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Cannon—Thurston maps

Veering triangulations

From the one to the other



Notation:  and  will be  
connected, oriented, hyperbolic 
manifolds of finite volume. We use 

 and  for their 
universal covers.

F2 M3

F̃ ≅ ℍ2 M̃ ≅ ℍ3

Cannon-Thurston 
maps

Figure by Bill Thurston, from Three dimensional 
manifolds, kleinian groups and hyperbolic geometry

Let  and  be the 
boundaries at infinity.  

S1 ≅ ∂ℍ2 S2 ≅ ∂ℍ3

Let  and  be 
the “natural” compactifications.

F = F̃ ∪ S1 ≅ %2 M = M̃ ∪ S2 ≅ %3



Cannon-Thurston maps
Suppose that  is -injective. α : F → M π1

F M

F̃ M̃

F M

S1 S2∂α

α

α̃

α

ρF ρM

Let  be an elevation of :  
a lift of .

α̃ : F̃ → M̃ α
α ∘ ρF

Let  and  be the  

universal covering maps.

ρF : F̃ → F ρM : M̃ → M

Suppose that  extends to a continuous  
map .   

α̃
ᾱ : F → M

Denote the restriction of  to  by . 
This is the Cannon-Thurston map.

ᾱ S1 ∂α



Cannon-Thurston maps

F
M

F̃

M̃

S2

[Cheating a bit] 



Cannon-Thurston maps



Let  be a hyperbolic surface 
bundle and  be a fibre. 
Any elevation  of  is a 
properly embedded disk.

M
F ⊂ M

F̃ ⊂ M̃ F

Cannon-Thurston 
maps

Figure by Bill Thurston, from Three dimensional 
manifolds, kleinian groups and hyperbolic geometry

Theorem (Manning-S-Segerman): A veering structure induces 
a Cannon-Thurston map (even when the manifold is non-
fibered).

*Many cases dealt with by many authors: Cannon-Thurston, Minsky, Alperin-Dicks-Porti, McMullen, Bowditch, Mitra.

Theorem (Cannon-Thurston): The 

inclusion  induces a 
Cannon-Thurston map.  (And they 

deduce that  is sphere-filling.*)

α : F → M

∂α



Triangulations



Triangulations (Thurston)Ideal



Example: the figure 8 knot complement

φ

M = S3−

φ =

This is a layered triangulation

2 1
1 1( )

A

B

C

AB

C



Example: the figure 8 knot complement

φ

M = S3−

φ =

This is a layered triangulation

2 1
1 1( )

A

B

C

AB

C

M ≅ (T2
* × I)/(x,1) ∼ (φ(x),0)of the surface bundle



Taut angle structure (Lackenby)

Assign angles  and  to the 
edges of each tetrahedron.

0 π

We require that the sum of 
angles around each edge of the 

triangulation is .2π

0
0

0

0

¼

¼



Example: the figure 8 knot complement
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taut angle structure, and: 

Each tetrahedron colours 
its 0 angle edges red or blue. 

0
0

0

0

¼

¼

These colours must be 
consistent for all tetrahedra 
incident to the edge.

Veering structure (Agol)



Ex: the figure 8 knot complement
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Layers and continents in 
the universal cover

Taut ideal tetrahedra layer to make 
larger taut ideal polyhedra: 
continents.
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Layers and continents in 
the universal cover

Taut ideal tetrahedra layer to make 
larger taut ideal polyhedra: 
continents.

This gives a circular order to the 
vertices of the tetrahedra, 
compatible with the taut angle 
structure.

Theorem A (S—Segerman): A 
veering triangulation admits a 
unique compatible circular order 
on the vertices of the universal 
cover.

Figure by Roice Nelson



We complete this circular order to the 
veering circle.

The veering circle is our equivalent 
to the boundary of the elevation 

 in the usual 
Cannon-Thurston map.
∂F̃ ↪ ∂M̃ ≅ ∂ℍ3 ≅ S2

Theorem B (Manning-S-Segerman): 
There is a continuous equivariant 
sphere-filling map from the veering 
circle to .∂M̃ ≅ ∂ℍ3 ≅ S2

Theorem A (S—Segerman): A 
veering triangulation admits a 
unique compatible circular order 
on the vertices of the universal 
cover.



Before saying 
something about 
the proof, we can 
draw some 
approximations to 
our Cannon-
Thurston maps.

Thurston’s original 
approximation is 
made from a large 
disk : draw 

 in place of .
D ⊂ F̃

∂D ∂F̃



In place of a large disk , we use a large continent.D



m004∞



m004



m004



m004



m004



m004

Focus in on one fundamental domain of the boundary torus. 

m004



m004

Focus in on one fundamental domain of the boundary torus. 



m004

Focus in on one fundamental domain of the boundary torus. 



m004

Focus in on one fundamental domain of the boundary torus. 



m004

Focus in on one fundamental domain of the boundary torus. 



m004

With less naive algorithms we can draw just this fundamental 
domain, with a more uniform density.

m004



m004

With less naive algorithms we can draw just this fundamental 
domain, with a more uniform density.

m004



m004

With less naive algorithms we can draw just this fundamental 
domain, with a more uniform density.

For a fibered manifold, we recover the Cannon-Thurston map 
built in earlier constructions.



But for non-fibered 
manifolds, we get 
something new.

We prove that these 
Cannon-Thurston maps 
cannot come from 
surface subgroups, even 
virtually.

s227



Proof: 
Suppose we have , , a pair of 
Cannon-Thurston maps. We say that these are equivalent if 
there are homeomorphisms before and after making the 

diagram commute. From , we can recover the laminations 

 and  in ; they are exactly the non-injectivity loci of  

(with some work and a binary choice). Thus we can recover 
the link space (in our first paper), and so the veering 
triangulation. This means that the given three-manifolds have 
commensurable veering triangulations (more work to get from 
infinite sheeted to finite sheeted here), so one is fibered if and 
only if the other is. 

Q.E.D.

ϕ : S1 → S2 ψ : S1 → S2

ϕ
Λϕ Λϕ S1 ϕ



Laminations in the veering circle

2 1
1 1( )

We build our map  by 
collapsing the upper and lower 
laminations in the veering circle. 

These are related to the stable and 
unstable foliations for a pseudo-
Anosov map.

S1 → S2



2 1
1 1( )

Laminations in the veering circle

Agol’s layered construction uses 
splitting sequences of train tracks. 
These give us a hint for where 
these laminations come from.

We build our map  by 
collapsing the upper and lower 
laminations in the veering circle. 

These are related to the stable and 
unstable foliations for a pseudo-
Anosov map.

S1 → S2



upper faces

Moving down through a tetrahedron folds the upper track 
(green) and splits the lower track (purple).



Moving down through a tetrahedron folds the upper track 
(green) and splits the lower track (purple).

lower faces



We split train tracks through 
all layers to generate the 
upper and lower laminations 

,  in the veering circle.Λα Λα

We showed that for any veering 
triangulation  the universal 

cover  is layered.

(/, α)
(/̃, α̃)



We decompose the veering circle into a collection of disjoint 
decomposition elements. There are three types of these: 
• A cusp and the tips of its upper and lower crowns. 
• The two endpoints of a non-crown leaf. 
• A singleton. (Every other point of the veering circle.) 

Properties of these laminations: 
• Leaves of  share endpoints 

only around crowns, associated 

to cusps of . (Same for .) 

• Leaves of  share no 
endpoints with leaves of . 

• No isolated leaves in  or .

Λα

/̃ Λα
Λα

Λα
Λα Λα



Project the laminations ,  

to the upper and lower 
hemispheres of a sphere with 
equator the veering circle.

Λα Λα
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Project the laminations ,  

to the upper and lower 
hemispheres of a sphere with 
equator the veering circle.

Λα Λα



Figure by George Francis, from Three dimensional manifolds, 
kleinian groups and hyperbolic geometry by Bill Thurston

For a closed manifold, the decomposition 
elements have finite size.



Project the laminations ,  

to the upper and lower 
hemispheres of a sphere with 
equator the veering circle.

Λα Λα



Collapse each decomposition 
element to a point.

Project the laminations ,  

to the upper and lower 
hemispheres of a sphere with 
equator the veering circle.

Λα Λα



Collapse each decomposition 
element to a point.

A theorem of Moore shows that the 
quotient is homeomorphic to . 
We call this the veering two-sphere.

S2

Project the laminations ,  

to the upper and lower 
hemispheres of a sphere with 
equator the veering circle.

Λα Λα



Collapse each decomposition 
element to a point.

A theorem of Moore shows that the 
quotient is homeomorphic to . 
We call this the veering two-sphere.

S2

Now we prove that the action of the fundamental group on 
the veering two-sphere is a convergence group action*. 
Finally we apply a theorem of Yaman to show that the veering 
two-sphere is equivariantly homeomorphic to .∂ℍ3

Project the laminations ,  

to the upper and lower 
hemispheres of a sphere with 
equator the veering circle.

Λα Λα



Thank you! 
Questions?



Thank you!


