Big mapping class groups and rigidity of the simple circle

Lvzhou Chen joint work with Danny Calegari

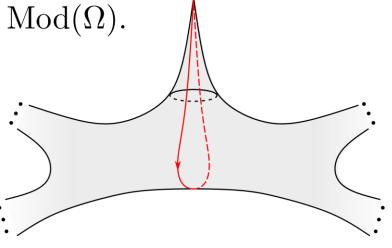
Hyperbolic Lunch, UToronto June 3, 2020

Big MCG and actions on S^1

 $\Omega = \mathbb{R}^2 - K$, K Cantor set, $\Gamma = \text{Mod}(\Omega)$.

Fact: Γ acts faithfully on S^1 .

 $\implies \Gamma \hookrightarrow \operatorname{Homeo}^+(S^1).$



Question 1: Does Γ act on S^1 in different ways?

Any nontrivial action with a global fixed point?

Question 2: Is Γ generated by torsion?

 $\text{Homeo}^+([0,1])$ is torsion-free.

Question 3: Any further obstruction for $G \hookrightarrow \Gamma$?

Main results

Question 1: Does Γ act on S^1 in different ways? No.

Question 2: Is Γ generated by torsion? Yes.

Question 3: Any further obstruction for $G \leq \Gamma$? Yes.

Theorem 3: Any countable subgroup of Homeo⁺(S^1) embeds into Γ . Not true if uncountable, e.g. $PSL_2\mathbb{R}$.

Theorem 2: Γ is normally generated by a single 2-torsion.

Theorem 1: Γ acts faithfully and minimally on the simple circle S_S^1 . Any nontrivial action of Γ on S^1 is semi-conjugate to this one. $S^1 \xrightarrow{\rho(g)} S^1$

Rays

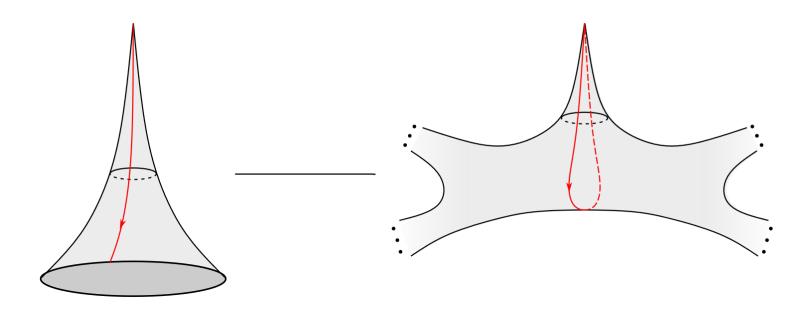
S finite type curve graph $\mathcal{C}(S)$ $\mathcal{C}(S)$ is hyperbolic (Masur–Minsky)

$$S = \Omega$$

ray graph \mathcal{R}
 \mathcal{R} is hyperbolic
(Bavard,
Aramayona–Fossas–Parlier)

Rays

Fix a hyperbolic structure on Ω . conical cover Ω_C and conical circle S_C^1 .



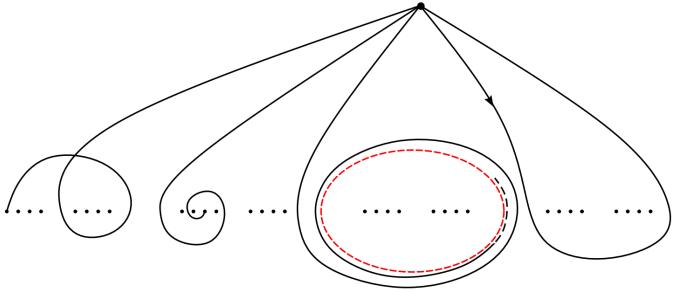
Rays

Fix a hyperbolic structure on Ω .

conical cover Ω_C and conical circle S_C^1 .

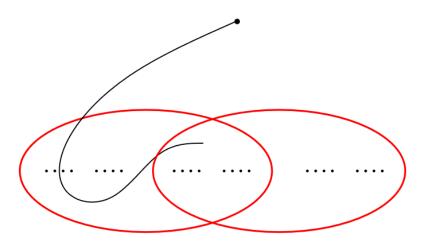
Simple rays = $R \sqcup L \sqcup X$, Γ -invariant and closed.

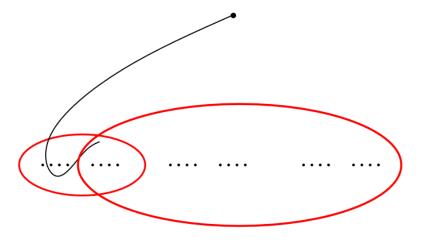
R= short rays, L= lassos, X= long rays. one orbit one orbit uncountably many orbits, related to $\partial \mathcal{R}$



Unique minimal set

Lemma: For any $x \in S_C^1$, the orbit closure $\overline{\Gamma x} \supset R$.



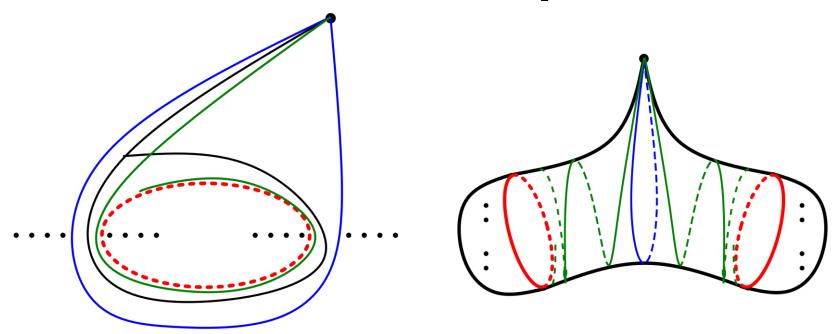


Unique minimal set

Lemma: The unique minimal set $\bar{R} = R \sqcup X$ is a Cantor set on S_C^1 , complementary intervals $\leftrightarrow L$.

Key points:

• each $\ell \in L$ is isolated in the simple set.



Unique minimal set

Lemma: The unique minimal set $\bar{R} = R \sqcup X$ is a Cantor set on S_C^1 , complementary intervals $\leftrightarrow L$.

Key points:

- each $\ell \in L$ is isolated in the simple set. $\Longrightarrow R \cup X$ closed.
- the simple set is nowhere dense. $\implies R \cup X$ nowhere dense.
- can approximate each $x \in X$ by short rays.

$$\implies \bar{R} = R \cup X, \text{ perfect.}$$

The simple circle

Collapse complementary intervals to points $S_C^1 \leadsto S_S^1$ simple circle

- \bullet Γ acts faithfully and minimally on S_S^1
- has an uncountable orbit R.
- \bullet has a countable orbit L.

 \implies every subgroup of Γ has a faithful action on S^1 with a countable orbit.

$PSL_2\mathbb{R}$ does not embed

Theorem 3: Any countable subgroup of Homeo⁺(S^1) embeds into Γ . Not true if uncountable, e.g. $PSL_2\mathbb{R}$.

Prop.: Every faithful action of $PSL_2\mathbb{R}$ on S^1 is standard.

Tool: The bounded Euler class $\operatorname{eu}_b^{\rho} \in H_b^2(G)$. $\rho: G \to \operatorname{Homeo}^+(S^1), \leadsto \operatorname{eu}_b^{\rho} = \rho^* \operatorname{eu}_b$.

- (Ghys) eu_b^{ρ} determines the action up to semi-conjugacy.
- $eu_b^{\rho} = 0$ iff the action has a global fixed point.
- $H_b^2(G) \hookrightarrow H^2(G)$ if G is uniformly perfect. $\operatorname{eu}_b^\rho \mapsto \operatorname{eu}^\rho$, $\operatorname{eu}^\rho = 0$ iff action lifts to \mathbb{R} .

$PSL_2\mathbb{R}$ does not embed

Theorem 3: Any countable subgroup of Homeo⁺(S^1) embeds into Γ . Not true if uncountable, e.g. $PSL_2\mathbb{R}$.

Prop.: Every faithful action of $PSL_2\mathbb{R}$ on S^1 is standard.

Proof sketch:

- any $g \in PSL_2\mathbb{R}$ is a commutator, so uniformly perfect.
- $H^2(\mathrm{PSL}_2\mathbb{R};\mathbb{Z}) \cong \mathbb{Z}$, generated by eu^{std} .
- $eu^{\rho} = \lambda \cdot eu^{std}$, $\lambda = \pm 1$ (torsion+rigid subgroup).

Then show the action ρ is transitive, so no countable orbit.

Countable subgroups

Theorem 3: Any countable subgroup of Homeo⁺(S^1) embeds into Γ . Not true if uncountable, e.g. $PSL_2\mathbb{R}$.

Proof: Denjoy's blow-up construction + suspension.

Rigidity

Theorem 1: Γ acts faithfully and minimally on the simple circle S_S^1 . Any nontrivial action of Γ on S^1 is semi-conjugate to this one (up to a change of orientation).

Proof sketch: Fix an action ρ without fixed points.

$$r$$
 short ray, $\Gamma_r := \operatorname{Stab}(r)$.

Step 1: Each Γ_r acts with a global fixed point.

 S^1

Fix
$$r_0$$
, pick $P(r_0) \in \text{Fix}(\Gamma_{r_0})$. Let $P(r) = \rho(g).P(r_0)$ if $r = g.r_0$.

 $R \longrightarrow S_S^1$ fixed by $\Gamma_r = g\Gamma_{r_0}g^{-1}$
 $P \mid \Gamma$ -equivariant

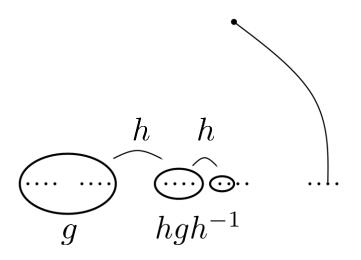
Step 2: P preserves the circular order and is injective.

Step 1 details

r short ray, $\Gamma_r := Stab(r)$, $\Gamma_{(r)} \subseteq \Gamma_r$ (id on a night of r).

Step 1: Each Γ_r acts with a global fixed point.

• Any circle action of $\Gamma_{(r)}$ has a fixed point $(H_b^2(\Gamma_{(r)}) = 0)$. uniformly perfect (suspension trick) $g = a_g(ha_g^{-1}h^{-1})$ $H^k(\Gamma_{(r)}) = 0$ (Mather's suspension argument)



$$a_g = g \cdot (hgh^{-1}) \cdot (h^2gh^{-2}) \cdots$$

Step 1 details/structural results

r short ray, $\Gamma_r := Stab(r), \Gamma_{(r)} \subseteq \Gamma_r \ (id \text{ on a nbhd of } r).$

Step 1: Each Γ_r acts with a global fixed point.

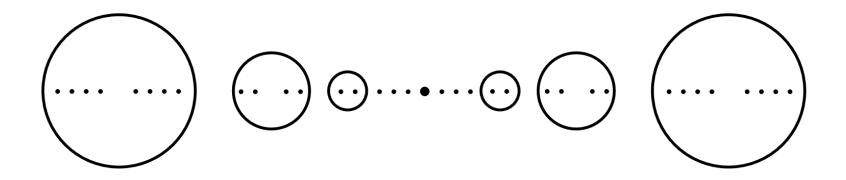
- Any circle action of $\Gamma_{(r)}$ has a fixed point $(H_b^2(\Gamma_{(r)}) = 0)$.
- $\Gamma_r = \langle \Gamma_{(r)}, \Gamma_{(s)} \cap \Gamma_r \rangle$ if $\operatorname{end}(r) \neq \operatorname{end}(s)$. $\Gamma_{(s)} \cap \Gamma_r$ preserves $\operatorname{Fix}(\Gamma_{(r)})$ and has fixed points.
- $\Gamma = \langle \Gamma_r, \Gamma_s \rangle$ if end $(r) \neq$ end(s).

Cor: Γ is generated by elements supported in disks. use this + suspension to prove Theorem 2.

Generated by torsion

Theorem 2: Γ is normally generated by a single 2-torsion.

Proof: The suspension trick.



Step 2 details

Step 2: P preserves the circular order and is injective.

- $P(r) \neq P(s)$ if $end(r) \neq end(s)$ since $\Gamma = \langle \Gamma_r, \Gamma_s \rangle$.
- $Or(P(r_1), P(r_2), P(r_3)) = 1$ if $Or(r_1, r_2, r_3) = 1$ and r_1, r_2, r_3 are disjoint with distinct endpoints.

goal: remove "disjoint".

The filtration

Induction using a filtration associated to an "equator" γ . equator: embedded circle containing K. $R_0(\gamma) \subset R_1(\gamma) \subset \cdots \subset R$, each is a Cantor set each step adds Cantor to each complementary interval

The induction

