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Abstract
Let S be a surface of genus g with p punctures with negative Euler characteris-
tic. We study the diameter of the �-thick part of moduli space of S equipped with the
Teichmüller or Thurston’s Lipschitz metric. We show that the asymptotic behaviors in
both metrics are of order log.gCp

�
/. The same result also holds for the �-thick part

of the moduli space of metric graphs of rank n equipped with the Lipschitz metric.
The proof involves a sorting algorithm that sorts an arbitrarily labeled tree with n
labels using simultaneous Whitehead moves, where the number of steps is of order
log.n/. As a related combinatorial problem, we also compute, in the appendix of this
paper, the asymptotic diameter of the moduli space of pants decompositions on S in
the metric of elementary moves.

1. Introduction
Let Mg;p be the moduli space of complete finite-volume hyperbolic surfaces of genus
g with p labeled punctures. We equip Mg;p with the Teichmüller metric dT . Let �M
be the Margulis constant (two curves of length less than �M on a hyperbolic surface
do not intersect), and let � � �M . Let M �

g;p be the �-thick part of Mg;p , that is, the
space of surfaces where the length of every essential closed curve is at least �. By a
theorem of Mumford, M �

g;p is compact. We are interested in a better understanding
of the “shape” of M �

g;p . As a first step, we study the asymptotic behavior of the
Teichmüller diameter of M �

g;p as g and p go to infinity. In this paper, we prove the
following.

THEOREM A
There exists K such that, for every g and p with 2g � 2C p > 0 and every � � �M ,

1

K
log
�gC p

�

�
� diamT .M

�
g;p/�K log

�gC p
�

�
: (1)
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We will adopt a shorthand notation and rewrite equation (1) as diamT .M
�
g;p/�

log.gCp
�
/.

There are several variations of this theorem. First, there are two natural possible
metrics on M �

g;p . For any two points X;Y 2M �
g;p , we can consider the Teichmüller

distance between X and Y or the induced path metric distance in M �
g;p between

them. Also, the moduli space has an alternative definition where the punctures are not
marked. This is equivalent to considering the quotient space Mg;p=Symp where the
symmetric group Symp acts on Mg;p by permuting the labeling of the punctures. Our
theorem holds for both spaces and in both senses of diameter.

As we shall see, an essential component of the proof of our theorem is that the
Teichmüller metric is an L1-metric. Hence, another variation is to consider another
L1-metric on Mg;p : the asymmetric Lipschitz metric dL as defined by Thurston
[22]. There is a simple inequality relating the two metrics (see Section 2). For any
X;Y 2Mg;p ,

1

2
dL.X;Y /� dT .X;Y /:

For the proof of Theorem A, we will in fact use the Lipschitz metric to obtain the
lower bound and the Teichmüller metric to obtain the upper bound. In view of the
above equation, this will simultaneously establish the same asymptotics for the diam-
eter of M �

g;p in both metrics. Henceforth, when we say distance or d.�; �/, diameter
or diam.�/, without reference to a metric, we will mean either one of the two metrics.

Another metric to consider would be the Weil–Petersson metric on Teichmüller
space. Heuristically, the Weil–Petersson metric is an L2-metric: the norm of a vec-
tor is an L2-average of the amount of deformation throughout the surface. For this
reason, two points that are distance 1 apart in the Teichmüller metric have Weil–
Petersson distance at most

p
Area. Hence, our theorem provides an upper bound of

order
p
gC p log.g C p/ for the Weil–Petersson diameter of moduli space. This

implies Theorem 1.2 in [9] where the growth rate of the Weil–Petersson diameter
of moduli space is studied. In this case a matching lower bound seems to be more
difficult and remains open.

Width and height
As a general philosophy, one can study the geometry of a surface by decomposing it
into pants along the shortest possible curves. If the curves are sufficiently short, then
the geometry of the surface is essentially determined by the combinatorics of the pants
decomposition, which is encoded by the dual graph of the pants decomposition. When
a surface does not admit a short pants decomposition, then the lengths of the curves
in the shortest pants decomposition and the twisting information along these curves
are also relevant information. For these reasons, the proof of Theorem A naturally
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breaks down into two parts. One part considers the subset Bg;p �M �
g;p consisting

of surfaces that can be decomposed into pants by curves of length �M . We will refer
to the diameter of Bg;p as the width of M �

g;p . The other part considers the Hausdorff
distance between M �

g;p and Bg;p . We represent this quantity by HD.M �
g;p;Bg;p/

and refer to it as the height of M �
g;p . We prove the following.

THEOREM B (Width of M �
g;p)

We have

diam.Bg;p/� log.gC p/:

THEOREM C (Height of M �
g;p)

We have

HD.M �
g;p;Bg;p/� log

�gC p
�

�
:

This pair of theorems can be viewed as a refinement of Theorem A. Using the
triangle inequality, the upper bounds for the width and height of M �

g;p provide the
upper bound for the diameter of M �

g;p . The lower bound for the height is a lower
bound for the diameter. However, since our main interest is a better understanding of
the shape of M �

g;p , we include the lower bound arguments for both the width and the
height in this paper.

The diameter of space of graphs
The argument for the width involves solving a combinatorial problem of independent
interest. By considering the dual graph of the pants decomposition, we can associate
to every element X 2 Bg;p a graph of rank g with p marked valence 1 vertices
and .2g � 2C p/ valence 3 vertices (see Section 2). Let Graph.g;p/ be the space
of all such graphs. We consider the metric of simultaneous Whitehead moves dS on
Graph.g;p/: a simultaneous Whitehead move on a graph is a composition of an arbi-
trary number of commuting Whitehead moves. This is a suitable metric for our pur-
poses since we are consideringL1-metrics on moduli space. We show that the spaces
Graph.g;p/ (equipped with the dS -metric) and Bg;p are quasi-isometric and hence
their diameters are of the same order.

THEOREM D (Diameter of Graph.g;p/)
We have

diamS

�
Graph.g;p/=Symp

�
� diamS

�
Graph.g;p/

�
� log.gC p/:
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The main argument for the upper bound of Theorem D boils down to an efficient
sorting algorithm for labeled trees using simultaneous Whitehead moves (see Sec-
tion 3). Let Tree.n/ be the space of rooted binary trees with labels 0; : : : ; n, equipped
with the metric simultaneous Whitehead moves. There is a distance-increasing
embedding of Graph.g;p/ into Tree.n/, where nD 2g � 2C p (see Section 2). We
introduce a sorting algorithm using simultaneous Whitehead moves and show that
the algorithm can sort any tree in Tree.n/ in log.n/ steps. This bound also gives the
desired upper bound for the diameter of Graph.g;p/.

The lower bound for Theorem D can be obtained by a simple example (see Sec-
tion 5). In fact, more can be said for Bg and Graph.g/. By the work of Pinsker [20],
a generic point in Graph.g/ is an expander graph (see Definition 5.5). We show that
the surfaces associated to expander graphs have the following property: By a divid-
ing curve on a surface of genus g we will mean a separating curve which divides the
surface into two pieces, both of genus of order g.

THEOREM E
For any surface in Bg associated to an expander graph, the length of any dividing
curve is at least of order g.

If we fix a surface X 2Bg with a dividing curve of length of order 1, then the
above theorem implies that the distance between X and any surface in Bg associ-
ated to an expander graph is at least of order log.g/. This gives a lower bound of
order log.g/ for the diameter of Bg . However, noting that Bg is quasi-isometric to
Graph.g/, this also shows that expanders are not equidistributed in Graph.g/, nor are
they coarsely dense. This answers a question of Mirzakhani in the negative.

COROLLARY F
Expander graphs are not coarsely equidistributed in the space Graph.g/ equipped
with the metric dS . In fact, Graph.g/ contains a ball of radius r , where r is on the
order of the diameter of Graph.g/, that contains no expander graphs.

Theorem E also follows from Buser’s work in [6].

Related combinatorial problems
Similar combinatorial problems have been considered previously in the literature.
In [4], an algorithm was established, using log.n/ simultaneous flips, to transform
any triangulation of an n-gon into any other. This can be rephrased in terms of a
simultaneous-type metric on the space of unlabeled planar trees. However, the result
in [4] and Theorem D do not imply each other. The trees in [4] do not have labels,
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and they require their elementary moves to preserve a given embedding of a tree in
the plane.

Another related problem of interest is computing the diameter of the space of
pants decompositions on a surface Sg;p or Sg;p=Symp up to homeomorphisms,
equipped with the metric of elementary moves. This is equivalent to computing the
diameter of Graph.g;p/ or Graph.g;p/=Symp in the metric of Whitehead moves:
two graphs have distance 1 if they differ by a single Whitehead move. One can
compute these diameters using the existing works of [3] and [21], though neither
the details nor the statements are contained in any existing literature as far as the
authors know. (In the case of Graph.g/, an alternative proof is presented in [8].) We
have included in this paper an appendix estimating the diameters of Graph.g;p/ and
Graph.g;p/=Symp in the metric of Whitehead moves (see Theorem A.1 and Theo-
rem A.2). What is worth noting is that in this metric the diameters of Graph.g;p/ and
Graph.g;p/=Symp are not the same.

Theorem 2.3 in [21] is very general and gives a uniform upper bound for the
growth rate of the number of elements in a ball of radius r in any space of shapes when
shapes are allowed to evolve through locally supported elementary moves. White-
head moves certainly fit that description. Another example of interest is the mapping
class group equipped with the word metric coming from the Lickorish generators (see
[17]). It is an immediate consequence of [21, Theorem 2.3] that the growth rate of
the mapping class group with an appropriate set of generators is independent of the
complexity of the surface.

Outer space
Our results can be extended to the setting of metric graphs, which is of interest to
the study of outer automorphisms of free groups. Let Rn be a wedge of n circles.
The moduli space of metric graphs Xn is the set of nondegenerate metrics graphs of
volume n with homotopy type Rn (see Section 4). (This is the same as the quotient of
outer space by the outer automorphism group of Fn; see [10].) A well-studied metric
on Xn is the Lipschitz metric dL, defined in the same way as for surfaces. The �-thick
part X�

n of Xn consists of graphs with a lower bound � for the length of the shortest
loop. We prove the following.

THEOREM G (Diameter of X�
n)

We have

diamL.X
�
n/� log

�n
�

�
:

Outline of the paper
The organization of the paper is as follows:
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Section 2 contains the background material for the paper. In this section, we will
also introduce the metric of simultaneous Whitehead moves on graphs and explain
how to associate to any surface in Bg;p a rooted binary tree with labels.

Section 3 contains the main algorithm, which provides the upper bound for the
diameter of Tree.n/ in the metric of simultaneous Whitehead moves. As applications,
we obtain the upper bound of Theorem D and Theorem B.

Section 4 applies the work on trees to obtain the upper bound of Theorem G.
Section 5 is devoted to constructing some interesting examples of surfaces, which

includes an example for Theorem E. These examples also provide the lower bounds
for Theorem B, Theorem C, and Theorem D. We also complete the proof of Theo-
rem G in this section.

Section 6, the final section of the paper, contains the argument for the upper
bound of Theorem C. We also collect our results together to obtain Theorem A.

In the appendix, we compute the asymptotic diameter of Graph.g;p/ and
Graph.g;p/=Symp in the metric of Whitehead moves. The results and proofs of this
section are independent of the rest of the paper.

2. Preliminaries

Moduli spaces
Let Sg;p be a connected, oriented surface of genus g with p labeled punctures. We
require the Euler characteristic �.Sg;p/ D 2 � 2g � p to be negative. Let Mg;p be
the moduli space of complete, finite-volume, hyperbolic surfaces of homeomorphism
type Sg;p , up to label-preserving isometries. The quotient Mg;p=Symp of Mg;p by
the symmetric group Symp on p letters is the moduli space of unlabeled punctured
surfaces. One can also think of (Mg;p) Mg;p=Symp as the quotient of the Teich-
müller space of Sg;p by the (pure) mapping class group of Sg;p . We refer to [12],
[13], and [11] for more details.

By a curve on Sg;p , we will always mean a free homotopy class of a simple closed
curve which is not homotopic to a point or to a puncture. For a hyperbolic surface X ,
any curve has a unique geodesic representative which is the shortest in its homotopy
class. Given a curve ˛ on X , let `X .˛/ be the length of the geodesic representative of
˛ on X . A curve ˛ is called a systole on X if `X .˛/ is minimal among all curves on
X . We will let `.X/ be the length of a systole on X . Given � > 0, the �-thick part of
Mg;p is

M �
g;p D

®
X 2Mg;p W `.X/� �

¯
:

To make M �
g;p nonempty and connected, we consider only � � �M , where �M is a

fixed constant such that for any X 2Mg;p , if two distinct curves on X have lengths
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less than �M , then they are disjoint. The constant �M is called the Margulis constant
and is independent of g and p.

Two L1-metrics
We consider two L1-metrics on Mg;p . Let X;Y 2Mg;p .
� Teichmüller metric:

dT .X;Y /D
1

2
inf
f

®
logK.f / W f WX! Y is K.f /-quasiconformal

¯
:

� Lipschitz metric:

dL.X;Y /D inf
f

®
logL.f / W f WX! Y is L.f /-Lipschitz

¯
:

The Lipschitz metric was introduced by Thurston in [22]. Unlike the Teichmüller met-
ric, the Lipschitz metric is not symmetric, and one needs to be careful when choosing
the order of the two points when computing the distance. Both metrics induce the
same topology on Mg;p . We have the following inequality:

1

2
dL.X;Y /� dT .X;Y /: (2)

Equation (2) follows from two facts. The first fact, due to Wolpert, asserts that, under
any K-quasiconformal map, the hyperbolic length of any curve changes by at most a
factor of K (see [23, Lemma 3.1]). The second fact, stated below, is due to Thurston
[22].

THEOREM 2.1 (Thurston)
For any X;Y 2Mg;p ,

dL.X;Y /D sup
˛

inf
f

log
`Y .f .˛//

`X .˛/
;

where the sup is taken over all curves on X and the inf is taken over all Lipschitz
maps from X to Y .

To compute distances in the Teichmüller metric, Kerckhoff has a similar formula
using extremal lengths of curves (see [14]). For any X 2Mg;p , the extremal length
of a curve ˛ on X is defined to be

ExtX .˛/ WD sup
�

`�.˛/
2

Area.�/

(see [1]). Here, � is any metric in the conformal class of X , `�.˛/ is the �-length of
the shortest curve in the homotopy class of ˛, and Area.�/ is the area of the surface
X equipped with the metric �.
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THEOREM 2.2 (Kerckhoff)
For any X;Y 2Mg ,

dT .X;Y /D
1

2
sup
˛

inf
f

log
ExtY .f .˛//

ExtX .˛/
;

where the sup is taken over all curves on X and the inf is taken over quasiconformal
maps from X to Y .

Notations
Throughout this paper, we will use the following set of notations. Given two quantities
a and b, we will write a D O.b/ to mean a � Kb, for some uniform constant K .
Similarly, a D �.b/ if a � Kb. We will say a is on the order of b and write a �
b if a D O.b/ and a D �.b/. To control notations in a string of inequalities, it is
sometimes convenient to replace aDO.b/ by a � b, and aD�.b/ by a � b.

Pants decomposition and Bers’ constant
Two isotopy classes of curves on Sg;p will be called disjoint if they have disjoint
representatives. A multicurve on Sg;p is a (nonempty) collection of distinct curves on
Sg;p which are pairwise disjoint. A pants decomposition P of Sg;p is a multicurve
such that each component of Sg;p n P is a three-holed sphere, also called a pair of
pants. The number of curves in P is equal to the complexity �.Sg;p/D 3g � 3C p,
and the number of pants in a decomposition is equal to j�.Sg;p/j D 2g � 2C p.

Let B.X/ be the minimal number such that X admits a pants decomposition P
with `X .˛/�B.X/ for all ˛ 2 P . Let

Bg;p D sup
X2Mg;p

B.X/

be the Bers’ constant for Sg;p . It was originally proved by Bers that Bg;p is finite for
all g and p. For closed surfaces, Buser gave explicit upper and lower bounds for Bg
in [7, Section 5.2].

THEOREM 2.3 (Buser)
We have

p
6g � 2�Bg � 21.g � 1/:

One can extend the proof of Theorem 2.3 to obtain the upper and lower bounds
for the Bers’ constant in the punctured case as well:�.

p
gC p/DBg;p DO.gCp/.

The lower bound for Bg;p is obtained by Buser’s hairy torus construction. His con-
struction does not lie in the thick part of moduli space. We give another construction
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in the thick part that gives the same lower bound (see Lemma 5.9). (In [2], Parlier and
Balacheff improved the upper bound of B0;p to match the lower bound, but we will
not need that here.)

Width and height of M �
g;p

Let Bg;p �M �
g;p be the set of surfaces X 2Bg;p such that X admits a pants decom-

position where the length of every curve is exactly �M . By our choice of �M , inter-
secting curves cannot have lengths �M , and therefore such a pants decomposition on
X is unique.

Let diamL.Bg;p/ be the maximal Lipschitz distance between any two points in
Bg;p . We will call this quantity the Lipschitz width of M �

g;p . Let HDL.M �
g;p;Bg;p/

be the Lipschitz Hausdorff distance between M �
g;p and Bg;p , defined to be

HDL.M
�
g;p;Bg;p/D sup

Y2M�
g;p

inf
X2Bg;p

max
®
dL.X;Y /; dL.Y;X/

¯
:

This quantity will be called the Lipschitz height of M �
g;p . The Teichmüller width and

height of M �
g;p are defined similarly.

Dual graphs to pants decompositions
To compare geometries of various surfaces in Bg;p , we can look at the dual graph of
the pants decompositions. Given X 2Bg;p , let P be the associated pants decompo-
sition on X . The dual graph �P of P has a vertex for each pair of pants in X nP or
for each puncture of X . Two (not necessarily distinct) vertices are connected by an
edge if either they represent two (not necessarily distinct) pairs of pants glued along
some curve in P , or if one vertex is a puncture contained in the pants represented by
the other vertex. See Figure 1 for an example in genus 8.

For closed surfaces of genus g, the dual graph to a pants decomposition is always
a trivalent graph of rank g. For punctured surfaces, the dual graph is a graph of rank g
with p marked valence 1 vertices and 2g� 2Cp valence 3 vertices. Let Graph.g;p/
be the set of all such graphs. Let

 WBg;p!Graph.g;p/

be the map defined by the dual graph construction. The map  is surjective. Shearing
along each pants curve does not change the dual graph; thus each fiber is a (3g �
3C p)-dimensional torus, and since each pants curve has length �M , each fiber has
uniformly bounded diameter.

Whitehead moves on graphs
Given � 2Graph.g;p/, we will call an edge e of � interior if both vertices of e have
valence 3; otherwise, e is exterior. From any � , there is a way of deriving a new graph
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Figure 1. From pants decomposition to trivalent graph; from trivalent graph to labeled tree.

by modifying the local gluing structure about an interior edge e, called a Whitehead
move on e. A Whitehead move on e is a process of collapsing e and reopening in a
different direction. We allow two ways to reopen, as illustrated in Figure 2 on the left.

One may endow Graph.g;p/ with the metric dW of Whitehead moves: dW .�1;
�2/ D 1 if and only if �1 and �2 differ by a Whitehead move. Since our graph �
corresponds to a pants decomposition P on a surface, there is a natural interpreta-
tion of Whitehead moves as elementary moves on pants decompositions. Each edge
e in � corresponds to two pairs of pants glued along a common curve ˛. An ele-
mentary move on ˛ changes P by fixing all curves in P n ˛, and replacing ˛ by a

Figure 2. Whitehead move on e on left; corresponding elementary move on right.
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transverse curve that intersects it minimally. Since only Whitehead moves associated
to interior edges with distinct vertices are nontrivial, we only consider the case where
˛ lies in a four-holed sphere. The two different directions of reopening represent the
two minimally intersecting transverse curves up to homeomorphisms of the surface.
(See the right-hand side of Figure 2.) Therefore, Graph.g;p/ equipped with the met-
ric of Whitehead moves is isometric to the space of homeomorphism types of pants
decompositions on Sg;p equipped with the metric of elementary moves.

Simultaneous Whitehead moves
Since we are considering L1-metrics on moduli spaces, the metric of Whitehead
moves on Graph.g;p/ is not the correct model metric for Bg;p . Our goal is to equip
Graph.g;p/ with an appropriate metric so that its diameter is of the same order as
the diameter of Bg;p . Making one Whitehead move corresponds to modifying a sur-
face X 2Bg;p by an elementary move in a four-holed sphere. But modifying X in
several disjoint four-holed spheres at the same time contributes the same amount of
distortion after taking the sup. This observation leads to the definition of simultaneous
Whitehead moves.

For any graph � 2 Graph.g;p/, we will say two edges of � are disjoint if they
do not share any vertices. Note that Whitehead moves on disjoint edges commute.
Disjoint edges in � correspond to four-holed spheres which have disjoint interiors.
Hence the corresponding elementary moves also commute with each other. A simul-
taneous Whitehead move on � is a composition of Whitehead moves on an arbitrary
number of pairwise disjoint edges in � .

We equip Graph.g;p/ with the metric dS of simultaneous Whitehead moves:
dS .�1; �2/D 1 if and only if �1 and �2 differ by a simultaneous Whitehead move.
The following lemma allows us to bound distances in Bg;p by distances in Graph.g;p/.
Recall the dual graph map  WBg;p!Graph.g;p/.

LEMMA 2.4
There exists a uniform constant K such that, for any g and p, if X;Y 2Bg;p , then

dT .X;Y /�KdS
�
 .X/; .Y /

�
:

Proof
Let S be a hyperbolic surface of genus 0 with four geodesic boundary components
�1; : : : ; �4 such that each �i has length �M and, furthermore, S contains a nonperiph-
eral curve ˛ of length �M . The moduli space of all such surfaces is compact, since
there are only finitely many ways ˛ can separate the curves �i into two groups, and
the amount of shearing along ˛ is bounded by its length. Thus, there exists a uniform
constant K0 such that, for any other such surface S 0 with boundaries � 0i and an essen-
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tial curve ˛0 of length �M , there is a K0-quasiconformal map S ! S 0 taking each �i
to � 0i and ˛ to ˛0.

Similarly, we can consider the space of hyperbolic surfaces homeomorphic to a
four-holed sphere, with a punctures and b geodesic boundaries of length �M so that
a C b D 4. Let Ka be a uniform constant depending only on a such that there is a
Ka-quasiconformal map between any two such surfaces fixing the boundaries and
the punctures. Let K 0 be the maximum of the Ka’s.

Now suppose that X;Y 2 Bg;p have dS . .X/; .Y // D 1. This means that
there is a set of disjoint four-holed spheres in X on which we need to make a modifi-
cation as above. We can construct a K 0-quasiconformal map from X to some surface
Y 0, locally using maps as above, where Y and Y 0 have the same dual graph. That is,
dT .X;Y /�

1
2

logK 0 and  .Y /D  .Y 0/. But, as mentioned before, the preimage of
a point under  is a compact set with uniform diameter. Hence, dT .Y;Y 0/D O.1/.
By the triangle inequality, we have dT .X;Y /�K , for some uniform K .

In the general situation where dS . .X/; .Y //D n. Let X DX0;X1; : : : ;Xn D
Y be a sequence of elements in Bg;p with dS . .Xi�1/; .Xi // D 1 for all i D
1; : : : ; n. From above, dT .Xi�1;Xi /�K . Thus, by the triangle inequality, we obtain
the desired statement of the lemma:

dT .X;Y /�

nX
i

dT .Xi�1;Xi /�KnDKdS
�
 .X/; .Y /

�
:

We conclude with the following corollary.

COROLLARY 2.5
We have

diamT .Bg;p=Symp/� diamT .Bg;p/� diamS

�
Graph.g;p/

�
:

From graphs to labeled trees
By Corollary 2.5, the problem of bounding the width of M �

g;p from above can be
replaced by the problem of bounding diamS .Graph.g;p// from above. For the latter
problem, it will be more convenient to cut each graph into a binary tree and label the
ends in pairs to remember the gluing. We explain how to do this after some definitions.

By a binary tree (or a tree for short) we mean a connected graph with no loops,
so that the valence at each vertex is either 1 or 3. A rooted tree has a distinguished
exterior edge e�. A labeled tree is a rooted tree where all ends (exterior edges except
for e�) are labeled with numbers ¹0; 1; 2; : : : ; nº, where nwill be called the complexity
of the tree. Note that a tree of complexity n has n C 2 exterior edges and n � 1
interior edges. Two labeled trees are said to be equal if there is a homeomorphism
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between them taking root to root preserving the labels. After this identification, there
are finitely many labeled trees for each fixed complexity n. Let Tree.n/ be the space
of labeled trees of complexity n. Whitehead moves or simultaneous Whitehead moves
for trees are defined as before. We retain the notations dW and dS for the metrics of
Whitehead moves and simultaneous Whitehead moves on Tree.n/, respectively.

We now construct a map Graph.g;p/! Tree.n/, n D 2g � 2 C p. Let � 2
Graph.g;p/. The graph � has p exterior edges which are labeled. (They inherit the
labeling from the marked vertices.) We may identify the labeling as 0; : : : ; p�1. Now
arbitrarily pick a spanning tree in � . The complement of the spanning tree in � con-
tains exactly g edges. We cut each such edge in half, resulting in a tree T with 2g
unlabeled exterior edges. We label these edges arbitrarily from p; : : : ; 2gCp�1 with
the only restriction being that pC2k is glued to pC2kC1 in � , for k D 0; : : : ; g�1.
Finally, erase the edge with the highest label, 2gC p � 1, and make that the root of
T . The resulting tree T is an element in Tree.n/ associated to � . See Figure 1 for an
example.

If the two trees associated to two graphs differ by a simultaneous Whitehead
move, then the two graphs also differ by one simultaneous Whitehead move, and
hence

diamS

�
Graph.g;p/=Symp

�
� diamS

�
Graph.g;p/

�
� diamS

�
Tree.n/

�
: (3)

By Corollary 2.5, we have

diamT .Bg;p=Symp/� diamT .Bg;p/� diamS

�
Tree.n/

�
: (4)

3. Trees and upper bound on width
In this section, we describe two algorithms for transforming a binary tree into a
desired shape efficiently using simultaneous Whitehead moves. We prove the fol-
lowing.

THEOREM 3.1
For any n,

diamS

�
Tree.n/

�
DO

�
log.n/

�
:

In view of (3) and (4), we obtain the upper bound of Theorem D and the upper
bound for the width of M �

g;p . We remark that the lower bound for Theorem D is easy,
but we will postpone a proof to Section 5, where we discuss the lower bound for the
Lipschitz width of M �

g;p=Symp .
This section is organized as follows. In Section 3.1, we will introduce an algo-

rithm which makes any tree more compact, by reducing its height to be of order log.n/
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in O.log.n// simultaneous Whitehead moves. Then in Section 3.2, we will introduce
a distinguished element Tn 2 Tree.n/, called the fully sorted tree. In Section 3.3, we
will describe how to sort the labels of a compact tree to be fully sorted in O.log.n//
simultaneous Whitehead moves.

3.1. Reducing the height
Given T 2 Tree.n/, the root e� defines a partial order “<” on the set of edges of T
where e� is the minimal element: Given edges e1 and e2, we say e2 is a descendant
of e1, and we write e1 < e2, if the path from e2 to e� contains e1. (We note that, in
our figures, “descendants” are drawn as “ascendants.”) If e1 and e2 are adjacent and
e1 < e2, then e1 and e2 are in a parent–child relationship. The maximal elements of
this relation are called the ends of T . Given any edge e in T , let Te be the subtree
of T consisting of e and its descendants. We will say Te is rooted at e or e is the
root of Te . The size of Te will be the number of edges of Te . The edge e defines a
partial ordering on the edges of Te which is the one inherited from T . The maximal
elements of Te will be called the ends of Te , and the labels of Te will be the labels
of the ends of Te . We will say the root e of Te has height 1, its children have height
2, and inductively define the height of all edges of Te . The maximal possible height
will be called the height of Te . The height of T will be the height of Te� D T . Given
a subtree Te of height h, we will say Te is full if Te has 2h ends.

For each interior edge e, we will label its children el (the left) and er (the right)
and we call the trees Ter and Tel the children subtrees of Te . Similarly, we label the
left and right edges of el and er by el l , elr , erl , and err and refer to the associated
subtrees as the grandchildren subtrees.

PROPOSITION 3.2
Any tree T can be transformed to have a height 6 log2.n/ after O.log.n// simultane-
ous moves.

Proof
To prove the proposition, it suffices to show that, if the height of T is larger than
6 log2.n/, one can apply one simultaneous move to reduce the height by a definite
multiplicative factor.

Let e be any edge. We define a special Whitehead move, called the balance move
at e. Compare the sizes of the subtrees Tel l , Telr , Terl , and Terr . If there is an absolute
maximum among them (say, Tel l ), we apply one Whitehead move to the edge el
which reduces the height of el l , does not change the height of elr , and increases the
heights of both erl and err (see Figure 3). If there is no absolute maximum, then we
apply no move.
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Figure 3. The map
b
�! is a balance move at e.

Now consider the following simultaneous Whitehead move consisting of a bal-
ance move at each edge of odd height. Since the supports of these balance moves
are disjoint, their composition defines a simultaneous Whitehead move. We show that
after one such simultaneous Whitehead move, any edge whose height was larger than
6 log2.n/ will have its height reduced by at least a multiplicative factor 5=6. That is,
if the height of T was larger than 6 log2.n/, then it will be reduced by a factor 5=6.
The algorithm stops when the height of T is less than 6 log2.n/.

Let e be any edge of height he � 6 log.n/. Consider the path P of length he in T
connecting e to the root e�. The height of e is affected by the balance moves at edges
of odd height along this path. Some will decrease the height of e, some will increase
it, and some will leave it unchanged. Moving down from e to e�, let e1; e2; : : : ; es be
the set of edges in P of odd height and such that, for j D 1; : : : ; s, the balance move
at ej does not decrease the height of e. We bound the number of such edges, that is,
we show that most edges along P will decrease the height of e.

By assumption, Te � Te1 has at least one edge. For the edge e1, the grandchild
tree containing e is not of maximal size. Hence, Te1 contains at least two subtrees of
size Te plus the edge e1 and its children. That is,

size.Te1/� 2 size.Te/C 3� 5:

Similarly, at each ej , the grandchild tree containing e is not of maximal size. Hence,
Tej contains two grandchildren subtrees of size at least Tej�1 . That is,

size.Tej /� 2 size.Tej�1/C 3:

By induction, size.Tej /� 2
jC1C1. The total number of edges in T , 2nC1, is larger

than size.Tes /. Therefore,

s � log2.n/:
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A balance move at ej , for all j D 1; : : : ; s, may increase the height of e, but
a balance move at every other edge along P of odd height will reduce the height
of e. The number of edges that decrease the height is at least he=2 � log2.n/, and
the number of edges that increase the height is at most log2.n/. Hence, after the
simultaneous move, the height of e is no more than

he �
he

2
C 2 log2.n/�

5

6
he:

Since the maximum height of any tree is n C 1, the number of simultaneous
moves required to reduce the height of T to a height less than 6 log2.n/ is at most
log6=5.nC 1/. This concludes the proof.

3.2. Fully sorted tree
In this section, we inductively construct a tree Tn 2 Tree.n/, for each n. Considering
Tn as a base point of Tree.n/, an upper bound for the distance between any tree and
Tn will provide an upper bound for diamS .Tree.n//.

For nD 0, T0 is just the root edge e� with one end labeled 0. Now assume that
we have already constructed a tree Tk 2 Tree.k/ for all k < n. Let m be the largest
number so that 2m � n, and let k D n � 2m � 0. Take the root edge e�. On the left,
we attach T2m�1 (a full tree of height m) and on the right we attach a copy of Tk . We
then change the labels of ends of Tk by adding 2m to their values. The tree Tn is the
tree giving the binary expansion of numbers 0 to n. See Figure 4 for some examples
of Tn.

We can also think of Tn as a fully sorted tree. This is the description of Tn used
in Proposition 3.8.

Figure 4. Examples of fully sorted trees.
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Definition 3.3
Let d be the number of digits needed for the binary expansion of n. Take T 2 Tree.n/.
Write every label of T as a d -digit number, possibly starting with several zeros. For
an edge e 2 T , let ne be the number of ends of Te , and let de be the number of digits
in the binary expansion of ne . By the kth digit of a label, we always mean the kth
digit from the right. We say an edge e 2 T is k-sorted if the digits .kC 1/ to d of all
labels of Te are the same and either
(a1) all labels of Te have the same kth digit as well, or
(a2) all labels of Te whose kth digit is 0 appear as ends of Tel and all labels of Te

whose kth digit is 1 appear as ends of Ter .

We say T is fully sorted if every edge e is de-sorted. Note that if an edge e is
k-sorted, then it is also j -sorted for all j � k. All descendants of e are also at least
k-sorted. On the other hand, if k < de , then e cannot be k-sorted. (There would not
be enough free digits to represent ne different numbers.)

Here is the second characterization of the base tree Tn.

LEMMA 3.4
A tree T 2 Tree.n/ is fully sorted if and only if T D Tn.

Proof
The statement is clear for nD 0. Assume that T is a fully sorted tree and that n� 1.
The edge e� is d -sorted, since de� D d . In this case, condition (a2) must hold, because
the labels of T cannot all start with the same number. That is, all the labels at the ends
of T.e�/l start with the digit 0 and all the labels at the ends of T.e�/r start with the
digit 1.

We now cut e� out, obtaining the two children trees. We modify the labels of the
left tree by removing the first digit 0 from all labels. The labels on the right may have
several digits in common. We modify the labels by removing all these digits. That is,
the number of digits are the minimum needed to represent the labels. Denote these
modified trees simply by Tl and Tr .

We now check that these two trees are still fully sorted. Consider the tree Tr , and
assume that s digits have been removed in the modifications of the labels. For e 2 Tr ,
we need to show that e is de-sorted in Tr . Since the number of ends ne of Te does
not change by cutting out the root e� from T , the edge e was de-sorted in T . This
means that all digits from deC 1 to d of the labels of Te are the same in T , and either
condition (a1) or (a2) held true for e in T . Removing s unnecessary digits from Tr

means that, viewing Te as a subtree of Tr , the labels must agree on all digits from
de C 1 to d � s. Furthermore, if condition (a1) or (a2) held true for e in T , then it
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would still hold for e in Tr . Therefore, every edge e of Tr is de-sorted. The proof for
Tl is the same .s D 1/.

Note that Tl has 2m ends where m is the largest number with n � 2m. Since Tl
is fully sorted, by induction Tl D T2m�1. Similarly, Tr D Tk , where k D n � 2m,
because Tr has kC 1 ends. That is, T D Tn.

3.3. Sorting
We now present the sorting algorithm which will transform any tree T of height less
than 6 log2.n/ to a fully sorted tree (which we know has to equal Tn) in O.log.n//
simultaneous Whitehead moves.

Note that the ends of a tree are always 1-sorted. Essentially our algorithm sorts
the tree at different digits wherever possible by applying a simultaneous sort move
which we describe below.

We say an edge e is k-presorted, if the following conditions hold:
(b1) the children er and el are k-sorted;
(b2) the digits .kC 1/ to d of all the labels at the ends of Te are the same; and
(b3) the edge e is not k-sorted.
We say an edge is presorted if it is presorted for some value of k.

To make this well defined for k D d we assume that all edges are always .dC1/-
sorted. (One can think of the digit .d C 1/ as always being 0.) Given any k-presorted
edge e, one can apply a sort move at e to make e j -sorted, for some j � k. There
are essentially three types of such moves depicted in Figure 5. The first type requires
three Whitehead moves supported at el and er . The second and third type require only
one Whitehead move supported at one of el or er .

We claim the following statement.

LEMMA 3.5
Let E be the collection of presorted edges of T . Then the sort moves associated to the
edges in E have disjoint support.

Proof
The supports of the sort moves at two edges are always disjoint if the edges are not in
a parent–child relationship. Hence, it is enough to show that if e and el are presorted,
then the support of the sort move at e is at er . This is equivalent to showing that, in
this case, the sort move at e is of Type 2. The support of the sort move at el is a subset
of ¹el l ; elrº, which are disjoint from er . Hence, these two moves do not interfere with
one another.

Suppose that e is k-presorted and that el is j -presorted. Condition (b1) applied
to e implies that el is k-sorted. But el is j -presorted. Thus j < k. By condition (b2),
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Figure 5. The map
�
�! represents a sort move at e. There are three types of sort moves.

all digits j C 1� k < d of the labels of Tel must be the same. That is, the sort move
at e is of type 2.

Definition 3.6
We will say a tree T is ripe if when any edge e 2 T is k-sorted, then each child of e
is either .k � 1/-presorted or .k � 1/-sorted. Note that if T is ripe, then any subtree
of T is ripe. We will say an edge e 2 T is ripe if Te is ripe.

Now let E �E be the set of presorted edges e so that Te is ripe. A simultaneous
sort move is a composition of the sort moves associated to edges inE . A simultaneous
sort move is a composition of 3 simultaneous Whitehead moves.

We use T
�
�! T 0 to mean that T 0 is obtained from T from one simultaneous sort

move. There is a natural identification of the edges in T with the edges in T 0 via the
map 	 . We denote the edge in T 0 associated to an edge e 2 T by 	.e/.

LEMMA 3.7
Suppose T

�
�! T 0, and let 	.e/ be an edge in T 0. If the children of e are ripe in T ,

then 	.e/ is ripe in T 0.
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Proof
Let k be the minimal number such that 	.e/ is k-sorted. We need to show that each
child of 	.e/ is either .k � 1/-presorted or .k � 1/-sorted. We argue in five cases
depending on how the local picture around e changes under 	 . In each case, the
lemma essentially follows from the definition.

Case 1: e is presorted, and the sort move is of type 1. In this case, the children of
	.e/ are images of the children of e and the grandchildren of e are mapped to the
grandchildren of 	.e/. Since 	.e/ is k-sorted, the digits .k C 1/ to d of the ends
of T 0

�.e/
match and the kth digits are as depicted in Figure 5. This means er and el

are k-sorted. But er and el are ripe; hence the grandchildren of e are .k � 1/-sorted
or .k � 1/-presorted. Thus, the grandchildren of 	.e/ are .k � 1/-sorted. Hence, the
children of 	.e/ are either .k � 1/-sorted or .k � 1/-presorted. (The conditions (b1)
and (b2) hold, but (b3) may or may not hold.) That is, 	.e/ is ripe in T 0.

Case 2: e is presorted, and the sort move is of type 2 or 3. By symmetry, we may
assume type 2. In this case, a child of 	.e/ is an image of either er or err . First
consider 	.er/D 	.e/l . As before, el is k-sorted and its children are at least .k� 1/-
presorted. But since the kth digit of labels at the ends of Tel match, el l and elr are in
fact at least .k� 1/-sorted. Hence, el is either .k� 1/-sorted or .k� 1/-presorted and
	.el/ is at least .k � 1/-sorted (see Figure 5).

Note also that 	.e/lr is an image of a grandchild of e and, as argued in the
previous case, it is at least .k� 1/-sorted. Thus, the children of 	.e/l are both at least
.k � 1/-sorted and hence 	.e/l is either .k � 1/-presorted or .k � 1/-sorted.

The argument is easier for 	.err/D 	.e/r ; since 	.e/r is an image of a grand-
child of e, it is .k � 1/-sorted and therefore 	.e/ is ripe.

Case 3: e is not presorted, and the children of e are mapped to the children of 	.e/.
In this case, e is as sorted as 	.e/. Hence, er and el are at least k-sorted and, since
they are ripe, the grandchildren are .k � 1/-sorted or .k � 1/-presorted. That is, the
children of 	.e/ are either .k � 1/-presorted or .k � 1/-sorted. This implies that 	.e/
is ripe.

Case 4: e is not presorted, but 	 contains a sort move of type 1 at the parent of e. Let
f be the parent of e. The sort move swaps the grandchildren of f . Since 	 contains
a sort move at f , all descendants of f are ripe.

Since 	.e/ is k-sorted, the digits .kC1/ to d of ends of T 0
�.e/

match. That means
the preimage of the children of 	.e/ are k-sorted. As before, using ripeness, we have
that the children of 	.e/ are .k � 1/-sorted or .k � 1/-presorted. Hence 	.e/ is ripe.
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Case 5: e is not presorted, and 	 contains a sort move of type 2 or 3 at the parent
of e. Again, by symmetry, we may assume type 2. Let f be the parent of e. The case
eD fl is already covered in case 3. Assume eD fr . From the figure, we have that all
the children of 	.e/ have the same kth digits. The proof now follows identically to
case 1.

PROPOSITION 3.8
Let Tn 2 Tree.n/ be the fully sorted tree, and let T 2 Tree.n/ be any tree of height at
most 6 log2.n/. Then

dS .T;Tn/DO
�
log.n/

�
:

Proof
We will show that T can be transformed to Tn inO.log.n// simultaneous sort moves.

Let h be the height of T . First, we show that e� will be d -sorted and that every
edge is ripe after .h � 3/ steps. At the beginning, every edge is .d C 1/-sorted, and
edges at the ends are d -sorted. In fact, the edges whose children are ends are also
d -sorted after relabeling left and right edges. Hence, every edge at height .h � 2/
is either d -sorted or d -presorted and ripe. After the first step, every edge at height
.h � 2/ or higher is d -sorted and every edge at height .h � 3/ is either d -sorted
or d -presorted and, by Lemma 3.7, ripe. Note that, if Te is not ripe, there are no
sort moves at edges in the path connecting e to e�. That is, this path is preserved
identically under 	 and, in particular, the height of e does not change. Hence, the
maximum height of an edge e where Te is not ripe goes down by at least 1 after every
simultaneous sort move.

Continuing in this way, we get that after .h� 3/ steps, every edge at height .h�
2� .h� 3//D 1 or higher is d -sorted and ripe. That is, e� is d -sorted and ripe. Let
T 1 be the resulting tree. We have shown that ds.T;T 1/� h� 3.

We now claim that if a tree T 1 2 Tree.n/ has the property that its root e� is de� D
d -sorted and T 1 is ripe, then T 1 will be fully sorted after at most d D dlog2.n/e
simultaneous sort moves. We will prove this by induction on n. When n D 1 there
is nothing to prove. Now suppose that n > 1. By assumption, T 1 is ripe and e� is
d -sorted. Therefore, any future sort move will preserve the children subtrees of e�.
Let e be a child of e�. The subtree T 1e is also ripe, since it is a subtree of T1. After
removing all digits which are common to all labels of T 1e , e is either de-sorted or

de-presorted. After applying one sort move T 1e
�
�! T 1

0

e , the root e becomes de-sorted
and T 1

0

e remains ripe. By the induction hypothesis, T 1
0

e can be transformed to Tde in
de � d � 1 simultaneous sort moves. Therefore, after at most d simultaneous sort
moves, both subtrees attached to e� are fully sorted. This exactly means that T 1 is
fully sorted after at most d sort moves.
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We conclude that

dS .T;Tn/� dS .T;T
1/C dS .T

1; Tn/� .h� 3/C d DO
�
log.n/

�
:

This completes the proof of Theorem 3.1. Using (3) and (4), we deduce the fol-
lowing respective corollaries.

COROLLARY 3.9
We have

diamS

�
Graph.g;p/=Symp

�
� diamS

�
Graph.g;p/

�
DO

�
log.gC p/

�
:

COROLLARY 3.10
We have

diamT .Bg;p=Symp/� diamT .Bg/DO
�
log.gC p/

�
:

4. Application to the moduli space of metric graphs
We now give an application of the algorithms in Section 3 to the moduli space of
metric graphs. Our goal is to prove the upper bound of Theorem G of the introduction.
The lower bound is worked out in the next section.

4.1. Lipschitz diameter of moduli space of metric graphs
Let Rn be a wedge of n circles. Let Xn be the space of isometry classes of metric
graphs G with the following properties:
� G is homotopy equivalent to Rn.
� The valence of each vertex of G is at least 3.
� The sum of the lengths of edges or the volume of G is n.

We call Xn the moduli space of metric graphs. It is also naturally the quotient of
outer space by the group of outer automorphisms of Fn (see [10]). We equip Xn with
the Lipschitz metric: for any two graphs G and H , define

dL.G;H/Dmin
f

®
logL.f /

¯
;

where f is an L.f /-Lipschitz map from G to H . The thick part of Xn is the subset
X�
n containing those graphs with no loop shorter than �. We will show the following.

THEOREM 4.1
We have

diamL.X
�
n/DO

�
log
�n
�

��
:
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Figure 6. An example in X�
5 .

Let G and H be two graphs in X�
n. We will construct a map G ! H in four

steps. The idea is to interpolate G and H by two trivalent graphs, G0 and H 0, on
which we can apply the algorithms of the previous section. The reader may wish to
look at the example in Figure 6.

We equip Rn with a metric by assigning length 1 to each circle.

LEMMA 4.2
The graph G can be mapped to Rn by an O.n=�/-Lipschitz maps.

Proof
Let T be the shortest spanning tree of G. Since G 2X�

n, every edge e in the com-
plement of T has length at least �=kn for some universal k. To see this, consider the
unique loop consisting of e and an embedded path in T . Each edge in the loop cannot
be longer than e since T is the shortest spanning tree. Since there are at most O.n/
edges in the loop and the total length of the loop is at least �, this gives the lower bound
on the length of e. Now map T to the vertex of Rn and each edge in the complement
of T to a circle of Rn via a linear map. This map is at most .kn=�/-Lipschitz.

LEMMA 4.3
Rn can be mapped to a trivalent graph G0 with all edge lengths 1 via a composition
of dlog2 ne 2-Lipschitz maps.

Proof
Divide the circles of Rn into two sets with roughly n=2 circles each. For each circle,
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mark off two segments of length 1=4 starting from the vertex of Rn. For each set, fold
all the circles together along the marked segments. Note that folding is a 1-Lipschitz
map. The resulting graph has an edge e of length 1, and each end point of e is attached
to roughly n=2 loops of length 1=2. Now stretch each loop to have length 1 by a 2-
Lipschitz map and proceed inductively. At each end point of e, divide the circles into
two sets of roughly n=4 circles each. Then fold and stretch. After dlog2 ne steps, we
obtain a trivalent graph G0 with all edge lengths 1. The composition map Rn! G0

has Lipschitz constant at most 2dlog2 ne DO.n/.

LEMMA 4.4
There is a trivalent graph H 0 with all edge lengths 1 that can be mapped to H via an
n-Lipschitz map.

Proof
For each constant b, choose a binary tree tb with b exterior edges. Let v be a vertex of
H of valence b > 3. Remove a small neighborhood of v in H which does not contain
any other vertex of H , and glue the end points to the end points of tb in an arbitrary
way. Now erase the vertices of valence 2 to obtain a trivalent graph H 0. Equip H 0

with the metric so that each edge has length 1. There is a natural map from H 0 to H
obtained by collapsing the edges of H 0 that are the image of the interior edges of tb
and then rescaling the remaining edges of H 0. Collapsing is a 1-Lipschitz map, and
since edges in H 0 have length 1 and edges in H cannot be longer than n, this map is
n-Lipschitz.

LEMMA 4.5
G0 can be sent to H 0 via a composition of O.log.n// L-Lipschitz maps, where L is a
uniform constant.

Proof
There is a uniform constantL such that, for any two trivalent graphs with edge lengths
1, if they differ by one simultaneous Whitehead move, then they differ by a Lipschitz
map with Lipschitz constant at most L. The graphs G0 and H 0 can be cut into binary
trees of complexity 2n� 2. By (3) and Theorem 3.1, G0 can be transformed into H 0

by O.log.n// simultaneous Whitehead moves, and hence the statement.

Proof of Theorem 4.1
We construct a Lipschitz map G!H as a composition of the maps coming from the
four lemmas above:

G
O.n� /

���!Rn
O.n/
���!G0

LO.logn/

�����!H 0
n
�!H:
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The Lipschitz constant of the composition G!H is bounded by the product of the
four Lipschitz constants, which is bounded by nd=� for some uniform constant d .
Thus, dL.G;H/DO.log.n=�//.

5. Examples of surfaces
In this section, we construct some examples of surfaces in the thick part of moduli
space. These examples will provide the required lower bound for the width and the
height, and hence the diameter, of the thick part. They also showcase some interesting
behaviors which are of independent interest.

Let us for the moment restrict our attention to closed surfaces.
To bound the width from below, we construct three surfaces in Bg which are

pairwise�.log.g// apart in the Lipschitz metric. These surfaces are constructed using
graphs. The first two surfaces, the line surface X and the bouquet surface Y , are con-
structed from two graphs which have a large ratio between their diameters. This ratio
computes a lower bound on the Lipschitz constant from Y to X . The third surface,
called the expander surface Z, is constructed using an expander graph, or a graph
with high connectivity. We will show that Theorem E holds for Z: every separating
curve on Z is of length �.g/. This will contrast with X and Y , where both contain
separating curves of length �M . Then the length ratio of separating curves will provide
a lower bound on the Lipschitz distance from X or Y to Z.

To bound the height from below, we will construct a surfaceH 2M �
g that cannot

be decomposed into pants by curves shorter than
p
g. Buser already has such a con-

struction, called the hairy torus, but it does not lie in M �
g . Our construction essentially

takes two copies of Buser’s hairy torus and glues them along the hairs. The resulting
surface H has B.H/D�.

p
g/. Using length ratios we obtain a lower bound on the

Lipschitz constant from H to any surface in Bg .
Most of our constructions generalize easily punctured surfaces. The only excep-

tion is the expander surface, as the notion of expanders does not exist for graphs in
Graph.g;p/=Symp , p > 0, so this example is skipped. For the height, we give a con-
struction that works for all p � 0 and all g � 1, by combining a double hairy torus and
a punctured torus. For the remaining case of genus 0, we will refer to the construction
in [2, Section 8] of a hairy sphere.

Since Mg;p covers Mg;p=Symp , the height and width of Mg;p are bounded
below by the height and width of Mg;p=Symp .

5.1. Shadow map
Let  W Bg;p ! Graph.g;p/ be the dual graph map. We will regard elements in
Graph.g;p/ as metric graphs by assigning length 1 to each edge. Let X 2Bg;p . Out-
side of the cusps, X is quasi-isometric to  .X/. To make this precise, we introduce
the shadow map ‡ WX! .X/.
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For each puncture p of X , let Np be the horocyclic neighborhood of p such
that the horocyclic boundary of Np has length equal to �M . Let X be the closure of
X n

S
Np , where p ranges over all punctures of X . We call X the truncated surface

obtained from X .
Let P be the associated pants decomposition on X . We may assume that �M is

small enough so that P is contained in X and that the distance from every curve in P
to the boundaries of X is of order 1.

Given a constant A, for any ˛ 2 P , let

N˛ D
®
x 2X W dX .x;˛/�A

¯
;

and for each boundary component � 2 @X , let

N� D
®
x 2X W dX .x; �/�A

¯
:

ChooseA so thatN D
S
˛2P N˛[

S
�2@X N� is a disjoint union of embedded annuli.

Each component of X n N is a pair of pants with diameter bounded uniformly by
a constant D. Foliate each N˛ and N� by closed loops equidistant from ˛ and � ,
respectively. The shadow map

‡ WX! .X/

sends each component in X nN to a vertex and each N˛ or N� to an edge by collaps-
ing leaves and then mapping linearly onto the edge. The map ‡ is essentially distance
decreasing. For any x;y 2X ,

d .X/
�
‡.x/;‡.y/

�
� dX .x; y/:

On the other hand,

dX .x; y/� .ACD/
�
d .X/

�
‡.x/;‡.y/

�
C 2

�
:

Thus, ‡ is a quasi-isometry from X to  .X/.

5.2. Line and bouquet surfaces
We construct two graphs in Graph.g;p/=Symp , one of which has diameter g C p
and the other has diameter log.gC p/.

Consider the tree T with g C p exterior edges as in Figure 7. We can make T
into an element � in Graph.g;p/=Symp by attaching g loops to g of those edges.
The diameter of � is at least gC p.

Now consider any tree T 0 of height log2.gC p/ with gC p exterior edges. For
instance, one can pick the fully sorted tree (see Figure 4). Again, T 0 can be made into
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Figure 7. The tree T giving rise to the line surface.

a graph � 0 2 Graph.g;p/=Symp by attaching g loops. The graph � 0 has diameter at
most log2.gC p/C 2.

Let X D Xg;p and Y D Yg;p be elements of Bg;p=Symp such that  .X/D �
and  .Y / D � 0. We will refer to X and Y as a line surface and bouquet surface,
respectively.

LEMMA 5.1
We have

diamL.Bg;p=Symp/D�
�
log.gC p/

�
:

Proof
We will use dL.Y;X/ to achieve this lower bound, where X is the line surface and Y
is the bouquet surface in Bg;p=Symp .

The section on shadow map implies that

diam.X/� gC p and diam.Y /� log.gC p/;

where X and Y are truncated surfaces obtained from X and Y , respectively.
Consider any L-Lipschitz map f W Y !X . We can choose two points x1 and x2

in X a distance �.gC p/ apart. Let yi D f �1.xi /. Since xi has injectivity radius at
least �0, the injectivity radius at yi is at least �0=L. So yi has distance at most logL
from Y . We can connect y1 to y2 by an arc ! in Y with

`Y .!/� log.gC p/C 2 logL:

The image f .!/ is an arc connecting x1 to x2, so `X .f .!//� .gC p/. We have

L�
`X .f .!//

`Y .!/
�

gC p

log.gC p/C 2 logL
:

If L� gC p, then dL.Y;X/D�.log.gC p//. In the case that L� gC p, then the
above becomes

L�
gC p

3 log.gC p/
:
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Thus, we also obtain

dL.Y;X/� log
� gC p

3 log.gC p/

�
D�

�
log.gC p/

�
:

Combining Lemma 5.1 with Corollary 3.10, we obtain the following.

COROLLARY 5.2
The Teichmüller and the Lipschitz width of M �

g;p and M �
g;p=Symp are all of order

log.gC p/.

Combining Lemma 5.1 with Corollary 2.5 and Corollary 3.9, we also obtain the
following.

COROLLARY 5.3
We have

diamS

�
Tree.gC p/

�
� diamS

�
Graph.g;p/

�

� diamS

�
Graph.g;p/=Symp

�
� log.gC p/:

Finally, we can derive the lower bound to the diameter of X�
n. Together with the

upper bound coming from Theorem 4.1, we obtain the following.

LEMMA 5.4
We have

diamL.X
�
n/� log

�n
�

�
:

Proof
We show the lower bound.

Let � 2X�
n be a graph of diameter of order n. For instance, pick � to be the

graph inducing the line surface Xn, but renormalized to have volume n. The wedge
Rn of n circles (with edge lengths 1) has diameter 1. Thus dL.Rn;G/ � log.n/.
On the other hand, let H 2 X�

n be any graph which has a loop of length �. Then
dL.H;Rn/� log.1=�/. It follows that

diamL.X
�
n/�

1

2

�
log.n/C log

�1
�

��
D
1

2
log
�n
�

�
:

5.3. Expander surfaces
In this section, we consider only closed surfaces. In this case, the dual graph to a
pants decomposition is a trivalent graph. We will use trivalent graphs with “high”
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connectivity to construct surfaces in Bg with long separating curves. These surfaces
will be �.log.g// away from the examples of the previous section, providing another
proof of Lemma 5.1. To formalize the notion of connectivity, we define the Cheeger
constant of a graph.

Let � be any graph with n edges. For any subgraph
 in � , let j
j be the number
of edges in 
. We will let @
�
 be the subset of edges in 
 which share a vertex
with an edge outside of 
. The Cheeger constant of � is defined to be

ch.�/D min
1�j�j�n=2

j@
j

j
j
;

where the minimum is taken over all subgraphs 
 with at most n=2 edges.

Definition 5.5
An infinite family E of d -regular graphs is a ı-expander family if ch.E/� ı for every
E 2 E .

THEOREM 5.6 ([18], [20])
For every d , there exists a ıd -expander family of d -regular graphs.

Fix ı, and let E be a ı-expander family of trivalent graphs. We will call a surface
Zg 2 Bg an expander surface if its dual graph Eg is an element E . By a dividing
curve on a closed surface Sg , we will mean a separating curve on Sg which divides
Sg into two pieces, each of which has genus on the order of g. We will prove the
following fact about expander surfaces, which was known to Buser [6].

THEOREM 5.7
If Zg 2Bg is an expander surface, then the shortest dividing curve on Zg has length
�.g/.

Proof
Let ˛ be any dividing curve on Zg , and let U be the closure of one of the components
of Zg n ˛. By assumption, the genus of U is of order g.

Let ‡ WZg ! �g be the shadow map. We claim that
ˇ̌
‡.U /

ˇ̌
D�.g/ and 4

ˇ̌
@‡.U /

ˇ̌
�
ˇ̌
‡.˛/

ˇ̌
: (5)

To see the first statement, let U 0 be the largest subsurface ofZg with the same shadow
as U (i.e., the preimage of ‡.U /). Since U is a subsurface of U 0, we have j�.U 0/j �
j�.U /j D�.g/. But U 0 is a union of pairs of pants, exactly one associated to a vertex
in ‡.U /. Hence j�.U 0/j � j‡.U /j. That is, j‡.U /j D�.g/. So the first statement
follows.
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For the second statement, it is sufficient to construct a map from @‡.U / to ‡.˛/
so that the preimage of every edge has a uniformly bounded size. Let e 2 @‡.U /.
Then e shares a vertex v with an edge outside of ‡.U /. The vertex v corresponds to
a pair of pants and ˛ has to intersect this pair of pants nontrivially. Hence, there is an
edge connected to v that is in ‡.˛/. We send e to this edge. The preimage of an edge
in ‡.˛/ under this map has size at most 4.

Using (5) and the fact that E is an expander family, we obtain
ˇ̌
‡.˛/

ˇ̌
� 4

ˇ̌
@‡.U /

ˇ̌
� 4ı

ˇ̌
‡.U /

ˇ̌
D�.g/:

This bounds the length of ‡.˛/ from below. Since the shadow map ‡ is essentially
distance decreasing, we obtain `Zg .˛/D�.g/.

LEMMA 5.8
Let Xg , Yg , andZg be a line surface, bouquet surface, and expander surface, respec-
tively. We have

dL.Xg ;Zg/D�
�
log.g/

�
; dL.Yg ;Zg/D�

�
log.g/

�
:

Proof
To see dL.Xg ;Zg/D�.log.g//, let �g be the graph from which we constructedXg .
One sees that �g can be divided into two roughly equal-sized pieces by one edge. The
associated pants decomposition of Xg contains a dividing curve of length �M .

However, from Theorem 5.7, any dividing curve on Zg has length �.g/. Any
homeomorphism Xg ! Zg must take dividing curves to dividing curves. Using the
length ratio, we obtain a lower bound for the Lipschitz constant:

dL.Xg ;Zg/� log
� g
�M

�
D�

�
log.g/

�
:

Similarly, Yg also admits a dividing curve of length �M . So the same argument also
shows that dL.Yg ;Zg/D�.log.g//.

5.4. Hairy torus example and a lower bound for height
Recall that surfaces in Bg;p=Symp can be decomposed into pants by curves of length
�M . In the following, we will construct a surface in M �

g;p=Symp which cannot be
decomposed into pants by curves all shorter than

p
gC p.

LEMMA 5.9
There exists a surface H 2M �

g;p=Symp such that B.H/D�.
p
gC p/.

Assuming Lemma 5.9, we derive the lower bound for the height of the thick part
of moduli space.
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COROLLARY 5.10
We have

HDL.M
�
g;p;Bg;p/�HDL.M

�
g;p=Symp;Bg;p=Symp/D�

�
log
�gC p

�

��
:

Proof
Let H be the surface of Lemma 5.9. For any X 2 Bg;p=Symp , any Lipschitz map
from X to H must take a pants decomposition of X to a pants decomposition of H .

Thus some curve on X must get stretched by a factor �.
p
gCp

�M
/. This means that

dL.X;H/� log
�gC p
�M

�
:

Now consider a surface Y 2M �
g;p=Symp which has a curve of length � � �M . Any

Lipschitz map from Y to X must stretch this curve by a factor at least �M=�, so

dL.Y;X/� log
��M
�

�
:

It follows then that

HDL.M
�
g;p=Symp;Bg;p=Symp/�

1

2

�
log
�gC p
�M

�
C log

��M
�

��

D
1

2
log
�gC p

�

�
:

The rest of this section is dedicated to constructing H for Lemma 5.9. In the
case of genus g D 0, p > 0, this has already been done by Balacheff and Parlier
in [2]. Their hairy sphere construction gives rise to a surface H 2M�

0;p=Symp with
B.H/D�.

p
p/. For higher genus, we will use a variation of Buser’s hairy torus (see

[7, Section 5.3]). We will first explain the construction in the case of closed surfaces.
Then we will extend the construction to punctured surfaces with at least one genus.

Start with a right-angled geodesic pentagon in the hyperbolic plane with side
lengths a; b; c; d , and e. We set aD b, c D e, and d D 0:25. Glue four copies of such
pentagons together to form a 2a 	 2a hyperbolic square R with an inner geodesic
boundary component � of length 1 (see Figure 8).

Given any positive integer m, we can paste together m2 copies of R to obtain a
larger squareRm of side lengths 2am withm2 inner boundary components. We index
these boundaries by �ij . Identifying the opposite sides of Rm yields a hyperbolic
surface (a hairy torus) Tm of genus 1 with m2 boundary components. Now take two
copies of Tm and glue them along the �ij ’s. The resulting closed surface Hm has
genus gD 1Cm2 (see Figure 9).
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Figure 8. Gluing pentagons.

Figure 9. Hairy torus.

To show that Hm satisfies Lemma 5.9, we define a Lipschitz map � WHm! Fm,
where Fm is a flat torus obtained from gluing the opposite sides of a 2am 	 2am
Euclidean square. The map � is defined locally on each hyperbolic square R with an
inner boundary � .

Let F be a 2a 	 2a Euclidean square. Let �R W R! F be any Lipschitz map
that takes the sides of R to the sides of F and � to the center of F . Let L be the
Lipschitz constant of �R. Divide Fm into m2 subsquares. Let � WHm! Fm be the
map such that, on each hyperbolic square R in Hm, � restricted to R is mapped to
the corresponding subsquare F in Fm via the map �R (see Figure 9). The Lipschitz
constant of � is at most the Lipschitz constant of �R. We have shown the following.

LEMMA 5.11
The map � WHm! Fm is L-Lipschitz for a uniform L.

The map � has the following property.

LEMMA 5.12
For any pants decomposition P on Hm, there exists a curve ˛ 2 P such that �.˛/ is
not trivial in homology. Therefore, Hm satisfies Lemma 5.9.
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Proof
For the purpose of this proof, we can consider � up to homotopy. The map � WHm!
Fm is surjective in homology, since � maps each hairy torus in Hm onto Fm. If a
curve ˇ 2 P maps to a trivial curve in the homology of Fm, then one can find a disk
D in Fm such that �.ˇ/ lies inD. We may assume @D avoids the singular points (the
centers of the subsquares) of Fm. The complement Fm nD is a one-holed torus. Its
preimage Z D ��1.Fm nD/ in Hm is an essential subsurface which is not a pair of
pants (since �.Z/maps onto the homology of Fm). Since P is a pants decomposition,
some curve ˛ 2 P must intersectZ. The image �.˛/ cannot be homotoped away from
Fm nD, and thus it is nontrivial in the homology of Fm.

For such an ˛, we have `Fm.�.˛//� 2amD 2a
p
g � 1. Since � is L-Lipschitz,

`Hm.˛/D�.m/D�.
p
g/. This is true for any pants decompositionP , soB.Hm/D

�.
p
g/.

The double-torus construction yields a closed surface Hm of genus 1Cm2. We
now extend the construction to every genus g. Given an arbitrary g, let m be the
largest integer such that 1Cm2 � g < 1C .mC1/2. Let r D g� .1Cm2/ < 2mC1.
Let Hm be the closed surface of genus 1Cm2 obtained from gluing two hairy tori
together. Cut Hm along one of the curves of length 1 which came from the gluing to
obtain a surface of genusm2 with two boundary components. For the pair of boundary
components ˇ and ˇ0, we insert a surface with boundary as follows. Let W be a
hyperbolic surface of genus r with two geodesic boundary components. We require
the boundary components of W to have length 1 and all nonperipheral curves on W
to have length at least �. We glue a copy of W along its boundary components to
ˇ and ˇ0. The resulting surface H is a closed surface of genus g Dm2 C r C 1. In
the map previously defined on Hm! Fm, the pair ˇ and ˇ0 is mapped to the same
point in F . Thus, this map can be extended to W by a constant map. This defines
a Lipschitz map H ! Fm with the same constant as the map Hm! Fm. The same
proof in Lemma 5.12 also works to show B.H/D�.m/D�.

p
g/.

Now we explain the construction in the case of punctured surfaces of genus 1.
For any a, there exists a hyperbolic quadrilateral with three right angles and one ideal
vertex, such that the two sides opposite the ideal vertex have length a. Glue four
copies of such quadrilaterals together to form a 2a 	 2a hyperbolic square R0 with
a puncture. The surface R0 can be mapped to F minus the center by a uniformly
Lipschitz map. Pasting together m2 copies of R0 and gluing opposite sides yields a
surface Qm of genus 1 with p Dm2 punctures. Gluing the maps on each R0 equips
Qm with a Lipschitz map � to the flat torus Fm. By the same proof as in Lemma 5.12,
any pants decomposition P on Qm must contain a curve ˛ which does not vanish in
the homology of F . Hence `F .�.˛//� 2amD 2a

p
p, which implies that `Qm.˛/D

�.
p
p/DB.Qm/.
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For an arbitrary p, we do a similar modification as in the case of closed surfaces.
Let r D p � m2 < 2m C 1. Let Qm be the genus 1 surface with m2 punctures as
constructed above. Now remove anR0-square ofQm, and replace it with anR-square.
The result is a surface Q0m of genus 1 with m2 � 1 punctures and one boundary
component of length 1. One checks that B.Q0m/ � B.Qm/ D �.m/. To the inner
boundary of R, attach a sphere with r C 1 punctures with a boundary component of
length 1 such that all essential curves also have length at least �. The result is a surface
Q of genus 1 with p punctures. The map Q! Fm is defined locally in each R and
R0 and extended by the constant map to the attached sphere. The same reasoning as
before shows that B.Q/D�.m/D�.

p
p/.

Finally, we combine the two constructions. Let g > 1, and let p be arbitrary.
Let H be a closed surface of genus g � 1 obtained from the double hairy torus
construction. Cut H along one of the curves of length 1 to obtain a surface H 0 of
genus g � 2 with two boundary components. From above, we can construct a surface
Q0 with genus 1, p punctures, and one boundary component of length 1 such that
B.Q0/ D �.

p
p/. Now glue Q0 to H 0 via an intermediate pair of pants with three

boundary components of lengths 1. The resulting surface X has the right topology.
The Lipschitz map fromH to Fm, wherem�

p
g, sends the boundary components of

H 0 to the same point. Therefore, this map extends to all ofX by a constant map onQ0

and the intermediate pants. Likewise, the Lipschitz map from Q0 to Fm0 , m0 �
p
p,

can be extended to X by a constant map on H 0 and the intermediate pants. In both
cases, for any pants decomposition P on X , the image of P in either Fm or Fm0 is
nontrivial in homology. Therefore, P contains a curve ˛ and a curve ˛0 such that
`X .˛/D�.

p
g/ and `X .˛0/D�.

p
p/. It follows then that

B.X/D�.
p
gC
p
p/D�.

p
gC p/:

This concludes the proof of Lemma 5.9 and this section.

6. Upper bound for height
In this section, we give an upper bound for the height of M �

g;p . For anyX 2M �
g;p , we

will show that there exists a surface Y 2Bg;p and a map from Y to X such that, for
any curve � on X , the ratio of ExtX .�/ to ExtY .�/ is bounded above by a polynomial
function in gCp

�
. Then Theorem 2.2 would provide an upper bound of log.gCp

�
/ for

the Teichmüller distance between X and Y .
Let X 2M �

g;p be given, and let P be the shortest pants decomposition of X . By
Theorem 2.3, there is an upper bound of order .g C p/ for the lengths of the curve
in P . (The bound does not depend on �.) Let Y 2Bg;p be a surface where there is
a pants decomposition P 0 in the homeomorphism class of P where the curves have
lengths �M . For ˛ 2 P 0, choose the shortest transverse curve ˛ to ˛ which intersects
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˛ minimally and is disjoint from the other curves in P 0. All transverse curves have
length of order 1. The curves in P 0 and their duals form a set of curves �, which is
usually referred to as a clean marking on Y .

There is map from Y to X that sends the curves in P 0 to curves in P . In fact,
the homotopy class of this map is unique up to Dehn twist around curves in P . We
choose such a map f so that, for any ˛ 2 P 0, the length of f .˛/ in X has an upper
bound of order M D max¹g C p; log.1=�/º. To see that such a map exists, let ˇ be
any curve in P . We will find a transverse curve ˇ to ˇ of length O.M/. Cutting X
along all curves in P , except ˇ, leaves a subsurface containing ˇ which is either a
torus with one boundary component or a sphere with four boundary components. The
length of each boundary component has an upper bound of order gC p and a lower
bound of �. Consider the case in which ˇ is contained in a torus with a boundary
component ˇ0. There is a pair of arcs ! and !0 in the torus that are perpendicular to
ˇ and ˇ0. One can use elementary hyperbolic geometry to show that the lengths of !
and !0 areO.M/. By a surgery using ! and !0 and arcs in ˇ0 and ˇ, we can construct
a curve that intersects ˇ exactly once. The length of the geodesic representative ˇ of
the curve is bounded above by the sum of the lengths of ˇ, ˇ0, !, and !0, and thus
`X .ˇ/DO.M/. A similar construction also works in the case in which ˇ is contained
in a sphere with four boundary components.

Hence, we do not distinguish between P and P 0 and denote them both by P , and
we can consider � as a marking on X .

Let � be a curve in Y . First we compare the extremal length and the hyperbolic
length of � in Y . Recall the definition of extremal length from the background section.
If we pick � to be the hyperbolic metric on Y , we have the following inequality just
from the definition:

ExtY .�/�
`�.�/

2

Area.�/
D
`Y .�/

2

2��.Y /
�
`Y .�/

2

gC p
: (6)

We now estimate the `Y .�/ using its intersection pattern with curves in �. Recall
that curves in � are either pants curve coming from P , usually denoted by ˛, or dual
curves, denoted by ˛. For simplicity, when we write ˛ 2 �, we allow ˛ to be both a
pants curve or a dual curve. In the case where ˛ is a pants curve, ˛ would be the pants
curve that ˛ is dual to. (Every curve is the dual of the dual.)

LEMMA 6.1
We have

`Y .�/�
X
˛2�

i.�; ˛/`Y .˛/: (7)



1868 RAFI and TAO

Proof
This is well known. Essentially, every time � intersects ˛, it has to cross an annulus
with thickness comparable to the length of ˛.

Note that a curve ˛ 2 � has length of order 1 in Y . Also,

`X .˛/�M:

Hence, we can control how the sum on the right-hand side of (7) changes when we
replace Y with X . That is,

X
˛2�

i.�; ˛/`Y .˛/�
1

M

X
˛2�

i.�; ˛/`X .˛/: (8)

This sum, in turn, provides an upper bound for the length of � inX . The following
formula was proved in [16, Proposition 3.2].

LEMMA 6.2
For any curve � on X ,

2
X
˛2�

i.�; ˛/`X .˛/� `X .�/: (9)

The final step is to compare the hyperbolic length and the extremal length of �
in X .

LEMMA 6.3
For any X 2M �

g;p and any curve � ,

`X .�/
2 �

�2

gC p
ExtX .�/: (10)

To prove this, we use the following lemma, which essentially follows from the
definition of the extremal length and is a special case of [19, Lemma 4.1].

LEMMA 6.4
Given a metric 	 on S and a representative O� of a simple closed curve � , let v D
v.	; O�/ be a number so that the v-neighborhood of O� is homeomorphic to a standard
product O� 	 Œ0; 1
. Then

Ext� .�/�
Area.	/

4v2
:
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Proof of Lemma 6.3
Let X be a point in M �

g . We would like to apply the above lemma. However, when
`X .�/ is large, the geodesic representative of � gets exponentially close to itself, that
is, v.�;X/ � e�`X .�/. Hence, to obtain a polynomial bound, we need to perturb �
and push it away from itself as much as possible. Our approach is to triangulate the
surface and spread � locally in each triangle.

Let X be the truncated surface obtained from X (see Section 5.1). We may
assume that all curves of P are contained in X . Choose a triangulation T on X so
that the length of any edge in T has an upper bound of �=2 and a lower bound of
order � and so that there is a uniform lower bound on the angles of every triangle in
T . This T can be constructed using a Delaunay triangulation on random well-spaced
points on X , which has been constructed explicitly in [15]. The edge lengths of the
triangles of T take values in the interval Œ�=k; �=2
 for a uniform k. The triangles
in this construction have bounded circumradii on the order of �. This fact provides a
uniform lower bound for the angles (see [5]).

We may also perturb the triangulation so that � does not pass through any vertex
of T and is not tangent to any edge of T .

CLAIM 6.5
For any edge e in T ,

ˇ̌
ˇ� \ e

ˇ̌
ˇ� 2`X .�/

�
:

Proof of the claim
Let p;q 2 � \ e be two intersection points that appear consecutively along � . Con-
sider the loop formed by taking the union of the arc !� � � connecting p to q with
the segment !e � e connecting p to q. This loop is essential in X and thus must have
length at least �. The length of the arc !e is at most �=2. Thus the length of arc !� is
at least �=2. Hence, the intersection number is less than 2`X .�/=�.

Let l D `X .�/. We refer to Figure 10 in the following construction. For a triangle

 2 T , the restriction of � to 
 is a collection of O.l=�/ arcs. For every edge e of

, let ie D j� \ ej. When ie > 1, let Ne be the middle third of the segment e. Mark
ie points on Ne subdividing it into .ie � 1/ equal segments. When ie D 1, Ne is just the
middle point of e and it contains one marked point. When ie D 0, Ne is empty. We
replace the restriction of � to 
 with a collection of straight segments that start and
end with the chosen marked points. Note that the distance between segments is at
least of order �=l . We denote the resulting curve by O� , which is a slight perturbation
of � and hence is homotopic to it. For every point in O� , there is a neighborhood with
radius of order � that is contained in the union of at most two triangles. Thus, there is
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Figure 10. Perturbing arcs of P in 
.

a neighborhood of O� , with thickness of order �=l , that is standard. That is,

vD v. O�;X/�
�

l
:

Taking 	 to be the hyperbolic metric on X and using Minsky’s lemma we obtain

ExtX .�/�
Area.X/

�2=l2
:

The proof follows from the fact that the area of X is of order .gC p/.

We can now combine these results to obtain the desired upper bound for the
height of the thick part.

THEOREM 6.6
We have

HDT .M
�
g;p;Bg;p/DO

�
log
�gC p

�

��
:

Proof
We will show that for any X 2M �

g;p there is Y 2Bg;p so that

dT .Y;X/DO
�

log
�gC p

�

��
:

Let � be a curve on X . We can combine equations (6), (7), (8), (9), and (10) (multiply
(6), (10), and the square of (7), (8), and (9)) to obtain

ExtY .�/�
� �

gC p

�2 1

M 2
ExtX .�/;
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where M Dmax¹gC p; log.1=�/º. We overestimate an upper bound for M for uni-
formity: M � gCp

�
. Hence, after reorganizing, we have

ExtX .�/

ExtY .�/
�
�gC p

�

�2
M 2 �

�gC p
�

�4
:

Since this is true for every curve � , applying Theorem 2.2, we obtain the desired
upper bound

dT .X;Y /�
1

2
sup
�

log
ExtX .�/

ExtY .�/
� 2 log

�gC p
�

�
:

Combining Theorem 6.6 with Corollary 5.10, we deduce the following.

COROLLARY 6.7
The Teichmüller and the Lipschitz heights of M �

g;p=Symp and M �
g;p are all of order

log.gCp
�
/.

Finally, combining Corollary 6.7 with Corollary 5.2 and the triangle inequality,
we obtain the following.

COROLLARY 6.8
The Teichmüller and the Lipschitz diameters of M �

g;p=Symp and M �
g;p are all of

order log.gCp
�
/.

Proof
Note that the lower bound for the Lipschitz height of M �

g;p=Symp is also a lower

bound for the diameter of M �
g;p=Symp . Thus, diamL.M

�
g;p=Symp/D�.log.gCp

�
//.

What remains is to show the upper bound for the Teichmüller diameter of M �
g;p .

Let X;Y be any two points in M �
g;p . By Theorem 6.6, there exist X 0 and Y 0 in

Bg;p such that

dT .X;X
0/� log

�gC p
�

�
; dT .Y;Y

0/� log
�gC p

�

�
:

By Corollary 5.2, we have

dT .X
0; Y 0/� log

�gC p
�

�
:

Thus, by the triangle inequality (note that the Teichmüller metric is symmetric),

dT .X;Y /� dT .X;X
0/C dT .X

0; Y 0/C dT .Y
0; Y /� 3 log

�gC p
�

�
:
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Appendix. The metric of Whitehead moves on the space of graphs
In this section, we compute the asymptotic diameter of Graph.g;p/ and Graph.g;p/=
Symp in the metric of Whitehead moves. Recall that this is equivalent to comput-
ing the asymptotic diameter of the moduli space of pants decompositions on Sg;p
and Sg;p=Symp in the metric of elementary moves. The main results and proofs are
extrapolated from known results. Our purpose for writing this section is to unify what
is known and to put it into our context. This section can be read independently from
the rest of the paper.

Let dW represent the metric of Whitehead moves: two graphs have distance 1 if
they differ by one Whitehead move. The main results we would like to present are as
follows. Note that, as a matter of convention, we have x log.x/D 0, when x D 0.

THEOREM A.1 (Labeled punctures)
We have

diamW

�
Graph.g;p/

�
� .gC p/ log.gC p/:

THEOREM A.2 (Unlabeled punctures)
We have

diamW

�
Graph.g;p/=Symp

�
� g log.gC p/C .gC p/:

Our arguments for the two theorems are based on the work of [3] and [21]. In
the case p D 0, we also refer to [8] for an alternate proof of diamW .Graph.g// �
g log.g/.

We first argue for the upper bounds. The upper bound in Theorem A.1 follows
easily from Theorem D. Namely, since a simultaneous Whitehead move is a compo-
sition of at most gC p Whitehead moves, we have

diamW

�
Graph.g;p/

�
� .gC p/ log.gC p/:

Similarly, if g � p, then the same argument also shows that

diamW

�
Graph.g;p/=Symp

�
� .gC p/ log.gC p/� g log.gC p/:

This argument fails for p > g, so we present another one that works in general.
When g D 0 and p � 2, then Graph.0;p/=Symp is the space of unlabeled

(unrooted) trees with p ends. This case has been dealt with in [21], where it was
shown that

diamW

�
Graph.0;p/=Symp

�
� p: (11)

(In fact, their estimate is very explicit with only a small additive error.)
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Now suppose that g � 1. We use induction on g and assume Theorem A.2 for
all smaller values of g. Let �0 2 Graph.g;p/=Symp be a graph which has a loop of
length 1 (an edge e starting and ending at the same vertex). Let �1 2Graph.g�1;pC
1/=SympC1 be the graph obtained from �0 after removing e. Let � be any other graph
in Graph.g;p/=Symp . It is sufficient to show that � is a distanceO.log.gCp// from
a graph � 0 with a loop e0 of length 1. This is because � 0 n ¹e0º can be transformed to
�1 in

O
�
.g � 1/ log

�
.g � 1/C .pC 1/

�
C
�
.g � 1/C .pC 1/

��

many steps using induction, and the theorem follows.
Let T be a spanning subtree of � . Then T has .gC p/ ends. Using (11), we can

use Whitehead moves with support in T to transform � to a graph with a spanning
tree of diameter log.g C p/. We denote the new graph by � as well. Then � has a
loop of length of order log.gC p/. That is, for n� log.gC p/, there is a linear map
� W Œ0; n
! � such that the image is a nontrivial loop, �.0/D �.n/, and �.Œi � 1; i 
/
is an edge of � . One can always apply a Whitehead move at an edge on the loop
to shorten the length of the loop by at least one. Hence, after O.log.g C p//-many
moves, there is a loop of length one. This proves the upper bound.

The lower bounds for both theorems are obtained by a counting argument. We
first need an asymptotic formula for the cardinalities of Graph.g;p/ and Graph.g;p/=
Symp . For the following, we introduce the notation A 
 B to mean A � cgCpB ,
where c is a uniform constant. Since we will be applying the logarithm later, expo-
nential factors can be ignored.

By the work of [3], we have

ˇ̌
Graph.g;p/

ˇ̌


.6gC 2p/Š

gŠ.2gC p/Š
:

Up to exponential factors, this simplifies to

ˇ̌
Graph.g;p/

ˇ̌



.gC p/6gC2p

gg.gC p/2gCp


.gC p/4gCp

gg
: (12)

Similarly, we have

ˇ̌
Graph.g;p/=Symp

ˇ̌



.6gC 2p/Š

gŠpŠ.2gC p/Š


.gC p/4gCp

ggpp
: (13)

To finish the proof, we need the result in [21], which gives an upper bound
of the form cgCpCr for the cardinality of a ball of radius r in Graph.g;p/ and in
Graph.g;p/=Symp , where c is some fixed constant (see [21, Theorem 2.3]). (In fact,
their theorem is much more general and applies to any space of shapes when shapes
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are allowed to evolve through locally supported elementary moves, such as Whitehead
moves.)

Let r be the minimal number such that the ball of radius r contains the whole
space Graph.g;p/. By (12), we have

cgCpCr �
.gC p/4gCp

gg
:

Taking the logarithm of both sides, we obtain

gCpCr � .gCp/ log.gCp/H) diamW

�
Graph.g;p/

�
� r � .gCp/ log.gCp/:

This completes the proof of Theorem A.1.
For unlabeled punctures, we prove two lower bounds. Since our errors are multi-

plicative, their sum is also a lower bound.
Let �;� 0 2 Graph.g;p/=Symp be, respectively, of diameters of order .g C p/

and log.g C p/. Consider a sequence �1 � � ��n of Whitehead moves taking � to � 0.
Since

ˇ̌
diam.�i /� diam.�iC1/

ˇ̌
� 1

we must have

diamW

�
Graph.g;p/=Symp

�
� .gC p/� log.gC p/� .gC p/: (14)

That is the first lower bound.
When g � p, (13) reduces to

ˇ̌
Graph.g;p/=Symp

ˇ̌

 gg

�g
p

�p
: (15)

On the other hand, when p > g, we have

ˇ̌
Graph.g;p/=Symp

ˇ̌

 pg

�p
g

�g
: (16)

Let r be the minimal number such that the ball of radius r contains Graph.g;p/=
Symp . When g � p, (15) implies

r � g log.g/C p log
g

p
� g log.gC p/:

Similarly, when p > g, (16) implies

r � g log.p/C g log
p

g
� g log.gC p/:
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Using the above and (14) we obtain

diamW

�
Graph.g;p/=Symp

�
� g log.gC p/C .gC p/:

This finishes the proof of Theorem A.2.
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