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Definition 0.1. A surface X is called infinite if its fundamental group m (X) is infinitely
generated.

Any infinite Riemann surface X contains a unique hyperbolic metric in its conformal
class. All metric properties of infinite Riemann surfaces are with respect to their conformal
hyperbolic metric.

We fix a representation X = D/T" where D is the unit disk and I" is a Fuchsian group
isomorphic to m (X).

Definition 0.2. A geodesic lamination A\ on X is a closed subset of X which is foliated by
pairwise disjoint, simple and complete geodesics.

Unlike for finite surfaces, it is not enough to specify a closed subset of an infinite surface
to determine a geodesic lamination. This is because some geodesic laminations may cover
open subsets of X and there is more than one foliation of such open subsets (think of the
unit disk or a funnel).

Definition 0.3. A measured (geodesic) lamination p on X supported on a geodesic lami-
nation A\ is an assignment of a Radon measure on each hyperbolic geodesic arc I transverse

to A with support in I N X. The measure is invariant under homotopies preserving leaves
(geodesics) of A.
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Theorem 0.4 (Alvarez-Rodriguez [1], [3]). Any infinite hyperbolic surface X can be ob-
tained by isometric gluings of countably many geodesic pairs of pants along their boundary
geodesics and by attaching at most countably many funnels and geodesic half-planes.

The first example of a geodesic half-plane inside an infinite Riemann surface is due to
Basmajian [2].

A geodesic half-plane in X corresponds to an interval of discontinuity for I' on S! that
has trivial stabilizer in T'.

A funnel or a puncture of X corresponds to a single topological end of X, and no two
punctures or funnels can correspond to the same topological end. On the other hand, it is
possible to have countably many half-planes corresponding to a single topological end of
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Theorem 0.5 (Thurston, Birman-Series). The union of all simple geodesics in S has
Hausdorff dimension 1.

In particular, a geodesic lamination on S is nowhere dense and of zero area.
Question: What about geodesic laminations on infinite hyperbolic surfaces?

If X contains a funnel or a half-plane then there are geodesic laminations that cover an
open subset of X. Therefore the question is interesting only for surfaces which do not have
funnels and half-planes.

A Riemann surface X does not contain a funnel or a half-plane if and only if " is of the
first kind if and only if X is equal to its convex core C(X).

Theorem 0.6 (S. [10]). Let X be an infinite Riemann surface and let A be a geodesic
lamination contained in the convex core C(X) of X. Then X is nowhere dense.

If the covering group I' is of the first kind then the union of the leaves of any geodesic
lamination on X is nowhere dense.

There are examples of surfaces with the covering group of the first kind and geodesic
lamination with non-zero area.
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S1, S closed hyperbolic surfaces of the same genus and f : S1 — S2 a homeomorphism

ji: S — Sy extends to m1(S1)- and 71 (S2)-equivariant homeomorphism f 00051 —
0092 of the boundaries at infinity

Since the space of geodesics G (5’1) of the universal covering S; of S; is identified (8005}' X
05;) \ diagonal we obtain a homeomorphism

f : G(gl) — G(SQ)

when 57, S are finite surface and a funnel corresponds to a puncture there is no induced
homeomorphism of the spaces of geodesics; even when two funnels correspond to each other
there is no canonical homeomorphism of the spaces of geodesics

for infinite surfaces )5'1 and Xo, a homeomorphism f : X; — X5 does not induce a
homeomorphism of G(X;) and G(X3) when funnels and/or half-planes are present; we
show this is the only obstruction

Theorem 0.7 (S. [10]). Let X; and X5 be two infinite surfaces with covering groups of
the first kind and f : X1 — Xo a homeomorphism. Then there exists an equivariant
homeomorphism 3 3 3

The map projects to a homeomorphism

f:G(X1) — G(X2)

such that closed geodesics of X1 are mapped onto closed geodesics of Xo in the homotopy
class of the image under f : X1 — Xo.
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Goal: Parametrize the space M L(X) of all measured laminations on X.

Motivation from closed surface case S:

M L(S) parametrizes the Teichmiiller space T'(S) of S by earthquakes (Thurston)
ML(S) is piecewise linear manifold (Thurston, Bonahon)

train tracks provide manifold charts of M L(S) (Thurston, Penner-Harer, Bonahon)
Thurston boundary to T'(S) is identified with PM L(S)-projective measured lami-
nations (Thurston)

Assumption: From now on, X = C(X) or the covering Fuchsian group I is of the first
kind

we would like to describe measured laminations on X using countably many parameters

Since X = C(X), X has a geodesic pants decomposition (Alvarez-Rodriguez). In fact,
any locally finite topological pants decomposition straightens to a locally finite geodesic
pants decomposition (Basmajian-S. [3]).

FiGURE 1. The four standard train tracks on a pair of pants with 3 cuffs.
The smoothing at each cuff is chosen arbitrarily.

Fix a geodesic pants decomposition {P,}, of X.
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Choose a Dehn-Thurston train track in each P, which meet each cuff at a fixed base-
point such that the complementary regions are triangles and punctured monogons (Penner-
Harer).

Choose smoothing at the basepoints. Figures 1 and 2 show different possibilities for the
Dehn-Thurston train tracks in each P,

FIGURE 2. The standard train tracks when pairs of pants have 2 or 1 cuff.
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Definition 0.8. A pants train track © on X is obtained from {P,}, by taking choices of
the standard Dehn-Thurston train tracks in each P, with cuffs being additional edges of ©
and smoothing at the cuffs.

Different choices of train tracks in each P, and different choices of smoothing gives rise
to an uncountable family of train tracks.

Proposition 0.9. A bi-infinite edge path v in © determines a unique simple geodesic g(~y)
m X.

Definition 0.10. We say that a geodesic g in X s weakly carried by © if there exists an
edge path ~y such that g = g(7y).

Proposition 0.11. For any p € ML(X), there is a choice of a pants train track that
weakly carries each geodesic of the support of u.

e

F1GURE 3. The lift of a standard train track. There are four lifts of cuffs
connected by finite edge paths to a single vertex of the lift of a cuff on the
left side of the figure.

Let © be the lift of © to the universal cover of X (see Figure 3).
E(©) the set of edges of ©

for e € F(0©), let G(e) be the set of geodesics weakly carried by © that have e in their
corresponding bi-infinite edge paths

Define f; : E(©) — R by
i(e) = i(G(e) = ale)
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where I, is a geodesic arc intersecting all geodesics of G(e) and no other geodesics weakly
carried by ©; fa(e) is the weight on e for the measured lamination /i

fn satisfies the switch relation at each vertex of fi: the sum of the weights of incoming
edges equals to the sum of the weights of the outgoing edges

a map f: E(0) — [0,00) which satisfies the switch relation at each vertex is called an
edge-weight system
Theorem 0.12 (S. [10]). Let X be an infinite Riemann surface whose covering group is
of the first kind and let © be a pants train track on X. Let W(0O,[0,00)) be the set of
edge-weight systems for ©. Then the assignment of edge-weights to the space M L(X,©) of
measured lamination weakly carried by © is a homeomorphism for the weak* topology on

ML(X,0) and the topology of pointwise convergence on W(O,[0,0)).

Further motivations:

Theorem 0.13 (Thurston: geology is transitive). For closed hyperbolic surface S, any
homeomorphism f : S — Sy is homotopic to a unique earthquake E* : S — 5.

EF is isometry off the support of pu, relative motion of different complementary com-
ponents is movement to the left given by the amount of the transverse measure p of the
geodesics of the support separating the components (a generalization of positive left twists)

Theorem 0.14 (Thurston). Any homeomorphism f : S' — S' (fiving 1, i and —1) is
obtained by continuous extension of a unique earthquake E* : 1D — D, where p € M L(D).

The earthquakes are unique but not every measured lamination p € M L(D) gives an
earthquake (open problem is which measured lamination give rise to earthquakes of D)
Example: y = a1y, + a2ly,, where 1, is the Dirac measure at g




8 DRAGOMIR SARIC

Definition 0.15. A orientation preserving homeomorphism h : St — St is called qua-
sisymmetric if there exists M > 1 such that for any two adjacent arcs ~,6 C S' with equal
length |7y| = |d| we have
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Definition 0.16. The universal Teichmiiller space T(D) consists of all quasisymmetric
maps h : S* — St that fix 1, i and —1.

Theorem 0.17 (Thurston, S., Gardiner-Hu-Lakic, Epstein-Marden-Markovic, Hu, S.).
Let h : S' — S be an orientation preserving homeomorphism that fizes 1, i and —1
and let E* : D — D be an earthquake with continuous extension EF|¢1 = h. Then h is
quasisymmetric if and only if

|\ plln = sup p(I) < oo

where the supremum is over all geodesic arcs I C D of hyperbolic length 1.
For X = D/T', the Teichmiller space of X is
T(X) = {h|h: S — S! quasisymmetric , fix 1,7, —1 and conjugates I" onto a Fuchsian group}

Then T'(X) C T'(D), and there is a one to one correspondence between the Teichmiiller
space T'(X) and the space of bounded measured laminations

MLy(X) = {p € ML(X)|||ill7n < oo}
where i € ML(D) is the lift of p.

Theorem 0.18 (Bonahon-S. [4]). The Teichmiiller space T(X) embeds into the space of
bounded geodesic currents of X. The asymptotic rays to the image of the embedding are pre-
cisely given by the projective bounded measured laminations PM Ly(X) which is Thurston
boundary to T(X). The action of the quasiconformal mapping class group QMCG(X)
extends by continuity to a homeomorphism of the closure T(X)U PM Ly(X).

(For an alternative approach to Thurston boundary for T'(X) using the lengths of simple
closed geodesics see S. [12]).
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We are motivated by the Teichmiiller theory to consider a parametrization of M Ly(X) C
ML(X).

It is much harder task than parametrization of M L(X) and we need additional assump-
tions on the geometry of X.

Definition 0.19. The set of bounded edge-weight systems
Wi(8,(0,00)) = {f € W(6,[0,00))|[[ f]loc < 0}

Theorem 0.20 (S. [10]). Let X be an infinite hyperbolic surface equipped with a geodesic
pants decomposition whose cuff lengths are between two positive constants.
Then
MLy(X,0) = ML(X,0) N MLy(X)

is in a one to one correspondence with Wy(0, [0, 00)).
In addition, the bijection

MLy(X,0) = Wy(0,[0,0))
is a homeomorphism for the “uniform” weak* topology on M Ly(X,0) and the topology

induced by the norm || - ||ec 0n Wh(0, [0, 00)).

The above theorem holds when X has punctures. In this case the condition of cuff
lengths being between two positive constants is not apllied to punctures but it is in force
for the geodesic culffs.

The “uniform” weak* topology (introduced jointly with H. Miyachi [7] in a work on the
continuity of the correspondence between T'(X) and earthquake measures; and a newer
incarnation jointly with F. Bonahon [4])):

fi realized as a measure on the space of geodesics G(X) = (O X X 0o X) \ diagonal ;
note that G(X) is not a compact space

Then

fin — fi
as n — oo in the uniform weak* topology if for every continuous function ¢ : G(X) — R
with compact support we have

swp | [[ g0 )| o
p€lsom(X) G(X)

as n — oo. When X = D then Isom(X) = Moh(D).
Note that the topology on M Ly(X) induced by || - ||7n is too strong and the weak™
topology is too weak.
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