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Definition 0.1. A surface X is called infinite if its fundamental group ⇡1(X) is infinitely

generated.

Any infinite Riemann surface X contains a unique hyperbolic metric in its conformal
class. All metric properties of infinite Riemann surfaces are with respect to their conformal
hyperbolic metric.

We fix a representation X ⌘ D/� where D is the unit disk and � is a Fuchsian group
isomorphic to ⇡1(X).

Definition 0.2. A geodesic lamination � on X is a closed subset of X which is foliated by

pairwise disjoint, simple and complete geodesics.

Unlike for finite surfaces, it is not enough to specify a closed subset of an infinite surface
to determine a geodesic lamination. This is because some geodesic laminations may cover
open subsets of X and there is more than one foliation of such open subsets (think of the
unit disk or a funnel).

Definition 0.3. A measured (geodesic) lamination µ on X supported on a geodesic lami-

nation � is an assignment of a Radon measure on each hyperbolic geodesic arc I transverse

to � with support in I \ �. The measure is invariant under homotopies preserving leaves

(geodesics) of �.
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Theorem 0.4 (Alvarez-Rodriguez [1], [3]). Any infinite hyperbolic surface X can be ob-

tained by isometric gluings of countably many geodesic pairs of pants along their boundary

geodesics and by attaching at most countably many funnels and geodesic half-planes.

The first example of a geodesic half-plane inside an infinite Riemann surface is due to
Basmajian [2].

A geodesic half-plane in X corresponds to an interval of discontinuity for � on S1 that
has trivial stabilizer in �.

A funnel or a puncture of X corresponds to a single topological end of X, and no two
punctures or funnels can correspond to the same topological end. On the other hand, it is
possible to have countably many half-planes corresponding to a single topological end of
X (see [3]).

S closed hyperbolic surface

Theorem 0.5 (Thurston, Birman-Series). The union of all simple geodesics in S has

Hausdor↵ dimension 1.

In particular, a geodesic lamination on S is nowhere dense and of zero area.

Question: What about geodesic laminations on infinite hyperbolic surfaces?

If X contains a funnel or a half-plane then there are geodesic laminations that cover an
open subset of X. Therefore the question is interesting only for surfaces which do not have
funnels and half-planes.

A Riemann surface X does not contain a funnel or a half-plane if and only if � is of the
first kind if and only if X is equal to its convex core C(X).

Theorem 0.6 (Š. [10]). Let X be an infinite Riemann surface and let � be a geodesic

lamination contained in the convex core C(X) of X. Then � is nowhere dense.

If the covering group � is of the first kind then the union of the leaves of any geodesic

lamination on X is nowhere dense.

There are examples of surfaces with the covering group of the first kind and geodesic
lamination with non-zero area.
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S1, S2 closed hyperbolic surfaces of the same genus and f : S1 ! S2 a homeomorphism

f̃ : S̃1 ! S̃2 extends to ⇡1(S1)- and ⇡1(S2)-equivariant homeomorphism f̃ : @1S̃1 !
@1S̃2 of the boundaries at infinity

Since the space of geodesics G(S̃i) of the universal covering S̃i of Si is identified (@1S̃i⇥
@1S̃i) \ diagonal we obtain a homeomorphism

f̃ : G(S̃1) ! G(S̃2)

when S1, S2 are finite surface and a funnel corresponds to a puncture there is no induced
homeomorphism of the spaces of geodesics; even when two funnels correspond to each other
there is no canonical homeomorphism of the spaces of geodesics

for infinite surfaces X1 and X2, a homeomorphism f : X1 ! X2 does not induce a
homeomorphism of G(X̃1) and G(X̃2) when funnels and/or half-planes are present; we
show this is the only obstruction

Theorem 0.7 (Š. [10]). Let X1 and X2 be two infinite surfaces with covering groups of

the first kind and f : X1 ! X2 a homeomorphism. Then there exists an equivariant

homeomorphism

f̃ : G(X̃1) ! G(X̃2).

The map projects to a homeomorphism

f : G(X1) ! G(X2)

such that closed geodesics of X1 are mapped onto closed geodesics of X2 in the homotopy

class of the image under f : X1 ! X2.
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Goal: Parametrize the space ML(X) of all measured laminations on X.

Motivation from closed surface case S:

• ML(S) parametrizes the Teichmüller space T (S) of S by earthquakes (Thurston)
• ML(S) is piecewise linear manifold (Thurston, Bonahon)
• train tracks provide manifold charts of ML(S) (Thurston, Penner-Harer, Bonahon)
• Thurston boundary to T (S) is identified with PML(S)-projective measured lami-
nations (Thurston)

Assumption: From now on, X = C(X) or the covering Fuchsian group � is of the first
kind

we would like to describe measured laminations on X using countably many parameters

Since X = C(X), X has a geodesic pants decomposition (Alvarez-Rodriguez). In fact,
any locally finite topological pants decomposition straightens to a locally finite geodesic
pants decomposition (Basmajian-Š. [3]).
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Figure 1. The four standard train tracks on a pair of pants with 3 cu↵s.
The smoothing at each cu↵ is chosen arbitrarily.

Fix a geodesic pants decomposition {Pn}n of X.
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Choose a Dehn-Thurston train track in each Pn which meet each cu↵ at a fixed base-
point such that the complementary regions are triangles and punctured monogons (Penner-
Harer).

Choose smoothing at the basepoints. Figures 1 and 2 show di↵erent possibilities for the
Dehn-Thurston train tracks in each Pn.
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Figure 2. The standard train tracks when pairs of pants have 2 or 1 cu↵.
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Definition 0.8. A pants train track ⇥ on X is obtained from {Pn}n by taking choices of

the standard Dehn-Thurston train tracks in each Pn with cu↵s being additional edges of ⇥
and smoothing at the cu↵s.

Di↵erent choices of train tracks in each Pn and di↵erent choices of smoothing gives rise
to an uncountable family of train tracks.

Proposition 0.9. A bi-infinite edge path � in ⇥ determines a unique simple geodesic g(�)
in X.

Definition 0.10. We say that a geodesic g in X is weakly carried by ⇥ if there exists an

edge path � such that g = g(�).

Proposition 0.11. For any µ 2 ML(X), there is a choice of a pants train track that

weakly carries each geodesic of the support of µ.
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Figure 3. The lift of a standard train track. There are four lifts of cu↵s
connected by finite edge paths to a single vertex of the lift of a cu↵ on the
left side of the figure.

Let ⇥̃ be the lift of ⇥ to the universal cover of X (see Figure 3).

E(⇥̃) the set of edges of ⇥̃

for e 2 E(⇥̃), let G(e) be the set of geodesics weakly carried by ⇥̃ that have e in their
corresponding bi-infinite edge paths

Define fµ̃ : E(⇥̃) ! R by
fµ̃(e) = µ̃(G(e)) = µ̃(Ie)
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where Ie is a geodesic arc intersecting all geodesics of G(e) and no other geodesics weakly
carried by ⇥̃; fµ̃(e) is the weight on e for the measured lamination µ̃

fµ̃ satisfies the switch relation at each vertex of µ̃: the sum of the weights of incoming
edges equals to the sum of the weights of the outgoing edges

a map f : E(⇥̃) ! [0,1) which satisfies the switch relation at each vertex is called an
edge-weight system

Theorem 0.12 (Š. [10]). Let X be an infinite Riemann surface whose covering group is

of the first kind and let ⇥ be a pants train track on X. Let W(⇥̃, [0,1)) be the set of

edge-weight systems for ⇥. Then the assignment of edge-weights to the space ML(X,⇥) of
measured lamination weakly carried by ⇥ is a homeomorphism for the weak* topology on

ML(X,⇥) and the topology of pointwise convergence on W(⇥̃, [0,1)).

Further motivations:

Theorem 0.13 (Thurston: geology is transitive). For closed hyperbolic surface S, any

homeomorphism f : S ! S1 is homotopic to a unique earthquake Eµ : S ! S1.

Eµ is isometry o↵ the support of µ, relative motion of di↵erent complementary com-
ponents is movement to the left given by the amount of the transverse measure µ of the
geodesics of the support separating the components (a generalization of positive left twists)

Theorem 0.14 (Thurston). Any homeomorphism f : S1 ! S1
(fixing 1, i and �1) is

obtained by continuous extension of a unique earthquake Eµ : D ! D, where µ 2 ML(D).

The earthquakes are unique but not every measured lamination µ 2 ML(D) gives an
earthquake (open problem is which measured lamination give rise to earthquakes of D)
Example: µ = a11g1 + a21g2 , where 1g is the Dirac measure at g
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Definition 0.15. A orientation preserving homeomorphism h : S1 ! S1
is called qua-

sisymmetric if there exists M � 1 such that for any two adjacent arcs �, � ⇢ S1
with equal

length |�| = |�| we have

1

M
 |h(�)|

|h(�)|  M.

Definition 0.16. The universal Teichmüller space T (D) consists of all quasisymmetric

maps h : S1 ! S1
that fix 1, i and �1.

Theorem 0.17 (Thurston, Š., Gardiner-Hu-Lakic, Epstein-Marden-Markovic, Hu, Š.).
Let h : S1 ! S1

be an orientation preserving homeomorphism that fixes 1, i and �1
and let Eµ : D ! D be an earthquake with continuous extension Eµ|S1 = h. Then h is

quasisymmetric if and only if

kµkTh := supµ(I) < 1

where the supremum is over all geodesic arcs I ⇢ D of hyperbolic length 1.

For X = D/�, the Teichmüller space of X is

T (X) = {h|h : S1 ! S1 quasisymmetric , fix 1, i,�1 and conjugates � onto a Fuchsian group}

Then T (X) ⇢ T (D), and there is a one to one correspondence between the Teichmüller
space T (X) and the space of bounded measured laminations

MLb(X) = {µ 2 ML(X)|kµ̃kTh < 1}

where µ̃ 2 ML(D) is the lift of µ.

Theorem 0.18 (Bonahon-Š. [4]). The Teichmüller space T (X) embeds into the space of

bounded geodesic currents of X. The asymptotic rays to the image of the embedding are pre-

cisely given by the projective bounded measured laminations PMLb(X) which is Thurston

boundary to T (X). The action of the quasiconformal mapping class group QMCG(X)
extends by continuity to a homeomorphism of the closure T (X) [ PMLb(X).

(For an alternative approach to Thurston boundary for T (X) using the lengths of simple
closed geodesics see Š. [12]).
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We are motivated by the Teichmüller theory to consider a parametrization of MLb(X) (
ML(X).

It is much harder task than parametrization of ML(X) and we need additional assump-
tions on the geometry of X.

Definition 0.19. The set of bounded edge-weight systems

Wb(⇥̃, [0,1)) = {f 2 W(⇥̃, [0,1))|kfk1 < 1}.

Theorem 0.20 (Š. [10]). Let X be an infinite hyperbolic surface equipped with a geodesic

pants decomposition whose cu↵ lengths are between two positive constants.

Then

MLb(X,⇥) = ML(X,⇥) \MLb(X)

is in a one to one correspondence with Wb(⇥̃, [0,1)).
In addition, the bijection

MLb(X,⇥) ! Wb(⇥̃, [0,1))

is a homeomorphism for the “uniform” weak* topology on MLb(X,⇥) and the topology

induced by the norm k · k1 on Wb(⇥̃, [0,1)).

The above theorem holds when X has punctures. In this case the condition of cu↵
lengths being between two positive constants is not apllied to punctures but it is in force
for the geodesic cu↵s.

The “uniform” weak* topology (introduced jointly with H. Miyachi [7] in a work on the
continuity of the correspondence between T (X) and earthquake measures; and a newer
incarnation jointly with F. Bonahon [4])):

µ̃ realized as a measure on the space of geodesics G(X̃) = (@1X̃ ⇥ @1X̃) \ diagonal ;
note that G(X̃) is not a compact space

Then
µ̃n ! µ̃

as n ! 1 in the uniform weak* topology if for every continuous function ⇠ : G(X̃) ! R
with compact support we have

sup
'2Isom(X̃)

���
ZZ

G(X̃)

⇠ � 'd(µ̃n � µ̃)
��� ! 0

as n ! 1. When X̃ ⌘ D then Isom(X̃) ⌘ Mob(D).
Note that the topology on MLb(X) induced by k · kTh is too strong and the weak*

topology is too weak.
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