1. Extremal length

X — Riemann surface, perhaps with boundary

<u>Def</u>: A **conformal metric** on X is a measurable function $\rho: TX \to [0, \infty)$ such that

$$\rho(\lambda v) = |\lambda|\rho(v)$$

 Γ – a set of paths or closed curves in X

If ρ is a conformal metric and $\gamma \in \Gamma$, then we define the **length** of γ with respect to ρ as

$$\ell(\gamma,\rho) = \int_{\gamma}^{|\alpha|} \rho = \int \rho r(t) dt$$

if the integral makes sense, $\ell(\gamma, \rho) = \infty$ otherwise, and

$$\ell(\Gamma, \rho) = \inf\{ \ell(\gamma, \rho) : \gamma \in \Gamma \}$$

is the length of the path family.

<u>Def</u>: The **extremal length** of Γ is defined as

d(p,q) in maricp. $EL(\Gamma, X) = \sup_{\rho} \frac{\ell(\Gamma, \rho)^2}{\operatorname{area}(\rho)}$ — invariant under scalings.

Where the sup is over all conformal metrics ρ on X such that $0 < \text{area}(\rho) < \infty$.

Key example: X = rectangle, Γ = all paths joining the two vertical sides

Then the metric ρ realizing the supremum in the definition of $\mathrm{EL}(\Gamma,X)$ is simply the Euclidean metric, which gives

$$\mathrm{EL}(\Gamma, X) = \frac{\ell(\Gamma, \rho)^2}{\mathrm{area}(\rho)} = \frac{a^2}{ab} = \frac{a}{b} = \mathrm{aspect\ ratio\ of\ the\ rectangle}.$$

We'll prove this as a special case of Beurling's criterion for the extremality of the metric ρ .

2. Beurling's criterion

<u>Def</u>: A metric ρ_0 on X is **evenly covered by shortest paths** of Γ if

• There is a non-empty subset $\Gamma_0 \subset \Gamma$ of shortests paths, i.e., such that

$$\ell(\gamma,\rho_0)=\ell(\Gamma,\rho_0)\quad\text{for every }\gamma\in\Gamma_0.$$
 There is a measure μ on Γ_0 such that

$$\rho_0^2 = (\rho_0 \text{ along } \gamma) \times d\mu$$

i.e., to integrate against ρ_0^2 over X, we can apply an interated integral (Fubini).

Example: In the rectangle example, the Euclidean metric ρ_0 is evenly covered by the horizontal paths.

<u>Theorem</u> (Beurling's criterion): Let ρ_0 be a conformal metric on X that is evenly covered by shortest paths of Γ . Then ρ_0 realizes the supremum in the definition of $\mathrm{EL}(\Gamma,X)$, that is,

$$EL(\Gamma, X) = \frac{\ell(\Gamma, \rho_0)^2}{\operatorname{area}(\rho_0)}$$

First note that
$$area(\rho_0) = \int_X \rho_0^2 = \int_X (\int_X \rho_0) d\mu(X)$$

$$= \int_Y \ell(X,\rho_0) d\mu(X)$$

$$= \int_Y \ell(Y,\rho_0) d\mu$$

$$= \ell(Y,\rho_0) \cdot \mu(Y_0)$$
"area = length · height !!

Let ρ be any compting metric with $0 < area(\rho) < \infty$.
We need to show
$$\ell(Y,\rho_0)^2 \leq \ell(Y,\rho_0)^2.$$

$$\frac{L(1',\rho)^{\alpha}}{\text{area}(\rho)} \leq \frac{L(1',\rho_0)^{\alpha}}{\text{area}(\rho_0)}.$$

We have

$$l(P, p) \leq l(P_0, p) \leq \int_{S} p$$
 for every $S \in P_0$ integrable over $P_0 \Rightarrow$

$$\ell(\Gamma, \rho) \cdot \mu(\Gamma_0) \leq \int_{\Gamma_0} (S_{\chi} \rho) d\mu(\chi)$$

$$=\int_{\Gamma_0}\int_{X}\frac{\rho_0}{\rho_0}\cdot\rho_0\frac{\rho_0}{\rho_0}\frac{d\mu(x)}{\rho_0}$$

$$= \int_{X} \frac{\rho_{0} \cdot \rho_{0}^{2}}{\rho_{0}} = \int_{X} \rho \cdot \rho_{0}$$

$$\leq \int_{X}^{S} \rho^{2} \cdot \int_{X}^{2} \rho^{2}$$

$$\frac{\int (\Gamma, \rho)^{2}}{\text{area}(\rho)} \leq \frac{\text{area}(\rho)}{\mu(\Gamma_{0})^{2}}$$

$$= \frac{\text{bugth height}}{\text{height}^{2}} = \frac{\text{length}}{\text{length height}}$$

$$= \frac{\Gamma}{\rho} = \frac{1}{\rho} = \frac{1}{\rho$$

More examples:

o) the rectangle example.

1) *X* any Riemann surface, $\Gamma = [\alpha]$ where $\alpha \subset X$ is an essential simple closed curve.

V

Then a theorem of Jenkins/Strebel says that there is a quadratic differential *q* that makes *X* isometric to a Euclidean cylinder modulo some gluings along the boundary.

The induced conformal metric is evenly covered by shortest curves in [α] so that

$$EL([\alpha], X) = \frac{circumference^2}{area} = \frac{circumference}{height} = \frac{1}{modulus}$$

by Beurling's criterion.

d d [a]

A special case of this is when *X* is a flat torus. Then $EL([\alpha], X) = length^2 / area for the flat metric.$

2)
$$X = \mathbb{R}P^2 = \mathbb{S}^2$$
 / antipodal map, $\Gamma = \text{all non-contractible curves in } X$.

Then the spherical metric is evenly covered by quotients of great circles, which are shortest in Γ .

By Beurling's criterion,

$$EL(\Gamma, X) = \frac{\pi^2}{2\pi} = \frac{\pi}{2}.$$

3. Systolic inequalities

(M,g) – compact Riemannian n-manifold

Systole: sys(M, g) = length of shortest non-contractible curve in (M, g)

Systolic ratio: $SR(M,g) = \frac{sys(M,g)^n}{vol(M,g)}$ (invariant under scaling)

Question (Berger, Gromov): Given a smooth manifold M, which Riemannian metrics on M maximize the systolic ratio?

Answer known only if $M \in \{2 - \text{torus}, \text{ projective plane}, \text{ Klein bottle }\}$

Relationship with extremal length:

We can stratify the space of Riemannian metrics on M by conformal classes:

 $\sup\{\operatorname{SR}(M,g):g\text{ is a Riemannian metric on }M\}=\sup\{\sup\{\operatorname{SR}(M,g):g\in c\}:c\text{ is a conformal class of metrics on }M\}$ so we can try to solve the problem for each conformal class, then maximize over moduli space.

For a fixed conformal structure X (or conformal class c) on M we have

$$\sup\{\mathrm{SR}(M,\mathrm{g}):g\in c\}=\sup_{g\in c}\frac{\mathrm{sys}(M,g)^n}{\mathrm{vol}(M,g)}=\sup_{\rho}\frac{\ell(\Gamma_{ess},\rho)^n}{\mathrm{vol}(\rho)}\qquad =\prod_{e\in S} \left(\prod_{g\in S} \chi_{g}\right)^{\frac{1}{2}}$$
 cractible curves in X .

where $\Gamma_{ess} = \text{all non-contractible curves in } X$.

$$l(\Gamma_{ess}, \rho) = inf$$
 length(V, ρ): $V \in \Gamma_{ess}$

$$= inf \quad length \quad of \quad non-contr. \quad curver$$

$$= Sys(X, \rho).$$

wax
$$SR = Sup inf \frac{l^2}{area}$$

