Ultrasonics 54 (2014) 809-820

journal homepage: www.elsevier.com/locate/ultras

Contents lists available at ScienceDirect

Ultrasonics

A finite volume method and experimental study of a stator ~
of a piezoelectric traveling wave rotary ultrasonic motor

V. Bolborici **, F.P. Dawson ", M.C. Pugh ¢

CrossMark

m

2 University of Texas at El Paso, Department of Electrical and Computer Engineering, 500 W. University Ave., El Paso, TX 79968, USA
b University of Toronto, Department of Electrical and Computer Engineering, Toronto, ON M5S 3G4, Canada

€University of Toronto, Department of Mathematics, Toronto, ON M5S 2E4, Canada

ARTICLE INFO ABSTRACT

Article history:

Received 1 May 2013

Received in revised form 9 October 2013
Accepted 12 October 2013

Available online 21 October 2013

Piezoelectric traveling wave rotary ultrasonic motors are motors that generate torque by using the fric-
tion force between a piezoelectric composite ring (or disk-shaped stator) and a metallic ring (or disk-
shaped rotor) when a traveling wave is excited in the stator. The motor speed is proportional to the
amplitude of the traveling wave and, in order to obtain large amplitudes, the stator is excited at frequen-

cies close to its resonance frequency. This paper presents a non-empirical partial differential equations
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model for the stator, which is discretized using the finite volume method. The fundamental frequency
of the discretized model is computed and compared to the experimentally-measured operating frequency
of the stator of Shinsei USR60 piezoelectric motor.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Since the invention of the piezoelectric traveling wave rotary
ultrasonic motor there have been many attempts to model the sta-
tor of the motor based on experimental results and on pure analyt-
ical concepts. In [1], the authors present an empirical equivalent
circuit model for the motor of a piezoelectric traveling wave rotary
ultrasonic motor. The model consists of two equivalent RLC circuits
(one for each phase). The equivalent inductor represents the mass
effect of the ceramic body and metal ring, the equivalent capaci-
tance represents the spring effect of the ceramic body and metal
ring, and the resistance represents the losses that occur within
the ceramic body and metal ring. Simulations of the model are
not presented.

In [2], an empirical equivalent circuit for the stator of a piezo-
electric traveling wave rotary ultrasonic motor is presented. The
equivalent circuit allows for the estimation of the motor’s charac-
teristics. The equivalent circuit takes into account the external
forces applied to the stator: the normal force of the rotor against
the stator and the torque-generating tangential friction force be-
tween the stator and the rotor. The motor model allows for the
estimation of the motor’s characteristics in two operation modes:
constant voltage and constant current operation. However, the

* Corresponding author. Tel.: +1 915 747 5822.
E-mail addresses: vbolborici@utep.edu (V. Bolborici), dawson@ele.utoronto.ca
(E.P. Dawson), mpugh@math.utoronto.ca (M.C. Pugh).

0041-624X/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ultras.2013.10.005

model has some limitations. For example, the model does not cal-
culate the operating frequency of the motor; rather, it is deter-
mined experimentally and then given to the model as an input
parameter. Built into the model is the fact that the amplitude of
the feedback signal is proportional to the speed of the motor and
that the speed drop is proportional to the applied torque, but the
proportionality coefficients need to be determined experimentally.

In [3,4], the authors present an enhanced empirical equivalent
circuit model of a piezoelectric traveling wave rotary ultrasonic
motor. The paper highlights the importance of the electromechan-
ical coupling factor responsible for the energy conversion in the
motor. Also, the model includes the effect of temperature on the
mechanical resonance frequency; this effect is important for mo-
tors that operate for a long period of time. Simulations of the mod-
el show agreement with experimental measurements in the range
of torques and frequencies of interest.

A drawback of empirical approaches is that such models must
be developed in conjunction with experiments on the system of
interest. And so a question about an operating regime that is out-
side the regime of the original experiments (and hence of the mod-
el) must be studied experimentally rather than with the model. In
contrast, “first principles” models allow for computer explorations
of a wide operating regime. These explorations can then be vali-
dated against experiment.

One type of first principles model uses Hamilton’s principle. For
example, the model in [5] uses the constitutive equations of piezo-
electricity, Hamilton’s principle, the strain-displacement relations,
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and the assumed vibration modes of the stator. This yields two ma-
trix equations: an actuator equation and a sensor equation. The
stator model developed in this paper is a very good tool for the de-
sign and optimization of this type of stators for a variety of geom-
etries and materials. In [6] the authors present a model of the
stator of a traveling wave ultrasonic motor based on the first-order
shear deformation laminated plate theory applied to annular sub-
domains of the stator. The model uses the constitutive equations of
piezoelectricity, Hamilton’s principle, and the Ritz Method to ob-
tain approximate solutions for the modified Hamilton’s principle.
The overall accuracy of the model is comparable to that of finite
element methods (FEM) and is within 4.5% as compared with
experimental data.

The models presented in [5,6] are very good for simulation but
can be hard to use in developing a controller for a practical appli-
cation. Specifically, the models that arise from Hamilton’s principle
or from FEM approaches have the unknowns multiplied by either
an inertia matrix or by a mass matrix, making a direct use of the
model by a controller more difficult.

This paper proposes a method of modeling the stator of a piezo-
electric traveling wave rotary ultrasonic motor by building upon the
finite volume method (FVM) model of a unimorph plate presented in
[7]. The goal of the modeling is to approximate the operating fre-
quency of the stator of the motor; simulations of the model are com-
pared to experimental measurements of an ultrasonic motor Shinsei
USR60. These experiments show that the operating frequency of the
real stator was within 1% by the simulations of the model.

In the FVM model presented here, the region of interest is divided
into subregions and the unknowns are the average displacement of
each subregion. Such averaged quantities are often exactly what a
sensor or controller needs to work with. The FVM approach then
yields a system of first-order ordinary differential equations that
the average displacements satisfy. These differential equations can
be interpreted directly as equivalent circuits and used by a
controller.

It was shown in [8,9,7] that the finite volume method has the
following strengths when it comes to modeling piezoelectric
devices:

(a) The FVM ordinary differential equations can be interpreted
intuitively in terms of coupled circuits that represent the piezo-
electric system [8]. These circuits can then be implemented
using schematic capture packages. This makes it easier to inter-
face the FVM model of the piezoelectric system with control
circuits.

(b) The flux continuity is preserved across the boundaries
exactly thus allowing complex boundary conditions to be han-
dled with more precision. Therefore, this method may be more
suitable to model an ultrasonic motor because the operating
principle of the motor is based on the friction mechanism that
takes place at the common contact boundary between the sta-
tor and the rotor.

2. Modeling an ultrasonic motor stator

The stator of an ultrasonic motor Shinsei USR60 is studied. The
stator is made of a piezoelectric ring bonded with an adhesive to a
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Fig. 1. Ultrasonic motor stator structure.
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metal ring (see Fig. 1). The adhesive layer is thin compared to the
metal and the piezoelectric rings. For this reason, the metal and
piezoelectric rings are modeled, but the adhesive layer is not.
The piezoelectric ring is divided into two semicircular sectors A
and B, as shown in Fig. 2. Each sector contains eight “active re-
gions” labeled by “+” or “~" in Fig. 2. The “+” or “~” labellings re-
flect the fact that the regions have opposite polarizations. This
means that if a positive DC voltage is applied to both regions, the
“+” regions will expand and the “—* regions will contract; seen
from the side, the resulting deformation will look like that shown
in Fig. 3a. All eight active regions of sector A are electrically con-
nected by a common electrode; the supply voltage is applied
simultaneously to all eight. As a result, when a positive DC voltage
is applied to sector A, each of the eight active regions in sector A
will deform as shown in Fig. 3a. Alternatively, when a negative
DC voltage is applied to sector A, the active regions in sector A will
deform as shown in Fig. 3b. Because sector A is coupled to the rest
of the stator, the entire stator will deform.

If an AC voltage is applied to sector A at the operating fre-
quency, then a standing wave with nine wavelengths will form
in the entire stator. Similarly, the eight active regions of sector B
are also electrically connected by their own common electrode
and so, if either sector A or sector B is driven with an AC voltage
at the operating frequency then a standing wave forms. However,
if they are driven with equal-amplitude AC voltages that are at
the same operating frequency but are out of phase by 90° then a
traveling wave can form, allowing the motor to operate as a two-
phase motor. The 90° phase difference is determined by the length
of the passive region at the top of the rotor (see Fig. 2); it is a quar-
ter wavelength. The goal of the modeling in this article is to find a
relatively simple model that will identify this operating frequency
of the stator.

Each + pair of active regions corresponds to one ninth of the to-
tal ring and, for modeling simplicity, the stator is viewed as having
nine “wavelength sectors”—the extra wavelength’s worth of pas-
sive material at the top and bottom of the ring shown in Fig. 2 is
replaced by a wavelength sector. In this way, the full stator can
be modeled as nine identical wavelength sectors, each one coupled
to its flanking sectors (see Fig. 2). Fig. 4a shows a sector of width
ws. Its outer length (marked /) is 27R/9 and its inner length is
27nr/9 where R and r are the outer and inner radii, respectively. Be-
cause each wavelength sector behaves the same way, rather than

A< > B

Fig. 2. The piezoelectric ring has an external diameter of 60 mm, an internal
diameter of 45 mm, and a thickness of 0.5 mm. The regions A and B are composed of
active regions denoted by “+” and “—". There are nine wavelengths: 9/ = 2nR where
R is the outer radius. The regions A and B are separated by a passive region of width
/4 at the top and a passive region of width 34/4 at the bottom. The bottom region is
used as a sensor, generating a voltage proportional to the amplitude of the traveling
wave.
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Fig. 3. Deformation modes for which the eigenfrequencies are calculated.

modeling nine wavelength sectors in a ring configuration, a single
wavelength sector is studied with periodic boundary conditions.
Another modeling simplification is made by modeling the
curved wavelength sector of Fig. 4 with a straightened equivalent
rectangular sector, as shown in Fig. 5. Such a straightening approx-
imation will affect the eigenmodes and the distribution of the
eigenfrequencies. The eigenmodes of the wavelength sector in-
volve Bessel functions while those of the rectangular sector are
based on sin and cos. As a result, the eigenfrequencies will be dif-
ferent. The less curved the wavelength sector, the more valid this
straightening approximation will be. The key quantities in the
approximation are the angle subtended (//(27R)) and the ratio of
the sector width to the radius (wg/R) in Fig. 4. The smaller these
quantities the better the straightening approximation will be.
The inner radius of the USR60 motor is only three times the width
of the stator ring and there are only nine sectors and so the
straightening approximation is somewhat crude. But one should
not forget that there are other factors in the model that also intro-
duce modeling errors. For example, the assumption of a constant,
unidirectional electric field, as discussed in Section 3.
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Fig. 4. A wavelength sector of the ultrasonic motor stator.
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Fig. 4c shows five regions in the piezoelectric material of the
one wavelength stator sector: three passive regions of average
lengths 1, Ip2, and I3, and two active (“+” or “—") regions of aver-
age lengths l;; and ;. Measurements of the Shinsei USRG0 stator
yield:

I = I3 = 0.00035m, I, =0.0007 m
lt =l = 0.00846 m, w; = 0.0075 m
h, = 0.0005m, hy =0.00255m, h, =0.001225m

The inner and outer radii are 0.0225 m and 0.03 m respectively; the
average radius is 0.02625 m. The average length of a sector is then
27(.02625)/9 ~.01832 m. The lengths [y1, lp2, Ips, ls1, and Il were
based on this length, using measurements of the angles subtended
by the active and passive regions.

The rectangular sector shown in Fig. 5 is taken to scale with the
wavelength sector shown in Fig. 4 with physical dimensions:

ls =0.01832m = lp] + lpz + lp?, + lal + IaZ

ws = 0.0075 m
hy, = 0.0005 m
h, = 0.00255 m

The wavelength sector has ten “teeth”, each of height h; (see
Fig. 4b) but the rectangular sector does not (see Fig. 5b). To deter-
mine the importance of these teeth, exploratory COMSOL simula-
tions were performed. As expected, when the deformations are
relatively small the teeth have little effect on the overall rigidity
of the material—the tips of the teeth do not touch one another be-
cause of the gaps between the teeth (see [8] for the simulations).
For this reason, the teeth are not included in the equivalent rectan-
gular sector—the metal is taken to be height h;, rather than h;, + h..
Although the teeth are not included in the geometry, their mass is
included. This is done by using a larger, “effective” density so that
the metal plate of height h,, of Fig. 5 has the same mass as a copper
plate of height h,, + h,. The mass density for copper is 8700 kg/m>
yielding an equivalent mass density of 12,881 kg/m? for the equiv-
alent rectangular sector.

As shown in Fig. 4, the piezoelectric part of the wavelength sec-
tor has five subregions: two active and three passive. To determine
the stress in the material from the strain and the electric field, a
stiffness (or elasticity) matrix and an electromechanical coupling
matrix are used (see Eq. (4)). These matrices are determined by
material properties, including the polarization. All five subregions
have the same stiffness matrix. The active regions have polariza-
tions that differ by 180° and so their electromechanical coupling
matrices are the same. The passive regions in Fig. 4 are not polar-
ized; their electromechanical coupling matrices are different from
the active regions’ matrices, resulting in internal boundaries. Also,
the passive region at the top in Fig. 2 and the passive regions flank-
ing the sensor at the bottom are not polarized; the passive region
containing the sensor is. In both Figs. 2 and 4c, these internal
boundaries are represented by the segments that connect the inner
radius to the outer radius.
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Fig. 5. The equivalent rectangular sector for a wavelength sector of the ultrasonic
motor stator.

The modeling goal is to find the operating frequency of the sta-
tor: the frequency at which each wavelength sector deforms as
shown in Fig. 3. This frequency corresponds to a particular eigen-
frequency of the wavelength sector shown in Fig. 4. These eigenfre-
quencies do not depend on the imposed electric field and so are not
affected by the values of the electromechanical matrices. For this
reason, a simplifying assumption is made in the modeling: the en-
tire stator is approximated by a single polarized piezoelectric
material, with the same polarization. As a result there are no inter-
nal boundaries and, for the purposes of an eigenfrequency study,
the entire straightened region shown in Fig. 5 is assumed to have
the same polarization.

In [7], the authors present an FVM model for a unimorph piezo-
electric plate. The model presented here builds upon that model
with the following modifications: the curved sector of the stator is
approximated by a straightened one, periodic boundary conditions
are applied at the ends, and the teeth of the stator are neglected
and a larger effective density is used to reflect the lost mass.

3. The partial differential equations model

The finite volume model of the stator is obtained by discretizing
a partial differential equations model of the stator. The partial dif-
ferential equation model of the stator describes the local behavior
of the piezoelectric material and metal. It is obtained by combining
Newton'’s second law for local behavior in a bulk material with the
constitutive equation of piezoelectricity, the boundary conditions,
and Maxwell’s equation for electrostatics without sources or sinks
of free charge.

The dynamics of the piezoelectric material are determined from
Newton'’s second law [10]

2
p?)T?ZPUHZV'T (1)

the absence of sources or sinks of charge
V-(eS+¢E)=0 (2)

and appropriate boundary conditions. Above, p is the mass density
of the piezoelectric material and

ux,y,z.t)

v(x,y,z,t) 3)
w(x,y,z,t)

u(X~,y7Z~, t) =

where u, v, and w are the local displacements from rest in the x, y,
and z directions respectively. T(x,y,z,t) is the stress; S(x,y,z,t) is the
strain; E(x,y,z,t) is the electric field; the electromechanical coupling
matrix is e and &5 is the dielectric matrix, evaluated at constant
strain. The actuator equation

T=ctS - e'E (4)

gives the stress as a function of the strain and the electric field, at
each point in the material, at each moment in time. The superscript
tin (4) denotes the transpose, c is the stiffness or elasticity matrix.

There are three types of boundary conditions for the equivalent
rectangular sector of Fig. 5. At the ends, where one sector meets the
flanking sectors, the displacements at the left end are assumed to
equal the displacements at the right end. This corresponds to peri-
odic boundary conditions for the model of a single sector. At the
external, free boundaries (at the top, bottom, front and back in
Fig. 5) there are zero stress boundary conditions. At the internal
boundary, where the metal and piezoelectric meet, the limiting va-
lue of the displacements as taken from within the metal are as-
sumed to equal the limiting value of the displacements as taken
from within the piezoelectric material.

The final modeling assumption is that the piezoelectric material
is assumed to be thin in the z direction (see Fig. 5b) and the electric
field E is assumed to be constant and unidirectional:

E(x,y,z,t) = (0,0,E;)". (5)

In this case, Egs. (1) and (4) determine u.

Eq. (1) is valid for both piezoelectric material and metal. In this
equation p is the mass density of the piezoelectric material, when
the equation describes the local behavior of the piezoelectric mate-
rial, and is the mass density of the metal, when the equation de-
scribes the local behavior of the metal. The actuator Eq. (4) can
also be used for both piezoelectric material and metal. For piezo-
electric material, this equation contains both terms on the right
hand side. c® is the stiffness matrix and e is the electromechanical
coupling matrix of the piezoelectric material. For metal, Eq. (4)
loses the second term on the right hand side as the metal does
not have piezoelectric properties (e = 0). In this equation cE is the
stiffness matrix of metal.

4. Numerical results

In [9], a thin piezoelectric plate was studied using the finite vol-
ume method (FVM) to discretize Egs. (1) and (4). When using the
FVM to discretize the partial differential equations, one starts by
dividing the domain into “control volumes” and averaging the par-
tial differential equations over each one. This yields a system of or-
dinary differential equations for each volume. The structure of the
system of ordinary differential equations is different for internal
volumes (all six faces are internal to the metal or to the piezoelec-
tric), face volumes (one face is at an external boundary or at the me-
tal/piezo interface), edge volumes (two faces are at an external
boundary or at the metal/piezo interface), and corner volumes
(three faces are at an external boundary or at the metal/piezo
interface). In [9], the ordinary differential equations for internal
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volumes (37)-(39) (also shown as Egs. (B.1), (B.2) and (B.3) in
Appendix B) are presented.

At face volumes that have faces at external boundaries, the or-
dinary differential equations (37)-(39) of [9] (Egs. (B.1), (B.2) and
(B.3) in Appendix B) are supplemented by boundary equations
which reflect the boundary conditions. The equivalent rectangular
sector of Fig. 5 has four free faces at which there are zero-stress
boundary conditions; here, the boundary equations (165)-(176)
of [9] (Egs. (B.10)-(B.20) and (B.21) in Appendix B) are used with
stresses t;=0 fori=1, ..., 6. In addition, there are two “external”
boundaries that are identified with one another to reflect the pres-
ence of identical equivalent rectangular sectors on each side. To do
this, boundary equations. (49)-(51) and (162)-(164) of [9]
(Egs. (B.4)-(B.8) and (B.9) in Appendix B) are replaced by periodic
conditions

Uw = Ug, VUw = Vg, Ww = WE. (6)

The first equation means that the x-displacement at the left face of
Fig. 5b, uy, equals the x-displacement at the right face of Fig. 5b, up.
The second and third equations are interpreted similarly.

In [7], the FVM approach was extended to model a unimorph
structure: a metal plate bonded to a piezoelectric plate. Such a
structure has an internal boundary where the metal and piezoelec-
tric material meet. The control volumes were chosen to flank this
internal boundary: one control volume would be fully in the metal
with a face in the internal boundary and on the other side of the
internal boundary would be a second control volume that is fully
within the piezoelectric material. The boundary conditions at this
internal boundary then appear in the FVM model via boundary
equations; for example, see (7)-(9) in [7] (Egs. (B.44)-(B.49) and
(B.50) in Appendix B). These boundary equations are used at the
internal boundary of the equivalent rectangular sector.

4.1. The system of equations

The system of equations for the equivalent rectangular sector
shown in Fig. 5 consists of the ordinary differential Egs. (37)-(39)
(Egs. (B.1), (B.2) and (B.3) in Appendix B) with boundary equations
(165)-(200) from [9] (Egs. (B.10)-(B.42) and (B.43) in Appendix B)
(witht;=0fori=1..., 6), the boundary equations (7)-(9) from [7]
(Egs. (B.44)-(B.49) and (B.50) in Appendix B), and the boundary
Eq. (6). This results in a system of ordinary differential equations
of the form

%X =A:1X+B; (7)
where A; is the system matrix, vector By includes the forces due the
electric field and the boundary conditions and the vector X contains
the averaged displacements and the averaged velocities for each fi-
nite volume. The system of Eq. (7) can then be solved using a pro-
gram such as Matlab (The MathWorks Inc., Natick, MA).

4.2. Eigenfrequency analysis

An eigenfrequency analysis of the FVM model (7) is performed.
This consists of calculating the system matrix A; and finding its
eigenvectors and eigenvalues. For a given eigenvector the displace-
ment is reconstructed. Deformations for which half of the control
volumes move up and half move down (e.g. Fig. 3) are identified’
and the one with the lowest eigenvalue is used as a diagnostic; it
corresponds to the fundamental frequency for that particular
discretization.

1 Specifically, deformations for which there are two points with zero displacement
are identified.

Table 1

The fundamental eigenfrequency for the equivalent rectangular sector, calculated
with the proposed FVM model for different numbers of control volumes, the
corresponding degrees of freedom (DoF), the deviation from the best available
approximation of the eigenfrequency (39,119 Hz), and the simulation time.

Volumes DoF Freq.(Hz) Approx.rel. error (%) Simulation time (s)
12 72 52,326 33.76 1.7
36 216 45,661 16.72 8.5
72 432 42919 9.71 22
120 720 41,748 6.72 53
180 1080 41,084 4.93 105
252 1512 40,709 4.06 209
500 3000 40,565 3.70 635
720 4320 40,391 3.25 1304
1008 6048 40,289 2.99 2449
1260 7560 40,238 2.86 3629
1536 9216 40,204 2.77 5547
1836 11,016 40,178 2.71 7284
2508 15,048 40,138 2.60 13,865
3240 19,440 40,080 2.46 17,256
12,400 74,400 39,626 1.30 45,537
25,920 155,520 39,446 0.84 216,154

Table 1 presents this fundamental frequency for different dis-
cretizations. Table 2 presents the analogous results found using
COMSOL's FEM discretization of the partial differential Egs. (1),
(2), and (4) for the same equivalent rectangular sector (see
Fig. 5). Both finite volume Matlab and finite element COMSOL sim-
ulations have been performed on a Supermicro Superserver com-
puter with two Intel Xeon E5645 2.4 GHz processors and 192 GB
RAM. In comparing the runtimes for the FEM and FVM discretiza-
tions, one must bear in mind that COMSOL is an optimized indus-
trial product in which the implementation of the modeling
equations has been optimized.

COMSOL is computing the electric field in addition to the dis-
placements while the FVM model is taking the electric field as an
imposed constant (see (5)) and so the two models will converge
to slightly different limits as the discretizations get finer and finer.
For the purposes of computing an (approximate) relative error for
the FVM model, the eigenfrequency provided by the best-resolved
COMSOL run (39,119 Hz) is taken as the “true” value. The small rel-
ative error of the FVM model (see Table 1) shows that the uniform,
unidirectional assumption on E (see (5)) was not an extreme one.

5. Experimental results

To validate the numerical results of Section 4, experiments have
been conducted with a stator of an ultrasonic motor USR60, shown
in Fig. 6, using the test setup shown in Fig. 7. The rotor has been
removed from the motor and the brake decoupled, allowing the
stator to be studied in isolation. A motor driver supplies voltages
to the semicircular sectors A and B of the stator; the response is
measured by the built-in sensor located in the stator (see Fig. 2).
Not having access to a laser vibrometer, the deflections of the sta-
tor have not been measured.

Three different tests have been performed to measure the fre-
quency response of the stator. In the first test, sector A was driven
with an AC voltage; sector B was passive. This driving resulted in a
standing wave response of the stator. In the second test, sector B
was driven while sector A was passive, again resulting in a stand-
ing wave. In the third test, both sectors A and B were driven at the
same frequency. However, they are driven with a 90° phase shift,
resulting in a traveling wave response.

The frequency of the driving voltage was swept between 20 kHz
and 60 kHz. For each driving frequency, the sensor produces a volt-
age which is then rectified and filtered by a circuit built into the
motor by the manufacturer. The resultant peak voltage is then



814 V. Bolborici et al./Ultrasonics 54 (2014) 809-820

Table 2

The fundamental eigenfrequency for the equivalent rectangular sector, simulated in
COMSOL for different numbers of elements in the mesh, the corresponding degrees of
freedom (DoF), the deviation from the best approximation of the available eigenfre-
quency (39,119 Hz), and the simulation time.

Number of mesh DoF Freq. Rel. error  Simulation
elements (Hz) (%) time (s)

88 767 43,592 1143 3
143 1075 42,575 8.83 4
378 2658 40,557 3.68 5
906 5836 39,883 1.95 8
1646 9933 39,635 1.32 13
2827 16,135 39,498 0.97 21
4950 25,067 39,423 0.78 32
8146 41,838 39,346 0.58 56
24,970 115,525 39,256 0.35 191
50,044 226,967 39,222 0.26 454
93,897 417,719 39,166 0.12 938
133,065 584,797 39,149 0.08 1559
220,090 954,811 39,132 0.03 2958
327,391 1,404,816 39,119 5133

Fig. 6. The stator of a piezoelectric traveling wave rotary ultrasonic motor USR60.
In order to measure the resonance frequencies of the stator in isolation, the rotor of
the motor has been removed.

Sensor
Ultrasonic Voltage
Motor
Stator
<
Supply
L ] Voltages
~~ ~~7
Motor Driver  /
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Fig. 7. The test setup contains a motor driver that can supply the stator with
sinusoidal voltages at various frequencies, amplitudes, and phases. The piezoelec-
tric motor is mounted on a platform and is coupled to a hysteresis brake not shown
here. In order to measure the resonance frequencies of the stator in isolation, the
brake has been decoupled and the rotor has been removed.

relayed to the motor driver (see Fig. 7). In Fig. 8, peak voltage is
plotted as a function of driving frequency for each of the three
tests. The larger the peak voltage, the larger amplitude of the wave
in the rotor. Resonance frequencies correspond to peaks in Fig. 8.
All three tests yield similar results; this is expected because the
phase-A and phase-B sectors have the same dimensions (see
Fig. 2).
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Fig. 8. The frequency response of the stator of the ultrasonic motor USR60, shown
in Fig. 6. These plots represent the peak voltage of the motor’s sensor versus the
frequency of the supply voltages.

Table 3

The best simulated approximation of the available eigenfrequency (39,119 Hz), the
experimental results for eigenfrequency for a piezoelectric motor Shinsei USR60, and
the relative errors.

Method Eigenfrequency (Hz) Rel. error (%)
Theoretical FEM 39,119 -0.71
Theoretical FVM 39,446 0.11
Experimental 39,400

Of the peak frequencies shown in Fig. 8, the manufacturer has
selected the frequency of 39.4 kHz as the operating frequency of
the stator. It corresponds to the frequency at which each of the
eight wavelength sectors (see Fig. 4) has a deformation like that
shown in Fig. 3. Repeating the tests with the rotor mounted on
top of the stator [8], this operating frequency increases to 41-
42 kHz. This is because the pressure applied by the rotor on the
stator increases the stator’s rigidity.

Table 3 compares the operating frequency found experimen-
tally to the fundamental frequency found using the FVM model
and the FEM model. Although a variety of approximations went
into both models, the experimental results show that they are
not extreme—the simulation results are within 1% of the experi-
mental measurement.

6. Conclusions

This paper presents a method to determine the operating fre-
quency of the stator of a USR60 piezoelectric motor, by modeling
the stator with the finite volume method. Simulation results using
the proposed model, and also using finite element commercial
software, are presented together with experimental results. The fi-
nite element simulations compute the deformation and electric
field simultaneously. The finite volume simulations assume the
electric field to be uniform and unidirectional and compute the
resulting deformation. The small relative error between the finite
volume model and the finite element one shows that the uniform,
unidirectional assumption on E is not an extreme one. The funda-
mental frequencies found by the finite element and finite volume
models are within 1% of the experimental measurements of the
operating frequency.

Using a numerical model to determine the operating frequency
of the stator is useful in the design process of a new motor when
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one wants to study various possible designs before the motor is
built. This will save the designer time and money and will help
with the optimization of the motor. Another potential advantage
of the finite volume model presented here is that the finite volume
method handles surface forces easily. This would allow the model
to be easily integrated with a contact model and a rotor model.
This would then allow one to determine in real time the operating
frequency of the motor, which also depends on the contact be-
tween the rotor and the stator, and control the motor using an
adaptive control technique by supplying the motor with voltages
at frequencies close to the operating frequency. Last but not least,
the finite volume model yields ordinary differential equations that
can be interpreted intuitively in terms of coupled circuits that
represent the stator’s dynamics. These circuits can then be imple-
mented using schematic capture packages. This makes it easier to
interface the finite volume model of the stator with control
circuits.

Appendix A. Material properties

The simulations were done for the piezoelectric material PZT-
5H. This is not the piezoelectric material found in the Shinsei
USR60 motor. The PZT-5H material was chosen as a good fit for
the confidential data that the Shinsei corporation provided.

A.1. Piezoelectric material PZT-5H [11]

Mass density p = 7500 kg/m>

The entries of the dielectric matrix &5 are &1 = &5, = 1704.40 and
e33=1433.61 F/m.

The entries of the stiffness matrix & are c¢j1=cy=
1.272 x 10" N/m?, c33=1.174 x 10" N/m?, c44 = 2.298 x 10'° N/m?,
C55=2.298 x 10'°N/m?, cg5=2.347 x 10'°N/m?, c12 =Coq =8.021 x
1010 N/mz, and C13=C31=C3=C32= 8.467 x 1010 N/m2

The entries of the electromechanical coupling matrix e are:
€31 =e3,=— 6.622 N/(Vm), e33=23.24 N/(Vm), and €15 =€34 =
17.03 N/(Vm).

The coefficients have a tolerance of +20%:

http://www.sinocera.net/en/piezo_material.asp

A.2. Copper [11]

Mass density is p = 8700 kg/m>, Young modulus E =110 x 10° N/
m?, and Poisson ratio v=0.35. Hence cy;=Cy =C33=C12=C13=Cyq =
C3=C31=C32= VE/(] — Vz) and C44 = C55 = C6 = E/(2 + 2\))

Appendix B. Finite volume equations

The following equations, their coefficients, and figures that
show the distances used in the equations are the FVM discretiza-
tion presented in [9,7]. They are provided in this appendix in order
to make this a stand-alone paper. Egs. (B.1), (B.2) and (B.3) model
the dynamics of the (average) displacement of a volume: u, = (up,
Up, Wp).

d*u
?2)) = —Piup + & ug + Wiuw + Nquy + S1us + Frup + Ryug
+ Bi1(vn — ©s) 4+ Bi2(Une — Use) — Bis(Unw — Usw)
+ B14(ve — vw) + Bis(Une — Unw) — Bis(Use — Usw)
+ B17(Wr — W) + B1g(Wre — Wge) — Bio(Wrw — Wrw)
+ B11o(Wg — W) + B111 (Wre — Wew) — B112(WRe — Wrw)

(B.1)

i)

dtz" = —Py0p + &0 + Wavw + Naviy + Sy 05 + Fy g
+ Ryvg + Bo1 (U — Us) + Bao (Une — Usg) — Bas (Unw
— Usw) + Baa(Ug — uw) + Bas(Une — Unw) — Bas(Use
— Usw) + Ba7(Wr — Wg) + Bag(Weny — Wrn) — Bao (Wrs
— Wgs) + Ba1o(Wn — Ws) + Ba11 (Wen — Wes)
— By12(Wgn — Wrs) (B.2)

dZWp

dtz = —P3wp + &3wg + Wiwy, + N3wy + Ss3ws + Fawg

+ RsWg + B31 (Ur — Ug) + B3 (Ure — Uge) — Bas(Upw — Urw)

+ Bsa(Uug — Uw) + Bss(Upe — Upw) — B3s(Ure — Urw)

+ B37(¥F — R) + B3g(Usn — Urn) — B3g(Wps — Ugs)

+ B310(n — ¥s) + B311 (Uen — Vrs) — Ba12(Urn — Ugs) (B.3)
The quantities ug, v, etc. refer to displacements at the faces of a vol-
ume; see Figs. B.9-B.14 for the notation. These quantities are
approximated using displacements of neighboring volumes and

using boundary conditions; see Eqgs. (B.4)-(B.49) and (B.50) and
Figs.B.15-B.22. The coefficients are given in Eqs. (B.51-B.137).

0
Ug = Up — Ap1 (Une — Usg) — Ap(Wre — Wre) + AgsEs + ?X]Etl (B.4)
OxE
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Ce6
_ OxE
Wg = Wp — Aps (Upg — Uge) + afs (B.6)

1)
Uw = Up + Aw1 (Onw — Usw) + Aw2 (Wew — Wrw) — AwsEs +%f1

(B.7)
19
vw = Up + Awa(Unw — Usw) +%f6 (B.8)
19
Wy = Wp +AW§ (uFW — URw) +¥t5 (Bg)
55
OyN
Uy = Up —AN1 (I/NE — VNW) —+ af@ (B]O)
0
UN = Up — An2 (Ung — Unw) — ANz (Winy — Wi ) +AnaEs +aw;lf2 (B.11)
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Fig. B.9. Control volumes and boundary displacements placed at the Front-West or
Front-East boundaries.
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Fig. B.14. Control volumes and boundary displacements placed at the South-West
or South-East boundaries.
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Fig. B.13. Control volumes and boundary displacements placed at the North-West
or North-East boundaries.

Fig. B.16. An yz slice through the center of the interior control volume.
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Fig. B.22. The metal-piezoelectric material interface in the yz plane at the South
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