κX denote the set of equivalence classes of κ Morse quasi-geodesics.
Equipped with a coarse version of cone topology, we call this set the κ-Morse boundary of
X and denote it ∂κX (for more details, see [QRT22]). It is shown in [QRT22] that X∪∂κX
with the coarse cone topology is a QI-invariant set and a metrizable topological space.

3. Geodesics with enough contracting subsegments are sublinearly Morse

In this section, we introduce the notion of frequently contracting geodesics which are
geodesics that contain sufficiently many (in a statistical sense) strongly contracting sub-
segments. We then give a criterion for a geodesic ray to be frequently contracting which
can be conveniently checked using ergodic theory. (Lemma 3.3).

Finally, we prove that every frequently contracting geodesic is in fact sublinearly Morse
(Theorem 1.6 from the introduction, Theorem 3.7 in this section). In Sections 4-7, we use
ergodic theory to show that in CAT(0) spaces and Teichmüller space, frequently contracting
geodesics are generic in several reasonable senses of the word.

Definition 3.1. A unit speed parametrized geodesic ray τ : [0,∞) → X is (N,C)–
frequently contracting for constant N,C > 0 if the following holds. For each L > 0 and
θ ∈ (0, 1) there is an R0 > 0 such that for R > R0 and 0 < t < (1− θ)R there is an interval
of time [s− L, s+ L] ⊂ [t, t+ θR] and an N–contracting geodesic γ such that,

u ∈ [s− L, s+ L] =⇒ d(τ(u), γ) ≤ C.
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That is, every subsegment of τ of length θL contains a segment of length R that is C–close
to an N–contracting geodesic γ. A bi-infinite geodesic τ is frequently contracting if the
rays t→ τ(t) and t→ τ(−t) are both frequently contracting.

Definition 3.2. If for some t, τ(t − L, t + L) is C–close to some N–contracting geodesic
γ, we say (in analogy with Teichmüller space) τ(t) is in the thick part of τ . Define

thickτ (T ) =
∣∣∣{t ∈ [0, T ] : τ(t− L, t+ L) is C–close

to some N–contracting geodesic γ
}∣∣∣.

That is, thickτ (T ) is the amount of time τ [0, T ] spends in the thick part. We now give a
sufficient condition for a geodesic ray to be frequently contracting.

Lemma 3.3. Let τ : [0,∞)→ X be a geodesic ray. Suppose there are constants N,C > 0
such that for each L > 0 there is a m > 0 where

lim
T→∞

thickτ (T )

T
= m.

Then τ is frequently contracting.

Proof. Suppose that τ is a geodesic ray satisfying the condition of the Lemma. Then

(3) lim
s,t→∞

thickτ (t)/t

thickτ (s)/s
= 1.

Now assume, by way of contradiction, that τ is not (N,C)–frequently contracting. Then
there are constants 0 < θ < 1 and L > 0 and sequences Rn →∞ and 0 ≤ tn ≤ (1− θ)Rn
such that [tn, tn + θRn]τ contains no segment of length 2L that is C–close to some N–
contracting geodesic γ. That is,

thickτ (tn) = thickτ (tn + θRn).

Therefore,

thickτ (tn)/tn
thickτ (tn + θRn)/(tn + θRn)

=
(tn + θRn)

tn
≥ (tn + θtn)

tn
= (1 + θ) > 1.

This contradicts Equation (3). The contradiction proves the desired result of this lemma.
�

Our goal is to show that, if τ is frequently contracting, then the diameter of the projection
of disjoint balls to τ is sublinearly small. It is in fact sufficient to show that the diameter
of the projection of a disjoint balls is smaller than every linear function.

Proposition 3.4. Let τ : [0,∞)→ X be an (N,C)–frequently contracting geodesic. Then
for every θ > 0 there is R0 > 0 such that for all R ≥ R0 the following holds. Assume

d(x, y) ≤ d(x, τ) and d(o, x) ≤ R
Then

d(πτ (x), πτ (y)) ≤ θR.
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We recall several well known facts regarding the properties of contracting geodesics.

Lemma 3.5. [BF09, Corollary 3.4] There are constants C1, D1 > 0 depending on N such
that if γ is N–contracting and the geodesic segment [x, y] is outside of the C1–neighborhood
of γ then the projection of [x, y] to γ has diameter at most D1.

Lemma 3.6. [BF09, Corollary 3.4] There is a constant C2 > 0 depending only on N such
that, for a N–contracting geodesic γ and for x, y ∈ X, if d(πγ(x), πγ(y)) ≥ D2, then the
C2–neighborhood of the geodesic segment [x, y] contains the segment [πγ(x), πγ(y)]γ.

Proof of Proposition 3.4. Assume τ [s, t] is C close to some N–contracting geodesic γ with

d(τ(s), γ(s′)) ≤ C and d(τ(t), γ(t′)) ≤ C

for some times s < t and s′ < t′ where L = (t− s) is large.

Claim. There is a D2 (depending only on N and specified in Lemma 3.6 )such that, for
any x ∈ X, if πτ (x) = τ(u) for u ≤ s then πγ(x) = γ(u′) for u′ ≤ s′ +D2.

τ(u) τ(s) τ(t)
τ

γ(s′)

z

γ(t′)

γ(u′)
x

γ

Figure 2. The point z = πγ(πτ (x)) is near γ(s′).

This is because by Lemma 3.5, z = πγ(πτ (x)) is near γ(s′) (see Figure 2). If πγ(x) = γ(u′)
where (u′ − s′) is larger than D2, then by Lemma 3.6, we have the a C2–neighborhood of
the geodesic [x, πτ (x)] contains the sub-segment γ[s′, u′]. Choose w′ such that w′ − s′ is
large and,

d(γ(w′), γ(w)) ≤ C
for some w where (w − s) is large. Therefore, γ(w′) and hence τ(w) are much closer to x
than πτ (x) which is a contradiction and thus the claim holds.

Now, if d(πτ (x), πτ (y)) ≥ θR for sufficiently large R, the segment [πτ (x), πτ (y)]τ contains
a subsegment τ [s, t] with (t − s) ≥ L that is C close to some γ (see Figure 3). Then the
projection of x, y to γ are L− 2D2 apart. Which means the (D2 +C)–neighborhood of the
geodesic segment [x, y] covers the segment τ [s, t]. Hence d(x, y) > d(x, τ), contradicting
the assumption. This finishes the proof of Proposition 3.4. �

Theorem 3.7. If τ is frequently contracting, then it is κ-contracting for some sublinear
function κ. Hence it is also κ-Morse.
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o τ

x

y

πτ (x)

τ(s) τ(t)

γ(s′)

γ(u′)

γ(t′)

πτ (y)

L

C

γ

Figure 3. If d(πτ (x), πτ (y)) ≥ θR the segment [πτ (x), πτ (y)]τ contains a
subsegment of length L that is C-close to some γ.

Proof. Assume for contradiction that τ is not κ–contracting for any sublinear function κ.
That is, there is a sequence of point xn, yn ∈ X with ‖xn‖ → ∞, such that

dX(xn, yn) ≤ dX(xn, τ).

However, we have

lim sup
n→∞

diamX

(
xnτ ∪ ynτ

)
‖xn‖

≥ 3θ > 0.

Taking a subsequence, we can in fact assume that, for every n,

(4)
diamX

(
xnτ ∪ ynτ

)
‖xn‖

≥ 2θ.

Let R0 be the constant associated to θ given by Proposition 3.4 and let n be such that
‖xn‖ ≥ R0. Then for R = ‖xn‖, Proposition 3.4 implies that

diamX

(
xnτ ∪ ynτ

)
‖xn‖

≤ θ,

which contradicts (4). The contradiction proves the corollary as desired. �

4. CAT(0) spaces, their boundaries and their isometries

A proper geodesic metric space is CAT(0) if it satisfies a certain metric analogue of
nonpositive curvature (see, for example, [BH09]). Roughly speaking, a space is CAT(0) if
geodesic triangles in X are at least as thin as triangles in Euclidean space with the same
side lengths. To be precise, for any given geodesic triangle 4pqr, consider the unique
triangle 4pqr in the Euclidean plane with the same side lengths. For any pair of points
x, y on edges [p, q] and [p, r] of the triangle 4pqr, if we choose points x and y on edges [p, q]
and [p, r] of the triangle 4pqr so that dX(p, x) = dE(p, x) and dX(p, y) = dE(p, y) then,

dX(x, y) ≤ dE2(x, y).
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Here, we list some properties of proper CAT(0) spaces that are needed later.

Lemma 4.1 ([BH09])). A proper CAT(0) space X has the following properties:

i. It is uniquely geodesic, that is, for any two points x, y in X, there exists exactly one
geodesic connecting them. Furthermore, X is contractible via geodesic retraction to a
base point in the space.

ii. The nearest-point projection from a point x to a geodesic line b is a unique point denoted
xb. In fact, the closest-point projection map

πb : X → b

is Lipschitz.
iii. Let β : [0, 1] → X is a continuous path and let γ : [0, 1] → X be a geodesic segment

such that β(i) = γ(i), i = 0, 1. Then for every 0 ≤ s ≤ 1, there exists t such that
πγ(β(t)) = γ(s).

4.1. The visual boundary of CAT(0) spaces.

Definition 4.2 (visual boundary). Let X be a CAT(0) space. The visual boundary of X,
denoted ∂visX is the set of equivalence classes of unit speed geodesic rays (from any point
in X) where two rays τ1, τ2 are equivalent if supt>0 d(τ1(t), τ2(t)) <∞.

We describe the topology of the visual boundary by a neighbourhood basis: A neigh-
borhood basis for a ray τ is given by sets of the form:

Uvis

(
τ, r, ε) := {β ∈ ∂visX | d(τ(t), β(t)) < ε for all t < r}.

In other words, two geodesic rays are close if they have geodesic representatives that
start at the same point and stay close (are at most ε apart) for a long time (at least r).
By Proposition I. 8.2 in [BH09], for each ray τ and each o′ ∈ X, there is a unique geodesic
ray τ ′ starting at o′ with such τ and τ ′ are a bounded distance from each other, that is,
the visual boundary is independent of the base-point.

o τ

r

ε

Figure 4. A neighbourhood basis for the visual topology.

For bi-infinite geodesic τ : (−∞,∞) → X let τ+ be the geodesic ray that is bounded
distance from τ [0,∞) and let τ− be the geodesic ray that is bounded distance from τ(∞, 0].
We can think of τ+, τ− as points in ∂visX and we say τ connects τ− to τ+. We say τ± are
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limit points of τ in the visual boundary. Then τ is the unique geodesic with these limit
points in ∂visX.

A flat strip of a space X is a subset F ⊂ X isometric to R× I for some interval I with
the Euclidean metric. It is a flat plane if I = (−∞,∞) and a flat half plane if I = [0,∞).
Call an infinite geodesic line in X rank-1 if its image does not bound a flat half-plane in
X and zero width if it does not bound any flat strip.

Note, unless X is Gromov hyperbolic, not any two points of ∂visX can be joined by a
bi-infinite geodesic. However, we have the following [Bal95, Lemma III.3.1].

Lemma 4.3. Let X be a CAT(0) space. Let τ : RßX be a biinfinite geodesic which does
not bound a flat strip of width R > 0. Then there are neighborhoods U and V in ∂visX of
the endpoints of τ such that for any α ∈ U and β ∈ V , there is a geodesic joining α to β.
For any such geodesic τ ′, we have d(τ ′, τ(0)) < R; in particular, τ ′ does not bound a flat
strip of width 2R.

A CAT(0) space X is said to be rank-1 if it has a rank-1 geodesic. The space X is
said to be geodesically complete if any geodesic segment can be extended to a bi-infinite
geodesic. Lemma 4.3 implies that if X is rank-1 then for large enough R > 0 pairs of points
of ∂visX connected by a geodesic which does not bound a flat strip has nonempty interior.
Moreover it can be easily seen to be Isom(X) invariant.

4.2. Group action on CAT(0) spaces. For any element g ∈ Isom(X), the translation
length of g is defined as

l(g) = min{d(x, gx)|x ∈ X}.
Any geodesic contained in {p ∈ X : d(p, gp) = l(p)} is called an axis of g. If a rank-1
geodesic γ is an axis of an isometry g ∈ Isom(X), we call γ a rank-1 axis and g a rank-1
isometry. A rank isometry has exactly two fixed points in ∂visX.

Let G be a group action on X by isometries. The limit set L(G) ⊂ ∂visX of G is the
unique minimal closed G-invariant subset of ∂visX. An action by isometries Gy X is said
to be rank-1 (and G is said to be a rank-1 group) if it contains two rank-1 isometries whose
pairs of fixed points in ∂visX are disjoint. A geodesically complete CAT(0) space admitting
a rank-1 action Gy X always has a zero width geodesic with endpoints in L(G)([Ric17],
Proposition 8.14). A cococompact action by isometries on a rank-1 CAT(0) space is always
rank-1.

Let SX denote the unit tangent bundle of X, defined as the set of parametrized unit
speed bi-infinite geodesics in X endowed with the compact-open topology.

Define footpoint projection πfp : SX → X by πfp(v) = v(0) for v ∈ SX. Let

gt : SX → SX, gt(τ)(s) = τ(s+ t)

be the geodesic flow. Let SGX ⊂ SX denote the set of v ∈ SX with v± ∈ L(G). For
x, y ∈ X and ζ, α ∈ ∂visX define the Busemann function

βζ(x, y) = lim
z→ζ

d(x, z)− d(y, z)
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and the Gromov product

ρx(ζ, α) = lim
z→α,w→ζ

(d(z, x) + d(w, x)− d(z, w))/2.

Define a map Ho : SX → ∂visX × ∂visX × R by

Ho(v) = (v+, v−, βγ(o, v(0)).

The restriction of Ho to the set Z of zero width geodesics is one-to-one. Let [SX] be
the set of equivalence classes of SX under the equivalence relation ∼ given by v ∼ w if
Ho(v) = Ho(w). This equivalence relation does not depend on the basepoint o.

5. Genericity of frequently contracting geodesics with respect to
Patterson-Sullivan measures

The visual boundary ∂visX of a rank-1 CAT(0) space X carries several natural classes
of measures, corresponding to different averaging constructions over orbits of a properly
discontinuous group action G y X. In this section, we consider the Patterson-Sullivan
measure, studied in this context by Ricks [Ric17].

Theorem 5.1. Let X be a proper geodesically complete CAT(0) space and let G act on X
properly discontinuously and by isometries. Assume that G y X admits a finite Bowen-
Margulis measure (see below discussion; this assumption is satisfied when the action is
cocompact). Let ν be the Patterson-Sullivan measure on ∂visX. Then ν a.e. point of ∂visX
is frequently contracting.

We begin with some generalities. Let G y X be any properly discontinuous action of
a countable group on a metric space. For o ∈ X let BR(o) be the ball of radius R in X
centered at o.

The (possibly zero or infinite) quantity

δX(G) = lim sup
R→∞

R−1 log |BR(o) ∩G · o|

is called the critical exponent of the action G y X. It is easy to see that it does not
depend on the basepoint o. If G y Xi are properly discontinuous actions on metric
spaces and f : X → Y a map with d(f(x), f(y)) ≤ Kd(x, y) + c it is easy to see that
δY (G) ≤ K−1δX(G). If X = Cay(G,S) is a Cayley graph of a finitely generated group
then clearly δX(G) ≤ log |S| < ∞. Consequently, if G y X is any properly discontinuous
action of a finitely generated group on a metric space then δX(G) <∞ since the orbit map
Cay(G,S) → X is coarsely Lipschitz. Moreover, δX(G) is always finite when X admits
some cocompact actions by a properly discontinuous group of isometries ([BM96], Lemma
1.5 and Proposition 1.7).

On the other hand, when G is non-amenable we always have δX(G) > 0 (see e.g. Giulio’s
email writeup, this is a thing everyone knows and no one writes). We now specialize to the
case when G y X is a propery discontinuous rank 1 action on a CAT(0) space such that
there is some zero width geodesic with endpoints in L(G), and assume δX(G) <∞. Since
loxodromics with disjoint endpoints generate a free group in Isom(X), G is nonamenable
so δX(G) > 0
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The action Gy X is said to be divergent if the Poincare series
∑

g∈G e
−sd(go,o) diverges

at s = δ(G) and is said to be convergent otherwise. If the action G y X is properly
discontinuous and cocompact it is necessarily divergent ([Ric17], Theorem 3).

A δ(G)-conformal density for G y X is an absolutely continuous family of finite Borel
measures νx, x ∈ X on L(G) such that

dνx/dνy(ζ) = exp(δ(G)βζ(y, x))

and gνx = νg−1x for any x, y ∈ X and g ∈ G. Any such family is determined by any one
of the measures νo, o ∈ X which we can normalize to be a probability measure. A δ(G)
conformal density always exists when G is non-elementary and δ(G) <∞. When G y X
is divergent there is a unique conformal density for Gy X (see [Lin17], Theorems 10.1 and
10.2 and the remark after Theorem 10.1); the measure νo is called the Patterson-Sullivan
measure. When G y X is cocompact, the Patterson-Sullivan measure can be interpreted
as the unique weak limit of ball averages over G orbits in the metric on X. More precisely,
for o ∈ X we may consider the family of measures on X given by

νR,o = |G · o ∩BR(o)|−1
∑

go∈G·o∩BR(o)

Dgo

where Dgo denotes the point mass at go. Considering νR,o as probability measures on the
compact space X ∪ ∂visX, they converge (in the weak topology) as R → ∞ to a scalar
multiple of νo.

In the context of CAT(0) spaces, conformal densities and Patterson-Sullivan measures
were introduced by Ricks [Ric17]. Conformal densities can be used to construct a G and
geodesic flow invariant measure on SX as follows. The measure νo × νo gives full measure
to endpoints of zero width geodesics, and thus after taking the product with the arc-length
normalized Lebesgue measure dL can be considered a measure on SX. Using the conformal
density property, we can find a G-invariant and geodesic flow invariant Radon measure m̃
on SX in the measure class of νo×νo×dL (see [Ric17] for details). This measure m̃ projects
to a geodesic flow invariant measure m on SX/G; both m and m̃ are called the Bowen-
Margulis measure. When the Bowen-Margulis measure on SX/G is finite (as is the case for
instance when G y X is cocompact) it is ergodic with respect to gt ([Ric17], Theorem 3)
and the Patterson-Sullivan measure is the weak limit of ball averages as in the cocompact
case [Lin20]. Recall that SGX ⊂ SX denotes the set of v ∈ SX with v± ∈ L(G). We
summarize the properties of the Patterson-Sullivan measure which we will use below.

Lemma 5.2. [Ric17, Theorem 3] Suppose G y X is a non-elementary divergent action
with δ(G) < ∞ on a rank-1 CAT(0) space. Assume there is some zero width geodesic
with endpoints in the limit set L(G). Assume the Bowen-Margulis measure m on SX/G is
finite. Then, it is ergodic with respect to the geodesic flow and gives full weight to zero width
geodesics. Furthermore, the Patterson-Sullivan measures νo on ∂visX have full support on
L(G) and has no atoms, and the Bowen-Margulis measure m̃ has full support on SGX.

Note, ergodicity of the geodesic flow gt on (SX/G,m) by duality implies (in fact is
equivalent to) ergodicity of the Gy (∂visX × ∂visX, ν × ν).
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We now prove Theorem 5.1. We will show that for νo-a.e. ζ ∈ ∂visX any geodesic ray
converging to ζ satisfies the condition of Lemma 3.3. Since two geodesic rays converging to
the same point of ∂visX are asymptotic, and the condition of Lemma 3.3 is invariant under
asymptotic equivalence classes, it suffices to prove that with respect to the Bowen-Margulis
measure m̃ on SX, a.e. geodesic satisfies the condition of Lemma 3.3.

For any Borel set V ⊂ SX/G the Birkhoff Ergodic Theorem and the ergodicity of m
with respect to the geodesic flow gt imply, for m-a.e. v ∈ SX/G, we have

lim
T→∞

|{t ∈ [0, T ] : gtv ∈ V }|/T → m(V ).

Consequently, if W is any G-invariant Borel subset of SX, then for m̃-a.e. v ∈ SX, we
have

(5) lim
T→∞

|{t ∈ [0, T ] : gtv ∈W}|/T → m(W/G).

Note, m(W/G) > 0 when m̃(W ) > 0.
For every L > 0, N > 0, C > 0, define WL,N,C to be the set of v ∈ SX such that

[πfp(g−Lv), πfp(gLv)] is contained in a C-neighbourhood of an N -contracting geodesic. The
set WL,N,C is G-invariant and Borel. Apply Equation 5, we get

lim
T→∞

|{t ∈ [0, T ] : gtv ∈WL,N,C}|/T → m(WL,N,C/G).

Any v for which the left hand side of the above equation converges to a positive number
satisfies the condition of Lemma 3.3. Thus, it suffices to show that there is an N,C > 0
such that for each L > 0 we have m̃(WL,N,C) > 0.

To that end, let N > 0 be large enough so that there exists an N -contracting axis,
v0 ∈ SX, for a hyperbolic isometry g ∈ G. Let L,C > 0 and let Wv0 ⊂ SX be the set of v
such that d(πfp(gtv), v0) < C for all t ∈ (−L,L)}. Clearly Wv0 ⊂ WL,N,C . Note Wv0 is an
open subset of SX. Furthermore, it contains v0 ∈ SX. Since m̃ has full support on SX it
follows that m̃(Wv0) > 0 and thus m̃(WL,N,C) > 0.

6. Stationary measures and random walks

The other family of measures on ∂visX we are interested in are stationary measures
associated to random walks coming from finitely supported measures µ on G. In this
section we prove:

Theorem 6.1. Let X be a CAT(0) space and let Gy X be a rank-1 action. Let ν be the
stationary measure on ∂visX coming from a finitely supported random walk on G. Then
ν-a.e. point of ∂visX is frequently contracting.

Let G be an infinite group. Let µ be a symmetric probability measure on G and let µZ be
the product measure on GZ. Let T : GZ → GZ be the following invertible transformation:
T takes the two-sided sequence (hn)n∈Z to the sequence (ωn)n∈Z with ω0 = e,

ωn = h1 · · ·hn for n > 0

and
ωn = h−10 h−1−1 · · ·h

−1
−n+1 for n < 0.
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Similarly, let µN be the product measure on GN. Let T+ : GN → GN be the transfor-
mation that takes the one-sided infinite sequence (hn)n∈N to the sequence (ωn)n∈N with
ω0 = e and

ωn = h1 · · ·hn.
Let P be the pushforward measure T∗µ

Z on GZand P the pushforward measure T+∗µ
N

on GN. The measure P describes the distribution of µ sample paths, i.e. of products of
independent µ-distributed increments. Let µ̂ be the measure on G given by µ̂(g) = µ(g−1).

Let P̂ be the pushforward measure T+∗µ̂
N on GN. The measure space (GZ, P ) is naturally

isomorphic to (GN, P ) ⊗ (GN, P̂ ) via the map sending the bilateral path ω to the pair of
unilateral paths ((ωn)n∈N, (ω−n)n∈N).

Let σ : GZ → GZ be the left Bernoulli shift: σ(ω)n = ωn+1. By basic symbolic dynam-
ics, σ is invertible, measure-preserving and ergodic with respect to µZ. Therefore, when
restricted to sequences with e at the 0-th coordinate,

U = T ◦ σ ◦ T−1

is invertible, measure-preserving and ergodic with respect to P . Note that for each n ∈ Z,

(Uω)n = ω−11 ωn+1

and more generally
(Ukω)n = ω−1k ωn+k.

Suppose G acts continuously on an infinite Hausdorff space B. A Borel probability
measure ν on B is called (G,µ)-stationary if

ν(A) =
∑
g∈G

ν(g−1A)µ(g)

for all Borel A ⊂ B. The following is classical, see e.g. [GGPY], Theorem 9.4.

Lemma 6.2. Suppose Gy B is a minimal action on a compact Hausdorff space such that
every G orbit in B is infinite. Let ν be a stationary measure on B. Then ν has no atoms
and has full support on B.

Suppose now we have a bordification Z = X ∪ B of a metric space X, such that for
any basepoint o ∈ X and P -a.e. sample path ω = (ωn)n∈N the sequence ωno converges
to a point ω∞ ∈ B independent of the basepoint o. The probability measure on B given
by ν(A) = P (ω : ω∞ ∈ A) is then clearly a stationary measure on B; moreover for P -
a.e. ω ∈ GN the pushforward measures ω∗nν weakly converges to an atom concentrated
at some ω∞ ∈ B. A space B with a stationary measure ν satisfying the last condition
is called a (G,µ) boundary. A (G,µ) boundary (B, ν) is said to be a Poisson boundary
of (G,µ) if it is maximal in the sense that for any other (G,µ) boundary (B′, ν ′) there is
a G equivariant measurable surjection B → B′. The Poisson boundary is unique up to
G-equivariant measurable isomorphism.

Karlsson and Margulis [KM99] showed that under mild conditions the visual boundary
of a CAT(0) space provides a model for the Poisson boundary of a group acting on the
space.
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Theorem 6.3. [KM99] Let X be a CAT(0) space with basepoint o ∈ X and let G y X
be a nonamenable group acting on X by isometries with bounded exponential growth. Let
µ be a probability measure on G whose finite support generates G as a semigroup. Then
for P = Pµ-a.e. ω ∈ GN, ωno converges to a point ω∞ ∈ ∂visX. Moreover, (∂visX, ν) is
a model for the Poisson boundary of (G,µ) where ν is the stationary measure on ∂visX
defined by ν(A) = P (ω∞ ∈ A).

Le Bars [LeB, Theorem 1.1] proved that if in addition G y X is a rank-1 action, the
above measure ν is the unique µ stationary measure on ∂visX. We also recall the following
theorem of Kaimanovich.

Lemma 6.4. [Kai00] The action of any group G on the square of its Poisson boundary
with respect to the square of the stationary measure associated to a symmetric random walk
preserves the measure class and is ergodic.

Let X be a rank-1 CAT(0) space. For c > 0, define Ac to be the set of pairs of points
of ∂visX which are the endpoints of a rank-1 biinfinite geodesic that does not bound a flat
strip of width > c. The set Ac is an Isom(X)-invariant subset of ∂visX and, for c large
enough, it has nonempty interior by Lemma 4.3. Moreover, if G y X is a rank-1 action,
Ac ∩L(G) is nonempty for large enough c. Consequently if ν is any nonatomic probability
measure on L(G) ⊂ ∂visX with full support on L(G) we have ν×ν(Ac) > 0 for large enough
c. If in addition the G action on ∂visX ×∂visX preserves and is ergodic with respect to the
measure class of ν × ν, the Γ invariance of Ac implies ν × ν(L(G)rAc) = 0.

We thus have:

Lemma 6.5. Let X be a geodesically complete rank-1 CAT(0) space and Gy X a rank-1
group action. Let µ be a symmetric probability measure on G whose finite support generates
G and ν the associated stationary measure on ∂visX. Then ν × ν is ergodic with respect
to the G action and for some c > 0 gives full weight to pairs of points defining geodesics
which do not bound a flat strip of width greater than c.

By Kingman’s Ergodic Theorem and the nonamenability of G, there is an l = l(µ) > 0
such that

(6) l(µ) = lim
n→∞

d(ωno, o)/n for P -a.e. ω.

We refer to l(µ) as the drift of the random walk (G,µ) with respect to the metric d.
Karlsson-Margulis proved that for P -a.e. ω there is a parametrized unit-speed geodesic
τ ∈ SX such that

(7) d(τ(ln), ωno)/n→ 0.

Recall that a point ζ ∈ ∂visX is a geodesic ray starting at o.
For the rest of the section, we assume that X, ν, µ are as in Lemma 6.5. Our goal is to

show the following.

Theorem 6.6. For any ν-a.e. ζ ∈ ∂visX, ζ is sublinearly Morse.
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We will prove this by showing that ν-a.e. ζ is frequently contracting. In fact, we will
prove a stronger statement:

Proposition 6.7. Let g0 ∈ G be a rank-1 element and let γ0 be its axis. Then, for ν-a.e.
ζ, there is a C > 0 such that the following holds. For any b > a > 0 and L > 0, there exists
an R0 > 0 such that, for any R > R0, there is a g ∈ G such that ζ([aR, bR]) contains a
subsegment of length L that is C-close to g · γ0 .

For each ζ1, ζ2 ∈ ∂visX, let Ψ(ζ1, ζ2) be the set of unit speed, biinfinite geodesics with
endpoints ζ1, ζ2 ∈ ∂visX. Let Ψ(ζ1, ζ2, o) be the set of unit speed parametrizations of
such geodesics γ such that γ(0) is at minimal distance from o. For a bilateral sample
path ω converging to ω−, ω+ ∈ ∂visX write Ψ(ω, o) and Ψ(ω) instead of Ψ(ω−, ω+, o) and
Ψ(ω+, ω−). Similarly for an unparametrized biinfinite geodesic γ we write γx for the unit
speed parametrization with γx(0) at minimum distance from any x ∈ X.

Proposition 6.7 will follow from Proposition 6.8:

Proposition 6.8. Let g0 ∈ G be a rank-1 element and let γ0 be its axis. Then there is a
C > 0 such that for P -a.e. biinfinite sample path ω any parametrization of any biinfinite
geodesic γ ∈ Ψ(ω) satisfies the following. For any ∞ > b > a > −∞ and L > 0 there is
an R0 = R0(a, b, L) > 0 such that for any R > R0 there is a g ∈ G such that γ([aR, bR])
contains a subsegment of length L that is C-close to g · γ0.

Note that if the assumptions of Proposition 6.8 holds for one unit speed parametrization
of a geodesic, it is also satisfied by any such parametrization (for a different R0). Also note
that, unlike in Proposition 6.8, the C > 0 in Proposition 6.7 depends on the ζ ∈ ∂visX but
this is enough for our purposes.

Proof of Proposition 6.7 assuming Proposition 6.8. Proposition 6.8 implies that there is
C > 0 such that, for ν-a.e. ζ ∈ ∂visX, there is a unit speed parametrized biinfinite geodesic
γζ with the property that for any∞ > b > a > 0 and L > 0 there is an R0 = R0(a, b, L) > 0
such that for any R > R0 there is a g ∈ G such that γ([aR, bR]) contains a subsegment
of length L that is C-close to g · γ0. Let τζ be the ray from o converging to ζ. Let
D = sup d(γζ(t), τζ(t)) <∞. Then τζ satisfies the condition of Proposition 6.8 with C +D
in place of C and R0 +D in place of R0. �

The remainder of this section is devoted to the proof of Proposition 6.8. Let Ω(L,C,R)
be the set of sample paths ω ∈ GZ such that, for all γ ∈ Ψ(ω), we have d(o, γ) < R/10 and
there exist g ∈ G and t ∈ [−R/2 +L,R/2−L] such that γo(t−L, t+L) is C-close to g ·γ0.

Lemma 6.9. There is a C > 0 such that for all L > 0 there is a positive function f with

lim
R→∞

f(R) = 0 and P (Ω(L,C,R)) > 1− f(R).

We first prove of Proposition 6.8 assuming Lemma 6.9 and will prove Lemma 6.9 after-
wards.

Proof of Proposition 6.8 assuming Lemma 6.9. Assume, without loss of generality, that
a > 0 (this is possible since [a, b] has a subsegment contained in either (0,∞) or (−∞, 0)
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and in the latter case we can reverse the orientstion of the geodesic). Let Ω0 ⊂ GZ denote
the set of all ω such that

d(ω±io, o)/i→ l and ω±io→ ζ± ∈ ∂visX

with (ζ−, ζ+) having width at most c. By Lemma 6.5 and Equation 6, P (Ω0) = 1. Consider
ω ∈ Ω0. Choose R > 0 large enough so that

1− f(R) > (b− a)/(10a+ 10b).

Assume U iω ∈ Ω(L,C,R) for some i ∈ Z. This is equivalent to saying, for all γ ∈ Ψ(ω),
d(ωio, γ) < R/10 and there exists t ∈ (−R/2 + L,R/2− L) and g ∈ G such that

γωio(t− L, t+ L) is C–close to g · γ0.
Therefore, we can choose time ti with |ti− d(ωio, γo(0))| < R/10 and gi ∈ G such that, for
all γ ∈ Ψ(ω),

γo(ti − L, ti + L) is C–close to gi · γ0.
Let si(γ) = d(ωio, γo(0)). Let

d = sup
{
d(o, go) | g ∈ supp(µ)

}
.

Note since d(ωio, ωi+1o) ≤ d for all i, for every t > d(o, γ) there is some i(t) with

|t− si(t)(γ)| < d.

Hence, for large enough (depending on ω) n, for all γ ∈ Ψ(ω), if there is an i with

U iω ∈ Ω(L,C,R)

and

(8) (2a+ b)n/3 ≤ si(γ) ≤ (a+ 2b)n/3

then γo([an, bn]) has a connected segment of length L that is C–close to g · γ0, for some
g ∈ G. Moreover, since si(γ)/i→ l, for large enough n, we have, (8) holds whenever

(9)
(3a+ 2b)n

5l
≤ i ≤ (2a+ 3b)n

5l
.

Hence, unless γo([an, bn]) has a connected segment of length L that is C–close to g · γ0
for some g ∈ G, we have

U iω /∈ Ω(L,C,R)

for any i as in (9). This implies that if N = N(n) is the smallest integer less than (2a+3b)n
5l

we have
|{i ∈ [0, N − 1] | U iω ∈ Ω(L,C,R)}|

N
≤ 1− b− a

2(2a+ 3b)
.

Consequently, if for infinitely many n γo([an, bn]) has no connected segment of length L
that is C–close to g · γ0 for some g ∈ G, we have

lim inf
N→∞

|{i ∈ [0, N − 1] | U iω ∈ Ω(L,C,R)}|
N

≤ 1− b− a
2(2a+ 3b)

.
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On the other hand, by the Birkhoff ergodic theorem, for P -a.e ω, we have

lim
N→∞

|{i ∈ [0, N − 1] | U iω ∈ Ω(L,C,R)}|
N

= P (Ω(L,C,R))

> 1− (b− a)

(6a+ 6b)
> 1− f(R) �

Finally, we prove Lemma 6.9.

Proof of Lemma 6.9. Let C be such that for P -a.e. ω the points ω± are connected by a
geodesic of width at most C. This means that for P a.e. ω, Ψ(ω) is nonempty and there
is an R(ω) ∈ N such that for all γ ∈ Ψ(ω), we have d(o, γ) < R(ω). Thus, the P measure
of ω ∈ GZ such that d(o, [ω−, ω+]) < R/10 converges to 1 with R.

It now suffices to show that there is a C > 0 such that for each L > 0 the P measure of
the set of ω such that for each γ ∈ Ψ(ω) the segment γo(−R/2, R/2) contains a length L
subsegment C close to g · γ0 for some g ∈ G converges to 1 as R→∞. Let Λ(L,C) be the
set of biinfinite sample paths ω such that d(γo(t), γ

0(t)) < C for all γ ∈ Ψ(ω) and |t| ≤ L.

Claim 6.10. There is a C > 0 such that P (Λ(L,C)) > 0 for all L.

Proof. Let C be large enough so that the periodic rank-1 geodesic γ0 passes within C of
o and has width less than C. Let γ−, γ+ ∈ ∂visX be its limit points and parametrize
γ0 such that γ0(0) is at minimal distance to o. By Lemma 4.3 for each i ∈ N there are
neighborhoods V ±i of γ± in ∂visX such that any pair in V −i × V

+
i can be connected by a

geodesic of width less than 2C which passes within 2C of γ0(i). Letting

V ± =

1+b2Lc⋂
i=−1−b2Lc

V ±i

we have that any pair in V − × V + can be connected by a geodesic of width less than
2C which passes within 2C + 1 of γ0(t) for any |t| ≤ 2L. Thus, for any geodesic γ with
endpoints in V − × V + and |t| ≤ 2L we have d(γ, γ0(t)) ≤ 2C + 1.

Let Λ′(L,C) be the set of all sample paths ω with ω± ∈ V ±. By definition,

Λ′(L,C) ⊂ Λ(L, 2C + 1).

Since the V ± are open neighborhoods of γ0± ∈ L(G) in ∂visX and the harmonic measure ν

has full support on the limit set L(G) ⊂ ∂visX, we have ν(V ±) > 0, hence P (Λ′(L,C)) > 0
and thus P (Λ(L, 2C + 1)) > 0. This completes the proof with 2C + 1 in place of C. �

Let C > 0 satisfy the conditions of the claim and assume wothout loss of generality that
R > L > 2C. Note, U iω ∈ Λ(L,C) if and only if d(γωio(t), ωiγ

0(t)) < C for all γ ∈ Ψ(ω).
Let d = maxg∈G,µ(g)>0 d(go, o). This is finite since µ is assumed to be finitely supported.
Note, we always have d(o, ωio) ≤ di and hence if

U iω ∈ Λ(L,C)
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for some i with

0 ≤ i ≤ R/2− L− 2C

2d

then for all γ ∈ Ψ(ω), γo([−R/2, R/2]) contains a length L segment which is C close to
g · γ0 for some g ∈ G. We want to show that the measure of ω in the complementary set
converges to 0 as R→∞. By the Birkhoff ergodic theorem, for P almost every ω,

lim
N→∞

|i ∈ [0, N ] : U iω ∈ Λ(L,C)|
N

= P (Λ(L,C)) > 0.

In particular, for P almost every ω, there is some i with U iω ∈ Λ(L,C). Therefore, the P
measure of sample paths ω such that U iω /∈ Λ(L,C) for all i with

0 ≤ i ≤ R− L− 2C

2d

converges to 0 as R→∞ completing the proof. �

7. Genericity of sublinearly Morse geodesics in Teichmüller space

In this section we consider the Teichmüller space Teich(S) of a closed surface S of genus
g ≥ 2 equipped with the Teichmüller metric d = dT . Let MF be space of measured
foliations on S and let PMF be the set of projective classes of elements of MF . There
is a natural compactification of Teich(S) by PMF called the Thurston compactification
of Teich(S) The space MF can be locally parametrized by cones in R6g−6. This defines
a natural Lebesgue class of measures called the Thurston measure. This also defines a
Lebesgue class of measures on PMF . (see [FLP, PH22] for definitions and discussion).

Any Teichmüller geodesic ray can be described by a one parameter family of quadratic
differentials. The real and imaginary parts of a quadratic differential define two measures
foliations that are called the horizontal and the vertical foliation associated to the quadratic
differential. The Teichmüller geodesic flow acts by scaling the horizontal foliation up and
scaling the vertical foliation down (see [Hub06] for backgroun information on Teichmüller
space).

A measured foliation is called arational if it does not contain any simple closed curve. It
is called uniquely ergodic if its underlying topological foliation supports a unique transverse
measure up to scaling. We also call its projective class arational or uniquely ergodic. Let
UE ⊂ PMF be the set of arational, uniquely ergodic projective measured foliations. The
US has full measure with respect to the Thurston measure [Mas80].

A Teichmüller geodesic with vertical foliation in UE converges to its projective class in
the Thurston compactification [Mas80] (although not always [Len08, LLR18]). This allows
us to consider the Thurston compactification as an analogue of the visual compactification
of CAT(0) spaces (up to a measure zero set). We now proceed with the proof of Theorem
1.4 which is really two separate statements. The proofs are nearly identical to those in
Section 5 and Section 6. Hence, we only highlight the differences and skip repeating the
identical parts of the arguments.



22 ILYA GEKHTMAN, YULAN QING, AND KASRA RAFI

7.1. Thurston measures on PML. The first measure we consider is the so-called nor-
malized Thurston measure on PMF , which can be considered as an analogue of the
Patterson-Sullivan measure and which we now define. There is a natural symplectic form
on MF which induces a measure called the Thurston measure mTh. For η ∈ MF define
[η] ∈ PMF to be its projective class and for any basepoint o ∈ Teich(S) define a nor-
malized Thurston measure νTho on PMF by νTho (A) = m(η ∈ MF : [η] ∈ A,Extoη ≤ 1)
where Extxη denotes the extremal length of the measured foliation η with respect to the
conformal structure defimed by x.

We will prove the following.

Theorem 7.1. Let S be a closed surface of genus at least 2 and let Teich(S) be the Te-
ichmüller space of X with the Teichmüller metric. Let PMF be Thurston’s boundary
of Teichmüller space consisting of projective measured foliations. Let ν be a measure on
PMF which is a normalized Thurston measure. Then ν gives full measure to foliations
associated to sublinearly Morse geodesics rays.

As in the proof of Theorem 5.1, to prove this result we will need to prove a bilateral
analogue, using an appropriate geodesic flow.

Any pair of distinct elements of UE determines a unique Teichmüller geodesic with
corresponding vertical and horizontal measured foliations [HM79].

Let ν be a normalized Thurston measure on PML. The measure ν×ν gives full measure
to pairs of distinct elements of UE , and thus after taking the product with the arc-length
(with respect to Teichnueller metric) normalized Lebesgue measure L can be considered
a measure on the space Q1 of unit area quadratic differentials, which can be seen as
the (co)tangent bundle to Teichmüller space. We can find a G-invariant and Teichmüller
geodesic flow invariant Radon measure m̃ on Q1 in the measure class of ν × ν × dL. This
measure m̃ projects to a finite Teichmüller geodesic flow invariant and ergodic measure m
on Q1/MCG(S), called the Masur-Veech measure. Consequently the Mod(S) action on
PML with the Thurston measure is ergodic, see [ABEM12] for details. The proof now
proceeds exactly as for the Patterson-Sullivan measure in the CAT(0) setting (see Section
5), using the following two facts:

• Any two geodesic rays with the same vertical projective measured foliation in UE
are strongly asymptotic, i.e. the distance between them converges to zero. [Mas80,
Theorem 2].
• The axis in Teich(S) of any Pseudo-Anosov element is strongly contracting [Min96].

7.2. Stationary measures on PML. We now consider stationary measures for random
walks on the mapping class group. A subgroup of MCG(S) is called non-elementary if it
contains two pseudo-Anosov elements with disjoint fixed point sets in PML. A measure
µ on MCG(S) is said to be non-elementary if the semigroup generated by its support is a
non-elementary subgroup. We prove:

Theorem 7.2. Let S be a closed surface of genus at least 2 and let Teich(S) be the Te-
ichmüller space of X with the Teichmüller metric. Let PMF be Thurston’s boundary of
Teichmüller space consisting of projective measured foliations. Let ν be a measure on PMF
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which is the stationary measure associated to a finitely supported probability measure µ on
the mapping class group MCG(S) such that the semigroup generated by the support of µ
is a group containing at least two independent pseudo-Anosov elements. Then ν gives full
measure to foliations associated to sublinearly Morse geodesics rays.

We now explain how to prove Theorem 7.2. Let µ be such a symmetric finitely supported
non-elementary measure, G < MCG(S) the subgroup generated by its support, and P ,
P the induced Markov measures on unilateral and bilateral sample paths respectively.
Kaimanovich-Masur [KM96] proved that for P -a.e. ω, and every o ∈ Teich(S), ωn · o
converges to a uniquely ergodic point ω∞ ∈ PML. In other words, there is a P -a.e. where
defined measurable map bnd : GN → PML sending ω to limn→∞ ωn · o ∈ PML. The
measure on PML defined by

ν = bnd∗P = lim
n→∞

µ∗n

is the unique µ stationary measure on PML. In fact, (PML, ν) is a model for the Poisson
boundary of (G,µ). The measure ν gives full weight to UE and has full support on the limit
set L(G) ⊂ PML of the group G < MCG(S) generated by the support of µ [KM96]. Let
l = limn→∞ d(ωno, o)/n (for P a.e. ω) be the drift of the µ random walk. Tiozzo [Tio15]
proved that P a.e. ω sublinearly tracks a geodesic τ in Teich(S):

lim
n→∞

d(τ(ln), ωo)

n
= 0

for any geodesic ray τ converging to ω∞ ∈ PML. We want to prove that for ν a.e.
ζ ∈ PML, geodesic rays with vertical projective measured foliation ζ are frequently con-
tracting. Since any two geodesic rays with the same vertical projective measured foliation
in UE are strongly asymptotic it suffices to prove the following analogue of Proposition 6.8.

Proposition 7.3. Let g0 ∈ G be a pseudo-Anosov element and γ0 its axis in Teich(S).
Fix a basepoint o ∈ Teich(S). Then there is a K > 0 such that for P a.e. biinfinite sample
path ω (any unit speed parametrization of) the biinfinite geodesic γω satisfies the following.
For any ∞ > b > a > −∞ and L > 0 there is an R0 > 0 such that for any R > R0 there
is a g ∈ G such that the segment γ([aR, bR]) contains a length L subsegment which is C
close to g · γ0.

As before, for a bilateral geodesic γ and p ∈ Teich(S) we let γp be a unit speed
parametrization with γo(0) a point on γ at minimal distance from o. We can make this
choice in a G-equivariant way, i.e. so that gγp = (gγ)gp. For distinct ζ1, ζ2 ∈ UE we denote
by γζ1,ζ2,p the corresponding parametrization of γζ1,ζ2 and for a sequence ω ∈ GZ with
ω±n → ω± ∈ PML we write γω = γω−,ω+ and γω,p = γω−,ω+,p.

Let Ω(L,C,R) be the set of sample paths ω ∈ GZ such that ω± ∈ UE are uniquely
ergodic, d(o, γω) < R/10 and γω,o[t− L, t+ L] is contained in a C neighborhood of g · γ0),
for some g ∈ G and t ∈ (−R/2 + M,R/2 − M). Proposition 7.3 is deduced from the
following is an analogue of Lemma 6.9.

Lemma 7.4. There is a C > 0 such that for all L > 0 there is an function f with
limR→∞ f(R) = 0 and P (Ω(L,C,R)) > 1− f(R).
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The proof of Lemma 7.4 and the deduction from it of Proposition 7.3 are almost identical
to (and somewhat simpler than) the corresponding proofs of Lemma 6.9 and Proposition
6.8. The role of the rank 1 geodesic γ0 will be replaced by the axis of a pseudo-Anosov
mapping class, which is strongly contracting. Moreover, almost every bilateral sample path
converges to distinct uniquely ergodic points of PML which actually determine a unique
Teichmüller geodesic. Using this, the arguments of Section 6 apply verbatim. The only
thing worth adding, is that in place of Lemma 4.3 used in the proof of Lemma 6.9 we use
the following geometric result to prove Lemma 7.4.

Lemma 7.5. [Kla, Proposition 5.1], [KL08, Proposition 5.2]. If a sequence (ζn, ζ
′
n) of

pairs in UE converges to the distinct pseudo-Anosov pair (φ−, φ+), then the corresponding
geodesics γζn,ζ′n converge locally uniformly to the geodesic γφ−,φ+ determined by φ±.

8. Fixing a sublinear function and the identification of the Poisson
Boundary

Let X be either a rank-1 CAT(0) space or a Teichmüller space, and ∂X either the visual
boundary or PMF . Let ν be a measure on ∂X satisfying the conditions of one of the
Theorems 5.1, 6.1, 7.2 or 7.1. The corresponding theorems together with Theorem 3.7,
imply that ν-a.e. ζ ∈ ∂X is κ-Morse for some sublinear function κ. We show that the
function κ can in fact be chosen independent of ζ:

Theorem 8.1. There is a single sublinear function κ such that, for ν as in Theorem 5.1,
6.1, 7.2 or 7.1, ν-a.e. geodesic ray ζ is κ-Morse.

Proof. Let Ω = {κi} be a countable collection of sublinear functions on R such that for any
sublinear function κ there is a κi ∈ Ω and C > 0 with κ ≤ Cκi. Such a collection exists by
the separability of the space of continued functions X → R. For each i, let Ai ⊂ ∂X be the
set of κi-Morse rays ζ ∈ ∂X (note that being κi-Morse is the same as being Cκi-Morse.)

By Theorem 3.7 and the above four Theorems, ν-a.e. geodesic rays ζ is κi–Morse for
some i. That is, ν(∪Ai) = 1. Moreover, each Ai is G-invariant. By (the comment after)
Lemma 5.2 and Lemma 6.5, or the ergodicity of the Teichmüller geodesic flow, Gy (X, ν),
is ergodic. Thus ν(Ai) ∈ {0, 1} for each i. Therefore, there is a single Ai with ν(Ai) = 1,
completing the proof. �

We will now prove Corollary 1.3 and Corollary 1.5. We first recall Theorem 6.2 in
[QRT22].

Theorem 8.2. Let G be a countable group of isometries of a proper, geodesic, metric space
(X, dX), and suppose that the action of G on X is temperate. Let µ be a probability measure
on G with finite first moment with respect to dX , such that the semigroup generated by the
support of µ is a non-amenable group. Let κ be a concave sublinear function, and suppose
that for almost every sample path ω = (wn), there exists a κ-Morse geodesic ray γω such
that

(10) lim
n→∞

dX(wn · o, γω)

n
= 0.
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Then almost every sample path converges to a point in ∂κX, and moreover the space
(∂κX, ν), where ν is the hitting measure for the random walk, is a model for the Pois-
son boundary of (G,µ).

Proof of Corollary 1.3 and Corollary 1.5. It is known that whenX is CAT(0) or Teichmüller
space and the semigroup G generated by the support of µ is non-elementary, µ-a.e. sample
path sublinearly tracks some X geodesic ray τω ([Tio15] for Teichmüller space and [KM99]
for CAT(0) spaces). Moreover, the mapping class group action on Teichmüller space is
temperate by the main result of [ABEM12]. Theorem 8.1 shows that there is a sublinear
function κ such that for µ-a.e. sample path ω, ωno sublinearly tracks a κ-Morse geodesic
ray ζ. Thus the assumptions of Theorem 8.2 are satisfied and hence (∂κX, ν) is a model
for the associated Poisson boundary. �
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[BH09] Martin R. Bridson and André Häfliger. Metric Spaces of Non-Positive Curvature, Springer, 2009.
[BM96] Marc Burger and Shahar Mozes. CAT(-1)-Spaces, Divergence Groups and their Commensurators,

Journal of the American Mathematical Society Vol. 9, No. 1 (Jan., 1996), pp. 57-93.
[Choi] Inhyeok Choi. Limit laws on Outer space, Teichmüller space, and CAT(0) spaces,

arXiv:2207.06597
[CK00] C. B. Croke and B. Kleiner. Spaces with nonpositive curvature and their ideal boundaries, Topology

39 (2000), no. 3, 549–556.
[CLM12] C. Leininger, M. Clay and J. Mangahas. The geometry of right angled Artin subgroups of mapping

class groups, Groups Geom. Dyn. 6 (2012), no. 2, 249-278.
[Cou] Remi Coulon. Patterson-Sullivan theory for groups with a strongly contracting element

arxiv:2206.07361
[FLP] Albert Fathi, François Laudenbach, and Valentin Poénaru. Thurston’s Work on Surfaces, Trans-

lated from the 1979 French original by Djun M. Kim and Dan Margalit Princeton University
Press, Princeton, NJ 2012

[Fur02] Alex Furman. Random walks on groups and random transformations, Handbook of dynamical
systems Vol. 1A, 931 - 1014, North-Holland, Amsterdam, 2002.

[GGPY] Ilya Gekhtman, Victor Gerasimov, Leonid Potyagailo, and Wenyuan Yang. Martin boundary
covers Floyd boundary , arxiv: 1708.02133.

[HM79] John Hubbard and Howard Masur. Quadratic differentials and foliations, Acta Mathematica vol-
ume 142, pages 221–274 (1979).

[HW08] D.Wise and F.Haglund. Special Cube Complexes, Geom. Funct. Anal. (2008) 17 no.5, 1551-1620.
[KM99] A. Karlsson and G. Margulis. A multiplicative ergodic theorem and nonpositively curved spaces,

Comm. Math. Phys. 208 (1999) 107-123.
[KM96] Vadim A. Kaimanovich and Howard A. Masur. The Poisson boundary of the mapping class group,

Invent. Math. 125 (1996), no. 2, 221–264.



26 ILYA GEKHTMAN, YULAN QING, AND KASRA RAFI

[Kai00] Vadim A. Kaimanovich. The Poisson formula for groups with hyperbolic properties, Ann. of Math.
(2) 152 (2000), no. 3, 659–692.

[Kla] E. Klarreich. the boundary at Infinity of the Curve Complex and the Relative Teichmüller Space
, Preprint arxiv:1803.10339

[KL08] R. P. Kent, and C. J. Leininger. Shadows of mapping class groups: capturing convex cocompact-
ness, Geom. Funct. Anal. 18 (2008).

[Hub06] J.Hubbard. Teichmüller theory and applications to geometry, topology and dynamics, Matric
Edition, Ithaca 2006.

[LeB] Corentin Le Bars. Random walks and rank-1 isometries on CAT(0) spaces.
arxiv.org/pdf/2205.07594

[Len08] A.Lenzhen. Teichmüller geodesics that do not have a limit in PMF , Geom.Topol.
12(2008),no.1,177–197.

[Lin17] Gabriele Link. Hopf-Tsuji-Sullivan dichotomy for quotients of Hadamard spaces with a rank-1
isometry, Discrete and Continuous Dynamical Systems 38(11) (2017).

[Lin20] Gabriele Link. Equidistribution and counting of orbit points for discrete rank-1 isometry groups
of Hadamard spaces, Tunisian Journal of Mathematics 2(4) (2020) 791-839.

[Mas80] Howard Masur. Uniquely ergodic quadratic dierentials, Comment. Math. Helvetici Vol. 55 (1980)
255-266.

[LLR18] Christopher Leininger, Anna Lenzhen and Kasra Rafi. Limit sets of Teichmüller geodesics with
minimal non-uniquely ergodic vertical foliation, Journal für die reine und angewandte Mathematik
737 (2018), 1-32.

[Min96] Y. Minsky. Quasi-projections in Teichmüller space, J. Reine Angew. Math. 473 (1996), 121– 136.
[PH22] R. C. Penner, with J. L. Harer. Combinatorics of Train Tracks, Annals of Mathematics Studies

1922 Princeton University Press.
[QRT19] Yulan Qing, Kasra Rafi and Giulio Tiozzo Sublinearly Morse boundaries I: CAT(0) spaces, Ad-

vances in Mathematics 404 (2022) 108442.
[QRT22] Yulan Qing, Kasra Rafi and Giulio Tiozzo. Sublinearly Morse boundaries II: Proper geodesic

spaces, arxiv.org/pdf/2011.03481
[Ric17] R. Ricks. Flat strips, Bowen-Margulis measures, and mixing of the geodesic flow for rank-1 CAT(0)

spaces, Ergodic Theory Dynam. Systems, no. 3, 37 (2017), 939–970.
[Tio15] Giulio Tiozzo. Sublinear deviation between geodesics and sample paths, Duke Math. J. 164 (2015),

no. 3, 511–539.
[Yan] Wenyuan Yang. Conformal dynamics at infinity for groups with contracting elements, in prepa-

ration.

Department of Mathematics, University of Toronto, Toronto, ON
Email address: ilyagekh@gmail.com

Shanghai Center for Mathematical Sciences, Fudan University, Shanghai
Email address: yulan.qing@gmail.com

Department of Mathematics, University of Toronto, Toronto, ON
Email address: rafi@math.toronto.edu


	1. Introduction
	Related results

	2. Sublinearly Morse quasi-geodesic rays in proper metric space
	2.1. Quasi-isometries of groups and metric spaces
	Geodesics and quasi-geodesic rays and segments
	Contracting geodesics
	2.2. -Morse and -contracting sets.

	3. Geodesics with enough contracting subsegments are sublinearly Morse
	Claim

	4. CAT(0) spaces, their boundaries and their isometries 
	4.1. The visual boundary of CAT(0) spaces.
	4.2. Group action on CAT(0) spaces

	5. Genericity of frequently contracting geodesics with respect to Patterson-Sullivan measures
	6. Stationary measures and random walks
	7. Genericity of sublinearly Morse geodesics in Teichmüller space
	7.1. Thurston measures on PML
	7.2. Stationary measures on PML

	8. Fixing a sublinear function and the identification of the Poisson Boundary
	References

