TILINGS DEFINED BY AFFINE WEYL GROUPS

E. MEINRENKEN

ABSTRACT. Let W be a Weyl group, presented as a reflection group on a Euclidean vector
space V, and C C V an open Weyl chamber. In a recent paper, Waldspurger proved that
the images (id —w)(C) for w € W are all disjoint, with union the closed cone spanned by the
positive roots. We prove that similarly, the images (id —w)(A) of the open Weyl alcove A, for
w € W? in the affine Weyl group, are disjoint and their union is V.

1. INTRODUCTION

Let W be the Weyl group of a simple Lie algebra, presented as a crystallographic reflection
group in a finite-dimensional Euclidean vector space (V,(-,-)). Choose a fundamental Weyl
chamber C' C V, and let D be its dual cone, i.e. the open cone spanned by the corresponding
positive roots. In his recent paper [2], Waldspurger proved the following remarkable result.
Consider the linear transformations (id —w): V' — V defined by elements w € W.

Theorem 1.1 (Waldspurger). The images Dy, := (id —w)(C), w € W are all disjoint, and
their union is the closed cone spanned by the positive roots:

D= U Dy

weWw

For instance, the identity transformation w = id corresponds to Djq = {0} in this decom-
position, while the reflection s, defined by a positive root « corresponds to the open half-line
Dsa = R>0 Q.

The aim of this note is to prove a similar result for the affine Weyl group W?. Recall that
W2 = A x W where the co-root lattice A C V acts by translations. Let A C C be the Weyl
alcove, with 0 € A.

Theorem 1.2. The images V,, = (id —w)(A), w € W? are all disjoint, and their union is V :

V= U Vi

weWa

Figure 1 is a picture of the resulting tiling of V' for the root system Go. Up to translation
by elements of the lattice A, there are five 2-dimensional tiles, corresponding to the five Weyl
group elements with trivial fixed point set. Letting s, s denote the simple reflections, the
lightly shaded polytopes are labeled by the Coxeter elements s;s2, s2s1, the medium shaded
polytopes by (s152)%, (s251)?, and the darkly shaded polytope by the longest Weyl group
element wo = (s152)°.

One also has the following related statement.

1



2 E. MEINRENKEN

FIGURE 1. The tiling for the root system Go

Theorem 1.3. Suppose S € End(V') with ||S|| < 1. Then the sets Vi = (S—w)(A), we W?
are all disjoint, and their closures cover V:

v= | 7.
wewa

Note that for S = 0 the resulting decomposition of V' is just the Stiefel diagram, while for
S = 7id with 7 — 1 one recovers the decomposition from Theorem 1.2.

The proof of Theorem 1.2 is in large parts parallel to Waldspurger’s [2] proof of Theorem
1.1. We will nevertheless give full details in order to make the paper self-contained.

Acknowledgments: I would like to thank Bert Kostant for telling me about Waldspurger’s
result, and the referee for helpful comments. 1 also acknowledge support from an NSERC
Discovery Grant and a Steacie Fellowship.

2. NOTATION

With no loss of generality we will take W to be irreducible. Let 98 C V' be the set of roots,
{a1,...,aq} C MR a set of simple roots, and
C={z| (vi,z) >0, i=1,...,1}
the corresponding Weyl chamber. We denote by ap.x € R the highest root, and ag = —aunax
the lowest root. The open Weyl alcove is the I-dimensional simplex defined as

A= {z| (o, x) +0;0>0,i=0,...,l}.

Its faces are indexed by the proper subsets I C {0,...,l}, where A is given by inequalities
(a,z) + ;0 > 0 for i ¢ I and equalities (o;,x) + d;0 = 0 for ¢ € I. Each A; has codimension
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|I]. In particular, A; = Ag; are the codimension 1 faces, with «; as inward-pointing normal
vectors. Let s; be the affine reflections across the affine hyperplanes supporting A;,

sit w1 — (g, )+ 6i0)ay, i=0,...,1,

where o) = 2a;/(a;, ;) is the simple co-root corresponding to a;. The Weyl group W is
generated by the reflections si,...,s;, while the affine Weyl group W? is generated by the

affine reflections sq,...,s;. The affine Weyl group is a semi-direct product
We=AxW
where the co-root lattice A = Z[ay, ..., o] C V acts on V by translations. For any w € W?,

we will denote by w € W its image under the quotient map W? — W ie. w(x) = w(z) —w(0),
and by A\, = w(0) € A the corresponding lattice vector.

The stabilizer of any given element of Ay is the subgroup W} generated by s;, i € I. It
is a finite subgroup of W?, and the map w — @ induces an isomorphism onto the subgroup
W generated by §;, i € I. Recall that Wy is itself a Weyl group (not necessarily irreducible):
its Dynkin diagram is obtained from the extended Dynkin diagram of the root system R by
removing all vertices that are in 1.

3. THE TOP-DIMENSIONAL POLYTOPES

For any w € W?, the subset
Vi = (id —w)(4)
is the relative interior of a convex polytope in the affine subspace ran(id —w). Let
Wieg = {w € W?| (id —w) is invertible}
and Wieg = W N WS, so that w € Wi, <& w € Wieg. The top dimensional polytopes Vi,
are those indexed by w € W&, , and the faces of these polytopes are V,, 1 := (id —w)(A;). For

reg’

w € Wyeg and @ =0,...,1 let
Nopj 1= (id —@71)71(052').

Lemma 3.1. For all w € W2

reg’

the open polytope V., is given by the inequalities
<nw,i> 5 + )‘w> + 5i,0 >0

fori=0,...,l. The face V1 = (id —w)(Ay) is obtained by replacing the inequalities for i € I
by equalities.

Proof. For any & = (id —w)z € V, we have
(o, 2) = ((id = 1) Loy, (id —0)x) = (N4, (id —0)2) = (N, € + M),

since w~! is the transpose of @ under the inner product {-,-). This gives the description of V,,
and of its faces Vj, 1. O

i€{0,...,l}. Then
Vw,i = Voi Cran(id —o)

with o = ws;. In particular, o is an affine reflection, and n, ; is a normal vector to the affine
hyperplane ran(id —o). One has (nqy i, o) = 1.

Lemma 3.2. Suppose w € WZ

reg’
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Proof. For any orthogonal transformation g € O(V') and any reflection s € O(V), the dimension
of the fixed point set of the orthogonal transformations g, gs differ by £1. Since w fixes only
the origin, it follows that & has a 1-dimensional fixed point set. Hence ran(id —o) is an affine
hyperplane, and o is the affine reflection across that hyperplane. Since s; fixes A;, we have
Vw,i = (id —w)(4;) = (id —ws;)(A;) = V,; C ran(id —o). By definition n,,; — ﬁ)_lnw’i = q;.
Hence

=21, ) + {0, @) = i — il P = [l = (|07 nw,l|* = |Inwl* = 0. 0

The following Proposition indicates how the top-dimensional polytopes V,,; are glued along
the polytopes of codimension 1.

Proposition 3.3. Let o € W? be an affine reflection, i.e. ran(id —o) is an affine hyperplane.
Consider

(1) ceVo\ | Vor.

|1]>2

Then there are two distinct indices 1,7 € {0,...,1} such that § € V,; NV, ;. Furthermore,
w = os; and w' = osy are both in Wrig, so that Vi, i = Vi and Vi 4 = Vi, and the polytopes

Vi, Vi are on opposite sides of the affine hyperplane ran(id —o).

Proof. Let n be a generator of the 1-dimensional subspace ker(id —¢). Then n is a normal
vector to ran(id —o). The pre-image (id —o)~1(£) C V is an affine line in the direction of n.
Since & € V, this line intersects A, hence it intersects the boundary dA in exactly two points
x,2'. By (1), z, 2" are contained in two distinct codimension 1 boundary faces A;, Ay. Since n
is ‘inward-pointing’ at one of the boundary faces, and ‘outward-pointing’ at the other, the inner
products (n,«;), (n,q;) are both non-zero, with opposite signs. Let w = os; and w' = osy.
We will show that w € W, i.e. @ € Wieg (the proof for w' is similar). Let z € V with wz = 2.
Then 6~z = §;2, so
(id =57 1)(2) = (id =5;)(2) = (o, 2)a;’.

The left hand side lies in ran(id —&), which is orthogonal to n, while the right hand side is
proportional to «;. Since (n,«;) # 0 this is only possible if both sides are 0. Thus z is fixed
under &, and hence a multiple of n. On the other hand we have («a;, z) = 0, hence using again
that (n,a;) # 0 we obtain z = 0. This shows ker(id —w) = 0.

As we had seen above, n,, ; is a normal vector to ran(id —¢), hence it is a multiple of n. By
Lemma 3.2, it is a positive multiple if and only if (n, ;) > 0. But then (n, ;) < 0, and so i
is a negative multiple of n. This shows that V,,, V,, are on opposite sides of the hyperplane
ran(id —o). O

Consider the union over W C W?,

(2) X = Ve

weW
Thus U, cps Vo = Upea (A + X). The statement of Theorem 1.2 means in particular that X
is a fundamental domain for the action of A. Figures 2 and 3 give pictures of X for the root
systems Bg and Ga. The shaded regions are the top-dimensional polytopes (i.e. the sets V,, for

id —w invertible), the dark lines are the 1-dimensional polytopes (corresponding to reflections),
and the origin corresponds to w = id.



FIGURE 2. The set X for the root system B

FicURE 3. The set X for the root system Go

Proposition 3.4. (a) The sets A +int(X), A € A are disjoint, and [ Jyca A+ X =V. (b) The
open polytopes Vi, for w € W2, are disjoint, and Uwewag Ve=V.

reg

Proof. Since the collection of closed polytopes V., w € Whyeg is locally finite, the union

Uw ewa, V. is a closed polyhedral subset of V. Proposition 3.3 shows that a point £ € V,, ; can-
not contribute to the boundary of this subset unless it lies in (J,cyya U| 11>2 Vo,1- We therefore
see that the boundary has codimension > 2, and hence is empty since Uweng V. is a closed
polyhedron. This proves UwGWﬁeg Vi =V, and also [Jycp (A + X) =V with X as defined in
(2). Hence the volume vol(X) (for the Riemannian measure on V' defined by the inner product)
must be at least the volume of a fundamental domain for the action of A:

(3) vol(X) > [W|vol(A).
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On the other hand, vol(V,,) = vol((id —w)(A)) = det(id —w) vol(A), so

(4) vol(X) < Z vol(V,,) = vol(A Z det(id —w) = |W|vol(A)
weW weW

where we used the identity [1, p.134] >, . det(id —w) = |[W]. This confirms vol(X) =
|[W|vol(A). Tt follows that the sets A + int(X) are pairwise disjoint, or else the inquality (3)
would be strict. Similarly that the sets V,,, w € Wiy are disjoint, or else the inequality (4)
would be strict. (Of course, this also follows from Waldpurger’s Theorem 1.1 since Cy, C D,,.)
Hence all V,,, w € W, are disjoint. O

To proceed, we quote the following result from Waldspurger’s paper, where it is stated in
greater generality [2, “Lemme”].

Proposition 3.5 (Waldspurger). Given w € W and a proper subset I C {0,...,l} there exists
a unique q € Wy such that

ker(id —wq) N{z € V| {a;,z) > 0 for alli € I} # 0.
Following [2] we use this to prove,

Proposition 3.6. Fvery element of V' is contained in some V,,, w € W?:

(5) U =W

Proof. Let £ € V be given. Pick w € Wi, with £ € Vo, and let I C {0,...,1} with £ € V,, 1.
Then z := (id —w) 1 (¢) € Ay is fixed under W#. Using Proposition 3.5 we may choose § € W
and n € V such that

(a) wq(n) =mn,

(b) {(ai,n) >0 foralliel
Taking ||n|| sufficiently small we have x +n € A, and

(id —wq)(z + n) = (id —wq)(z) + (id —wg)n = (id —w)(z) = &.
This shows § € V. O

4. DISJOINTNESS OF THE SETS A\ + X

To finish the proof of Theorem 1.2, we have to show that the union (5) is disjoint. Wald-
spurger’s Theorem 1.1 shows that all D,, = (id —w)(C), w € W are disjoint. (We refer to his
paper for a very simple proof of this fact.) Hence the same is true for V,, C D,,, w € W. It
remains to show that the sets A + X, A € A, with X given by (2), are disjoint.

The following Lemma shows that the closure X = Uwew V. only involves the top-dimensional
polytopes.

Lemma 4.1. The closure of the set X is a union over Wieg,

Furthermore, int(X) = int(X).
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Proof. We must show that for any ¢ € V,, o € W \Wieg, there exists w € Wyeg such that
¢ € V. Using induction, it is enough to find o’ € W such that £ € Vs and dim(ker(id —o’)) =
dim(ker(id —o)) — 1. Let m: V — ker(id —o)* = ran(id —¢) denote the orthogonal projection.
Then id —o restricts to an invertible transformation of 7(V), and V, is the image of 7(A)
under this transformation. We have

!
m(A) = m(04) = | Jn(4),
=0

and this continues to hold if we remove the index i = 0 from the right hand side, as well as

all indices ¢ for which dim7(A;) < dim 7 (V). That is, for each point z € w(A) there exists an
index i # 0 such that x € 7(A;), with dim7(4;) = dim7(V). Taking = to be the pre-image
of ¢ under (id —0)|(v), we have £ € V,; with i # 0 and dimV,; = dimran(id —0). Let
o' =o0s; € W. Then V,; = Vs ;, hence dim(ran(id —¢’)) > dimV,,; = dim(ran(id —c¢)), which
shows dimker(id —¢’) < dimker(id —o). By elementary properties of reflection groups, the
dimensions of the fixed point sets of o, ¢’ differ by either +1 or —1. Hence dim(ker(id —o”)) =
dim(ker(id —o)) — 1, proving the first assertion of the Lemma.

It follows in particular that the closure of int(X) equals that of X. Suppose ¢ € int(X).
By Proposition 3.6 there exists A € A with € € A + X. It follows that int(X) meets A\ + X,
and hence also meets A + int(X). Since the A-translates of int(X) are pairwise disjoint (see
Proposition 3.4), it follows that A = 0, i.e. £ € X. This shows £ € X Nint(X) = int(X), hence

int(X) C int(X). The opposite inclusion is obvious. O

Since we already know that the sets A+int(X) are disjoint, we are interested in X'\ int(X) C
0X = X\int(X). Let us call a closed codimension 1 boundary face of the polyhedron X
‘horizontal” if its supporting hyperplane contains V,, o for some w € Wie, and ‘vertical’ if
its supporting hyperplane contains V,,; for some w € Wiyes and i # 0. These two cases are
exclusive:

Lemma 4.2. Let n be the inward-pointing normal vector to a codimension 1 face of X. Then
(n, amax) # 0. In fact, (n,amax) < 0 for the horizontal faces and (n, amax) > 0 for the vertical
faces.

Proof. Given a codimension 1 boundary face of X, pick any point ¢ in that boundary face, not
lying in (J,,cppa UIIIZQ Vi, 1. Let w € Wiee and i € {0,...,1} such that £ € V,;, and ny; is an
inward-pointing normal vector. By Proposition 3.3 there is a unique ¢’ # i such that £ € Vi ;,
where w' = ws;sy. Since V,,, V,, lie on opposite sides of the affine hyperplane spanned by V,, ;,
and ¢ is a boundary point of X, we have w’ € W. Thus one of i, must be zero. If i = 0 (so
that the given boundary face is horizontal) we obtain (1,0, @max) = —(Puw,0, @0) < 0. If &/ =0
we similarly obtain (n,, 0, @max) < 0, hence (1 i, Gmax) > 0. O

Lemma 4.3. Let { € X\int(X). Then there exists a vertical boundary face of X containing €.
FEquivalently, the complement 0X \(X\ int(X)) is contained in the union of horizontal boundary
faces.

Proof. The alcove A is invariant under multiplication by any scalar in (0,1). Hence, the same
is true for the sets V,, for w € W, as well as for X and int(X). Hence, if £ € X\ int(X) there
exists g > 1 such that t£ € X\ int(X) for 1 <t < tg. The closed codimension 1 boundary face
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containing this line segment is necessarily vertical, since a line through the origin intersects the
affine hyperplane {x| (n,,0,2 — &) = 0} in at most one point. O

Proposition 4.4. For any £ € X, there exists € > 0 such that £+ Samax € Int(X) for0 < s < e.

Proof. 1If £ € int(X) there is nothing to show, hence suppose £ € X\ int(X). Suppose first that
¢ is not in the union of horizontal boundary faces of X. Then there exists an open neighborhood
U of € such that UN X = U N X. All boundary faces of X meeting & are vertical, and their
inward-pointing normal vectors n all satisfy (n, amax) > 0. Hence, & + samax € int(U N X) =
int(U N X) C X for s > 0 sufficiently small.

For the general case, suppose that for all € > 0, there is s € (0,€) with £ + Samax € int(X).
We will obtain a contradiction. Since £ is contained in some vertical boundary face, one can
choose t > 1 so that & := t£ € X\ int(X), but £ is not in the closure of the union of horizontal
boundary faces. Given € > 0, pick s € (0,¢) such that £ + fomax & int(X). Since int(X) is
invariant under multiplication by scalars in (0, 1), the complement V'\ int(X) is invariant under
multiplication by scalars in (1, 00), hence we obtain &' + samax € int(X). This contradicts what
we have shown above, and completes the proof. O

Proposition 4.5. The sets A+ X for A € A are disjoint.

Proof. Suppose £ € (A + X) N (N + X). By Proposition 4.4, we can choose s > 0 so that
€+ samax € (A+int(X))N (N +int(X)). Since the A-translates of int(X) are disjoint, it follows
that A = \. (|

This completes the proof of Theorem 1.2. We conclude with some remarks on the properties
of the decomposition V' = (J,,cya V-

Remarks 4.6. (a) The group of symmetries 7 of the extended Dynkin diagram (i.e. the
outer automorphisms of the corresponding affine Lie algebra) acts by symmetries of
the decomposition V' = J,cya Vw, as follows. Identify the nodes of the extended
Dynkin diagram with the simple affine reflections sy, ...,s;. Then 7 extends to a group
automorphism of W?, taking s; to 7(s;). This automorphism is implemented by a
unique Euclidean transformation g: V — V ie. gwg~! = 7(w) for all w € W?. Then g
preserves A, and consequently

9V = glid ~w)(A) = (id ~7(w))(A) = Vi, w € W,

(b) Tt is immediate from the definition that the Euclidean transformation —w: V — V, z +—
—wx takes V-1 into V,,:

—w(Vy-1) = V.

(¢) For any positive root «, let s, be the corresponding reflection. Then (id —s4)(§) =
(a, &), where oV is the co-root corresponding to a. Hence Dy, is the relative interior
of the line segment from 0 to A", where X is the maximum value of the linear functional
€ — {a, &) on the closed alcove A. This maximum is achieved at one of the vertices. Let

@y,..., = be the fundamental co-weights, defined by (a;, @) = d;; for i,j = 1,...,1.

Let ¢; € N be the coefficients of ap,ax relative to the simple roots: qpax = 22:1 C; Q.
Then the non-zero vertices of A are wiv /ci. Similarly let a; € Z>( be the coefficients

of o, so that o = 22:1 a;c;. Then the value of « at the i-th vertex of A is a;/c;, and
A is the maximum of those values. Two interesting cases are: (i) If & = aupax, then all
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a;/c; = 1, and oV = a. That is, the open line segment from the origin to the highest
root always appears in the decomposition. (ii) If @ = ¢, then a; = 1 while all other a;

vanish. In this case, one obtains the open line segment from the origin to %a\-/

T ? '
(d) Every V,, contains a distinguished ‘base point’. Indeed, let p € V be the half-sum of
positive roots, and hY = 1 + (auax, p) the dual Coxeter number. Then p/hY € A, and

consequently p/hY —w(p/h") € V.

5. PROOF OF THEOREM 1.3

The proof is very similar to the proof of Proposition 3.4, hence we will be brief. Each
9 = (S—w)(A) is the interior of a simplex in V', with codimension 1 faces Vu()i») = (S—w)(4,).
As in the proof of Lemma 3.1, we see that

TL(S) — (S _ ﬁ)_l)_lai

W,

is an inward-pointing normal vector to the ¢-th face Vu()i). For § = 0 this simplifies to

0 _ ,
wi WG

© _ _ ()

If w' = ws; we have V(i) = V%) 5o that n'*) and ng)z are proportional. Since My i = Moyl i

w, w’ i) w,i
(5)

(5) is a negative multiple of n,,

wi i As a consequence, we see that

it follows by continuity that n
Vu(,s), Vlg,s) are on opposite sides of affine hyperplane supporting Vu()i) = Vlg*,gz Arguing as in
the proof of Proposition 3.4, this shows that

U 7=
weWw?a

Letting X9 = {J, ey Vu(,s), it follows that V' = UAeA()\—i—Y(S)). Hence vol(X (%)) > [W|vol(A).
But

vol(X(9)) < 3~ vol (S — w)(4))

weW
= vol(A4) ) [det(S — w)|
weW
=vol(A) > det(id —Sw™") = [W|vol(A),
weW

using [1, p.134]. Tt follows that vol(X(%)) = |W|vol(A), which implies (as in the proof of
Proposition 3.4) that all int (VEUS)) = u(,S) are disjoint. This completes the proof.

Remark 5.1. Theorem 1.3, and its proof, go through for any .S in the component of 0 in the set
{S € End(V)| det(S —w) # 0 Vw € W}. For instance, the fact that det(id —Sw™!) > 0 follows
by continuity from S = 0. On the other hand, if e.g. S is a positive matrix with S > 2id, the
result becomes false, since then (cf. [1, p. 134]) >, oy [det(S —w)| = >y det(S —w) =
det(S)|W|.
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