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Theorem
Given an integrable function f : S — R, the function u : D — R
s

u(re') = 1 P.(0 — t)f(e") dt

C2r ).

is harmonic onD, i.e. Au = 0. Here,

P0) = — 1=
T 142 —2rcos 6

is the Poisson kernel.
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Recall PSL(2,R) = Isom™(H). Given a = re’’ € D, consider

Z —
9a(2) = 7=,
so that gs(a) = 0, hence
1—1a)?
%2 = oo
and setting z = e’ we obtain
dga)\ . ’ it . 1 — I’2 -
d\ (1) = |9a(€")| = 1 —reltop P(60 1)

RN derivative of boundary action = Poisson kernel
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The Poisson representation formula - IV

Recall the Poisson formula
u(re') / f(e")P, (0 — 1)

Setting a=re’, dx = &

_ ity A9\
u(a) = - (e o\ (1) dA(1)
Finally if ¢ = e't
u(a) = (€) dgaA(¢)
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Theorem (Poisson representation)
IfFf: (8D, \) — R, then

u(a) = /8 1(6) dgaA(€)

is harmonic on D.

Question. Can we generalize this to other groups
G # PSL,(R)?
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General Poisson representation (Furstenberg)

Let G be a (Icsc) group, 1 a probability measure on G.

Definition
A function v : G — R is py-harmonic if

u(g) = /G u(gh) du(h)

forall g € G.

Let B be a space on which G acts (measurably). A measure v
on Bis p-stationary if

o~ [ov a0
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Random walks and u-boundaries

Let 1 be a prob. measure on G.
Consider the random walk

Wn = g‘]gz ..gn
where (g;) are i.i.d. with distribution .

We denote Q := (wj,) the space of sample paths, and
T((wp)) := (Wpp1) is the shift on Q.

Definition
A space (B, v) is a p-boundary if there exists a measurable map

bnd: Q — B

suchthatbnd =bndo T.
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Boundary convergence
Then we define the hitting measure

v(A) = IP’(nli_)mOo wnpo € A)

which is p-stationary.

Moreover, (0X,v) is a u-boundary, given by the map
Q> bnd(w) := nIi_}m wno € 0X
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General Poisson representation - Il (Furstenberg)

Let G be a (Icsc) group, v a probability measure on G, let (B, v)
be a u-boundary.

The Poisson transform & : L°(B,v) — H>*(G, u) is

d4(9) = /degy

Definition
A p-boundary (B, v) is the Poisson boundary if ¢ is an
isomorphism
L>°(B,v) — H*(G, p)
Corollary

Poisson boundary is trivial (= 1 point) < bounded harmonic
functions are constant

Examples. Abelian groups; nilpotent groups
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|dentification of the Poisson boundary

Let G < Isom(X, d) be a group, 1 a measure on G, v the hitting
measure on 0.X.

Question. Is (0X, ) the Poisson boundary for (G, 11)?

(Some) History.

>

>

>

Furstenberg '63: semisimple Lie groups
Kaimanovich '94: hyperbolic groups
Karlsson-Margulis 99: isometries of CAT(0) spaces
Kaimanovich-Masur '99: mapping class group
Bader-Shalom ’06: isometries of affine buildings
Gautero-Matheus '12: relatively hyperbolic groups
Horbez '16 : Out(F,)

Maher-T. ’18: Cremona group
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Theorem (Kaimanovich ~ ’94)
If there exists a sequence w, : B — G such that

d(Wn, 7"'n(bﬁd("‘})))
n

—0

in probability, then (B, \) is the Poisson boundary.

Corollary

If random walk tracks geodesics sublinearly — geometric
boundary is Poisson boundary.

Pick mp(w) = v (€n).
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If

d(wn (tn)
n

then (B, \) is the Poisson boundary. Pick mp(w) := ~,(¢n).

‘% :\ov\z}»(w)

oX
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Hn(P*) < log #B(~(¢n), ra)

since r, = o(n)

L HA(PY)
h(P%) = lim —

n—oo

< lim :—1 log #B(v(¢n), ) — 0
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Ray approximation

Theorem (Kaimanovich ~ ’94)
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Theorem (Kaimanovich ~ ’94)

Let d be a temperate metric on G, suppose that i has finite first
moment w.r.t. d, and let (B, \) be a u—boundary. If there are
measurable functions 7, : B — G such that

d(Wn, Wn(bnd(w)))
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in probability, then (B, \) is the Poisson boundary.

Question. (Kaimanovich ~ ’96) Does the same criterion work
for locally compact groups?

(Kaimanovich-Woess '02) Ray criterion for invariant Markov
operators (intermediate between discrete and Icsc groups)
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Theorem (Forghani-T. '19)

Let X be a proper CAT(0) space and G < Isom(X) be a closed
subgroup with bounded exponential growth. Let i be a
(spread-out) measure on G with finite first moment. Then:

» if¢ =0, then the Poisson boundary of (G, p) is trivial;

» if¢ > 0, then the Poisson boundary of (G, i) is (0X,v),
where 0X is the visual boundary.

» For countable G: [Karlsson-Margulis '99].
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Consider the Diestel-Leader graph
DLgr = {(01,02) € Tqg x T, : hy(01) + hp(02) = 0}.

and edges (21, z2) ~ (y1,¥2) if z1 ~ yy and zo ~ yo.
Theorem (Forghani-T. ’19)

Let G < Aut(DLq ) be a closed subgroup, let ;. be a measure

on G with finite first moment, and let V be its vertical drift.
Then:

1. if V. =0, then the Poisson boundary of (G, ) is trivial;

2. ifV <0, then the Poisson boundary of (G, ;1) is 0T g x {w2}
with the hitting measure;

3. if V > 0, then the Poisson boundary of (G, 1) is {w1} x 9T,
with the hitting measure.
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Theorem (Kaimanovich-Vershik 83, Derriennic ’81)

Let G be a countable group and 1. a measure on G, with finite
entropy h. Then almost surely

lim (—:7 log un(w,,)> = h.
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Proof. Using subadditivity:

—log pnem(Wnym) < —10g pin(wn) — log ,Um(Wn_1 Wntm)

and by Kingman’s theorem.

Question. (Derriennic) Can we generalize to locally compact
groups?
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Entropies

Let 1 be a measure on G, abs. cont. w.r.t. the Haar measure m
and let p .= &

The differential entropy is

hai(1) = — /G o(g)l0g p(g)dm(g)

Note: it can be negative!
The Furstenberg entropy of the u—boundary (B, \) is

h) = [ 10g () dgAr)du(a)
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Poisson boundary

Let (0G, v) be the Poisson boundary of (G, p).

Theorem (Derriennic)
For any p-boundary (B, \), we have
h(\) < h(v).

If h(v) is finite, then

h(v) = h(\) < (B, \) is the Poisson boundary
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compact case

Let G be a Icsc group, i a prob. measure on G, u < m,

P = G-

Theorem (Forghani-T. '19)

Let (0G, v) be the Poisson boundary of (G, n). If p is bounded
and the differential entropy H, < oo for any n, then

|iminf(-1|ogd“”( )> h(v)

n—oo

almost surely.
Recall h(v) = Furstenberg entropy.
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Let (B, \) be a u—boundary. Suppose p < C.
Let pp = %, Woo := bnd(w).

1. By the ergodic theorem, for P—almost every w = (wp)

awn A
ax

Ii,r7n % log (Wso) = h(N).

2. Letf,: (M,x) — RZ0 with [ f, dx < C. Then

o 1
I|mn|nf (—n log fn(x)> >0 k-a.e.

3. Check
def‘I )\

0 dA

(Woo)pn(wn) dP < C.
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Proof of Shannon theorem - lI
4. Hence

. 1 1 awpA
I|mn|nf <n log pn(Wp) — - log N (Woo)> > 0.

Iimninf (—:7 log pn(W,-,)) > h(\)

5. (Derriennic)

lim / —% log pn(Wn) dP = h(v)
Q

n—oc0
6. By Fatou’s lemma

h()) < /Qlimninf (—% log pn(Wn)) dP < Iinm/Q <_1ﬁ log pn(Wn)) dP = h(v)
7. Thus setting A = v, a.s.

Iimninf (—:7 log p,,(wn)) = h(v)

QED
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