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Abstract. Let G be a compact, simple, simply connected Lie group. A theorem of Freed-
Hopkins-Teleman identifies the level k ≥ 0 fusion ring Rk(G) of G with the twisted equivariant
K-homology at level k + h

∨, where h
∨ is the dual Coxeter number of G. In this paper, we will

review this result using the language of Dixmier-Douady bundles. We show that the additive
generators of the group Rk(G) are obtained as K-homology push-forwards of the fundamental
classes of pre-quantized conjugacy classes in G.

1. Introduction

A classical result of Dixmier-Douady [10] states that the integral degree three cohomology
group H3(X) of a space X classifies bundles of C∗-algebras A → X, with typical fiber the
compact operators on a Hilbert space. For any such Dixmier-Douady bundle A → X, one
defines the twisted K-homology and K-cohomology groups of X as the K-groups of the C∗-
algebra of sections of A, vanishing at infinity:

Kq(X,A) := Kq(Γ0(X,A)), Kq(X,A) := Kq(Γ0(X,A)).

If a group G acts by automorphisms of A, one has definitions of G-equivariant K-groups.
The twisted K-groups have attracted a lot of interest in recent years, mainly due to their

applications in string theory. For the case of torsion twistings, they were pioneered by Donovan-
Karoubi [11] in 1963, while the general case was developed by Rosenberg [36] in 1989. Rosenberg
also gave an alternative characterization ofK0(X,A) as homotopy classes of sections of a bundle
of Fredholm operators; this viewpoint was further explored by Atiyah-Segal [4] (see [6, 43] for
alternative approaches).

One of the most natural examples of an integral degree three cohomology class comes from Lie
theory. LetG be a compact, simple, simply connected Lie group, acting on itself by conjugation.
The generator of H3

G(G) = Z is realized by a G-Dixmier-Douady bundle A → G. Let h∨ be
the dual Coxeter number of G, and k ≥ 0 a non-negative integer (the level). A beautiful result
of Freed-Hopkins-Teleman [13, 14, 15, 16, 17] asserts that the twisted equivariant K-homology
at the shifted level k + h∨ coincides with the level k fusion ring (Verlinde algebra) of G:

(1) KG
0 (G,Ak+h∨) = Rk(G).

Here Rk(G) may be defined as the ring of positive energy level k representations of the loop
group LG, or equivalently as the quotient Rk(G) = R(G)/Ik(G) of the usual representation
ring by the level k fusion ideal. The quotient map R(G) → Rk(G) is realized on the K-
homology side as push-forward under inclusion {e} →֒ G, while the product on Rk(G) is given
by push-forward under group multiplication.
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As a Z-module, the fusion ring Rk(G) is freely generated by the set Λ∗
k of level k weights of

G. In this paper the isomorphism Rk(G) = Z[Λ∗
k] is realized as follows. Given µ ∈ Λ∗

k ⊂ t∗,
(where t is the Lie algebra of a maximal torus), let C be the conjugacy class of the element
exp(µ/k) ∈ G, where the basic inner product is used to identify t∗ ∼= t. We will show that

there is a canonical stable isomorphism between the restriction Ak+h∨|C and the Clifford algebra
bundle Cl(TC). This then defines a push-forward map in twisted K-homology, and the image of
the K-homology fundamental class [C] ∈ KG

0 (C,Cl(TC)) under the push-forward is exactly the
generator of Rk(G) labeled by µ. This is parallel to the fact that the generators ofR(G) = Z[Λ∗

+]
are obtained by geometric quantization of the coadjoint orbits through dominant weights. In
fact, as shown in [15] the generators of Rk(G) can also be obtained by geometric quantization
of coadjoint orbits of the loop group of G. Hence, our modest observation is that this can also
be carried out in finite-dimensional terms. In a forthcoming paper with A. Alekseev, we will
discuss more generally the quantization of group-valued moment maps [1] along similar lines.

A second theme in this paper is the construction of a canonical resolution of Rk(G) in the
category of R(G)-modules,

(2) 0 −→ Cl
∂−→ Cl−1

∂−→ · · · ∂−→ C0
ǫ−→ Rk(G) −→ 0

where l = rank(G). In more detail, let {0, . . . , l} label the vertices of the extended Dynkin
diagram of G. For each non-empty subset I ⊂ {0, . . . , l}, let GI ⊂ G be the maximal rank
subgroup whose Dynkin diagram is obtained by deleting the vertices labeled by I. These groups

have canonical central extensions 1 → U(1) → ĜI → GI → 1 (described below). Let R(ĜI)k
denote the Grothendieck group of all ĜI -representations for which the central circle acts with
weight k. Define

(3) Cp =
⊕

|I|=p+1

R(ĜI)k.

The differentials ∂ in (2) are given by holomorphic induction maps relative to the inclusions

ĜI →֒ ĜJ for J ⊂ I. As we will explain, the chain complex (C•, ∂) arises as the E1-term

of a spectral sequence computing KG
• (G,Ak+h∨), and the exactness of (2) implies that the

spectral sequence collapses at the E2-term. Since Rk(G) is free Abelian, there are no extension

problems, and one recovers the equality KG
0 (G,Ak+h∨) = Rk(G) as R(G)-modules, and hence

also as rings.

This article does not make great claims of originality. In particular, I learned that a very
similar computation of the twisted equivariant K-groups of a Lie group had appeared in the
article Thom Prospectra for loop group representations by Kitchloo-Morava [25]. The argument
itself may be viewed as a natural generalization of the Mayer-Vietoris calculation forG = SU(2),
as explained by Dan Freed in [13]. Independently, the chain complex had been obtained by
Christopher Douglas (unpublished), who used it to obtain information about the algebraic
structure of the fusion ring Rk(G).



3

Acknowledgements. I would like to thank Nigel Higson, John Roe and Jonathan Rosenberg
for help with some aspects of analytic K-homology, and Nitu Kitchloo for his patient explana-
tions of [25]. I also thank Christopher Douglas, Dan Freed and Reyer Sjamaar for very helpful
discussions.

Contents

1. Introduction 1
2. Review of twisted equivariant K-homology 3
2.1. Dixmier-Douady bundles 3
2.2. Dixmier-Douady bundles related to central extensions 5
2.3. Twisted K-homology 6
3. The Dixmier-Douady bundle over G 8
3.1. Pull-back to the maximal torus 9
3.2. The family of central extensions T̂(t) 9
3.3. Simplicial description 10
3.4. The centralizers GI and their central extensions 10
3.5. Construction of the Dixmier-Douady bundle A → G 12
4. Conjugacy classes 13
4.1. Pull-back to conjugacy classes 13
4.2. Pre-quantization of conjugacy classes 13
4.3. The h∨-th power of the Dixmier-Douady bundle 15
4.4. Freed-Hopkins-Teleman 17
4.5. Quantization of conjugacy classes 18
4.6. Twisted K-homology of the conjugacy classes 19
5. Computation of KG

•
(G,Ak+h

∨

) 20

5.1. The spectral sequence for KG
•

(G,Ak+h
∨

) 21
5.2. The induction maps in terms of weights 21
5.3. Fusion ring 23
5.4. A resolution of the R(G)-module Rk(G) 24
5.5. Proof of Theorem 5.6 25
Appendix A. Relative Dixmier-Douady bundles 28
Appendix B. Review of Kasparov K-homology 29
References 30

2. Review of twisted equivariant K-homology

Throughout this paper, all Hilbert spaces H will be taken to be separable, but not necessarily
infinite-dimensional. All (topological) spaces X will be assumed to allow the structure of a
countable CW-complex (respectively G-CW complex, in the equivariant case).

2.1. Dixmier-Douady bundles. [10, 35, 36] For any Hilbert space H, we denote by U(H)
the unitary group, with the strong operator topology. Let K(H) be the C∗-algebra of compact
operators, that is, the norm closure of the finite rank operators. The conjugation action of the
unitary group on K(H) descends to the projective unitary group, and provides an isomorphism,
Aut(K(H)) = PU(H). A Dixmier-Douady bundle A → X is a locally trivial bundle of C∗-
algebras, with typical fiber K(H) and structure group PU(H), for some Hilbert space H. That
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is,

(4) A = P ×PU(H) K(H)

for a principal PU(H)-bundle P → X. Dixmier-Douady bundles of finite rank are also known
as Azumaya bundles [26, 27]. A gauge transformation of A is a bundle automorphism inducing
the identity on X, and whose restriction to the fibers are C∗-algebra automorphisms. Equiva-
lently, the group of gauge transformations consists of sections of the associated group bundle,
Aut(A) = P ×PU(H) Aut(K(H)). This group bundle has a central extension

(5) 1 → X × U(1) → Ãut(A) → Aut(A) → 1,

where Ãut(A) = P ×PU(H) U(H).
If A1,A2 are Dixmier-Douady bundles modeled on K(H1),K(H2), then their (fiberwise)

C∗-tensor product A1 ⊗ A2 is a Dixmier-Douady bundle modeled on K(H1 ⊗ H2). Also, the
(fiberwise) opposite Aopp of a Dixmier-Douady bundle modeled on K(H) is a Dixmier-Douady
bundle modeled on K(Hopp). Here the Hilbert space Hopp is equal to H as an additive group,
but with the new scalar multiplication by z ∈ C equal to the old scalar multiplication by z.

A Morita isomorphism between two Dixmier-Douady bundles A1,A2 → X is a lift of the
structure group PU(H2)×PU(Hopp

1 ) of A2⊗Aopp
1 to the group P(U(H2)×U(Hopp

1 )). It is thus
given by a bundle E → X of A2 − A1-bimodules, modeled on the K(H2) − K(H1)-bimodule
K(H1,H2). We will write A1 ≃E A2 if E defines such a Morita isomorphism, and A1 ≃ A2

if A1,A2 are Morita isomorphic for some E . Morita isomorphism is an equivalence relation:
In particular, if A1 ≃E A2 and A2 ≃F A3, then the bundle F ⊗A2

E (a completion of the
algebraic tensor product over A2) defines a Morita isomorphism between A1,A3. The set of
Morita isomorphism classes of Dixmier-Douady bundles over X is an Abelian group, with sum
[A1] + [A2] = [A1 ⊗A2], neutral element 0 = [C], and inverse −[A] = [Aopp].

In particular, a Morita trivialization C ≃E A is a Hilbert space bundle E together with an
isomorphism A ∼= K(E). The obstruction to the existence of a Morita trivialization is given by
the Dixmier-Douady class1 [10, 35]

DD(A) ∈ H3(X).

The Dixmier-Douady class descends to a group isomorphism between Morita isomorphism
classes of Dixmier-Douady bundles A → X and H3(X).

Example 2.1. Let V → X be an oriented Euclidean vector bundle of rank k, and let Cl(V ) → X
be the complex Clifford algebra bundle. If k is even, the bundle Cl(V ) is a bundle of matrix
algebras, and hence is a Dixmier-Douady bundle. A Morita trivialization

C ≃S Cl(V )

is equivalent to the choice of a spinor module S → X, which in turn is equivalent to the choice
of a Spinc structure on V . For details, see Plymen [34]. The canonical anti-involution of Cl(V )
defines an isomorphism Cl(V ) ∼= Cl(V )opp, thus

DD(Cl(V )) = DD(Cl(V )opp) = −DD(Cl(V ))

showing that DD(Cl(V )) is 2-torsion. The Dixmier-Douady class DD(Cl(V )) is the third inte-
gral Stiefel-Whitney class W 3(V ) ∈ H3(X) of the bundle. i.e. the image of w2(V ) ∈ H2(X,Z2)

1We take all cohomology groups with integer coefficients, unless indicated otherwise.
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under the Bockstein homomorphism. In the case of k odd, the even part Cl+(V ) is a Dixmier-
Douady bundle, and a similar discussion applies.

If both E , E ′ → X define Morita isomorphisms A1 ≃ A2, then the bundle of bi-module
homomorphisms L = HomA2−A1

(E , E ′) is a Hermitian line bundle. We will call E , E ′ equiva-
lent if this line bundle is isomorphic to the trivial line bundle. Conversely, if E is a Morita
isomorphism then so is E ′ = E ⊗ L, for any line bundle L. Thus, if A1,A2 have the same
Dixmier-Douady class, then the equivalence classes of Morita isomorphisms A1 ≃E A2 are a
principal homogeneous space (torsor) over H2(X,Z). (In the example A = Cl(V ), this is the
usual twist of Spinc-structures by line bundles.)

Given a compact Lie group G acting on X, one may similarly define G-equivariant Dixmier-
Douady bundles. All of the above extends to this equivariant setting: In particular, there is
a G-equivariant Dixmier-Douady class DDG(A) ∈ H3

G(X), which classifies G-Dixmier-Douady
bundles up to G-equivariant Morita isomorphisms. The extension of the Dixmier-Douady
theorem to the G-equivariant case was proved by Atiyah-Segal [4].

Still more generally, one can also consider Z2-graded G-Dixmier-Douady bundles A → X.
Here, isomorphisms and tensor products are understood in the Z2-graded sense, and the bi-
modules in the definition of Morita isomorphism are Z2-graded. We continue to denote by
DDG(A) the Dixmier-Douady class of A as an ungraded bundle. If DDG(A) = 0, so that
C ≃E A, there is an obstruction in H1(X,Z2) for the existence of a compatible Z2-grading on
E . Hence, the map from Morita isomorphism classes of Z2-graded G-Dixmier-Douady bundles
to those of ungraded G-Dixmier-Douady bundles is onto, with kernel H1(X,Z2). See Parker
[32] and Atiyah-Segal [4] for details.

2.2. Dixmier-Douady bundles related to central extensions. We assume that G is com-
pact and connected. Then H1

G(pt) = 0, while H2
G(pt) is the group of G-equivariant line bundles

over a point, or equivalently H2
G(pt) = Hom(G,U(1)). The group H3

G(pt) is realized as the
isomorphism classes of central extensions of G by U(1),

(6) 1 → U(1) → Ĝ→ G→ 1.

For any such extension there is an associated G-equivariant line bundle L = Ĝ ×U(1) C → G

from which Ĝ is recovered as the unit circle bundle. The group structure is encoded in an
isomorphism

Mult∗ L ∼= pr∗1 L⊗ pr∗2 L

where Mult : G×G→ G is group multiplication, and pri are the two projections. For any l ∈ Z,

the l-th power Ĝ(l) of the extension is defined in terms of the l-th power of the corresponding
line bundle. More generally one defines products of central extensions of G by U(1) in terms of
the tensor products of the corresponding line bundles. The group of gauge transformations of

a given central extension Ĝ (i.e. group automorphisms covering the identity on G) is H2
G(pt) =

Hom(G,U(1)).
From the interpretation via Dixmier-Douady bundles, the identification of H3

G(pt) with iso-
morphism classes of central extensions may be seen as follows: Given a G-equivariant Dixmier-
Douady bundle A → pt, the action of G defines a group homomorphism G → Aut(A), and
hence a central extension of G by pull-back of (5) (in the case X = pt). Conversely, given a

central extension Ĝ, choose a unitary representation Ĝ → U(E) where the central circle U(1)
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acts by scalar multiplication. Then K(E) → pt is a G-Dixmier-Douady bundle with the pre-
scribed class in H3

G(pt). Note that we may take E to be of finite rank, reflecting that H3
G(pt)

is torsion. (Recall that Hp
G(pt,R) = Hp(BG,R) = 0 for p odd.)

Suppose X is a connected space, with H1(X) torsion-free, and with the trivial action of
G. The Kuenneth theorem [38, Chapter 5.5] for H•

G(X) = H•(X × BG) gives a direct sum
decomposition,

H3
G(X) = H3(X) ⊕ (H1(X) ⊗H2

G(pt)) ⊕H3
G(pt).

For any G-Dixmier-Douady bundle A → X, we obtain a corresponding decomposition of
DDG(A). The first component is the non-equivariant class DD(A). The last summand is
the class of the central extension of G, defined by the homomorphism G → Aut(Ax0

) at any
given base point x0 ∈ X. To describe the middle summand, note that the family of actions
G→ Aut(Ax) defines a family of central extensions, by pull-back of (5),

1 → U(1) → Ĝ(x) → G→ 1.

For any x′ ∈ X, there exists an isomorphism Ĝ(x) → Ĝ(x′) of central extensions, unique up

to Hom(G,U(1)) ∼= H2
G(pt). Since the latter group is discrete, it follows that the family

Ĝ(x) carries a flat connection: Any path from a base point x0 to x defines an isomorphism

Ĝ := Ĝ(x0) → Ĝ(x), depending only on the homotopy class of the path. We therefore obtain

a holonomy homomorphism τ : π1(X;x0) → H2
G(pt), hence an element of H1(X) ⊗H2

G(pt) ⊂
H3

G(X). This element is identified with the corresponding component of DDG(A).

Remark 2.2. Any element ofH1(X)⊗H2
G(pt) is realized in this way. Indeed, let H = L2(G) with

the left-regular representation of G. The homomorphism τ : π1(X) → H2
G(pt) = Hom(G,U(1))

defines a unitary action of π1(X) on H, where λ ∈ π1(X) acts as pointwise multiplication
by the function τ(λ). The actions of G and π1(X) commute up to a scalar. The bundle A =

X̃×π1(X)K(H) associated to the universal covering X̃ → X is a G-equivariant Dixmier-Douady

bundle, with DDG(A) the prescribed class in H1(X) ⊗H2
G(pt). Note that the component in

H3(X) is zero, since non-equivariantly A = K(E) for E = X̃ ×π1(X) H.

2.3. Twisted K-homology. The input for the twisted equivariant K-homology of a G-space
X is a Z2-graded G-Dixmier-Douady bundle A → X. From now on, we will usually omit
explicit mention of the Z2-grading (which may be trivial), with the understanding that all
tensor products are in the Z2-graded sense, isomorphisms should preserve the Z2-grading, and
so on.

Given A → X, the space A = Γ0(X,A) of continuous sections of A vanishing at infinity is
a (Z2-graded) G− C∗-algebra, with norm ||s|| = supx∈X ||sx||Ax

. Following J. Rosenberg [36],
we define the twisted equivariant K-homology and K-cohomology groups as the equivariant
C∗-algebra K-homology and K-cohomology groups of A:

KG
q (X,A) := Kq

G(Γ0(X,A)), Kq
G(X,A) := KG

q (Γ0(X,A)).

In this paper, we will mostly work with the K-homology groups. See the appendix for a quick
review of the K-homology of C∗-algebras, and some examples. We list some basic properties
of the K-homology groups.



7

(i) Morita isomorphisms. Any Morita isomorphism A1 ≃E A2 of G-Dixmier-Douady
bundles over X induces an isomorphism in K-homology,

KG
q (X,A1) ∼= KG

q (X,A2).

(ii) Push-forwards. The morphisms in the category of G-Dixmier-Douady bundles (X,A)
are the equivariant C∗-algebra bundle maps A1 → A2 for which the induced map on the
base f : X1 → X2 is proper. Any such morphism induces a morphism of G−C∗-algebras
f∗ : Γ0(X2,A2) → Γ0(X1,A1), hence a push-forward in K-homology

KG
q (f) : KG

q (X1,A1) → KG
q (X2,A2).

In this way KG
• becomes a covariant functor, invariant under proper G-homotopies.

(iii) Excision. For any closed, invariant subset Y ⊂ X, with complement U = X\Y , there
is a long exact sequence2

· · · → KG
q (Y,A|Y ) → KG

q (X,A) → KG
q (U,A|U ) → KG

q−1(Y,A|Y ) → · · ·

Here the restriction map KG
q (X,A) → KG

q (U,A|U ) is induced by the C∗-algebra mor-
phism Γ0(U,A|U ) → Γ0(X,A), given as extension by 0. More generally, one obtains a
spectral sequence for any filtration of X by closed, invariant subspaces.

(iv) Products. Suppose A → X and B → Y are two G-Dixmier-Douady bundles. Then the
exterior tensor product A⊠B → X×Y is again a G-Dixmier-Douady bundle. Its space
of sections is the C∗-tensor product of the spaces of sections of A,B. As a special case
of the Kasparov product in K-homology, one has a natural associative cross product,

KG
• (X,A) ⊗KG

• (Y,B) → KG
• (X × Y, A ⊠ B).

(v) Module structure. The groupKG
0 (pt) is canonically identified with the representation

ring R(G). The ring structure on KG
0 (pt) is defined by the cross product for C ⊠ C →

pt× pt. Similarly, if A → X is a G-Dixmier-Douady bundle, the cross product for
C ⊠ A → pt×X makes KG

• (X,A) into a module over R(G). The maps KG
q (f) are

R(G)-module homomorphisms.

If M is a manifold, one has the Poincaré duality isomorphism relating twisted K-homology
and K-cohomology,

(7) KG
q (M,A) ∼= Kq

G(M,Aopp ⊗ Cl(TM)).

Here Cl(TM) is the Clifford algebra bundle for some choice of invariant metric. For A = C the
Poincaré duality was proved by Kasparov in [21, Section 8]; the result in the twisted case was
obtained by J.-L. Tu [41, Theorem 3.1]. (See also [9, Section 2]). The image of 1 ∈ K0

G(M)
under this isomorphism is Kasparov’s K-homology fundamental class [24]

[M ] ∈ KG
0 (M,Cl(TM)).

Remark 2.3. Note that Cl(TM) is a Dixmier-Douady bundle only if dimM is even. However,
the definition of the twisted K-groups works for arbitrary bundles of C∗-algebras, and the
isomorphism (7) holds in this sense (but with A a Dixmier-Douady bundle). Alternatively, one

2Note that K-homology is analogous to Borel-Moore homology (homology with non-compact supports), rather
than ordinary homology.



8 E. MEINRENKEN

may state the result in terms of Dixmier-Douady bundles, using Cl(TM) = Cl+(TM)⊗Cl(R)
and the isomorphism KG

q+1(M,B) = KG
q (M,B ⊗ Cl(R)).

The following basic computations in twisted equivariant K-homology may be deduced from
their K-theory counterparts, using Poincaré duality.

(a) If M = pt, the twisted K-homology is

KG
0 (pt,A) = R(Ĝ)−1,

whileKG
1 (pt,A) = 0. Here Ĝ is the central extension defined by the action G→ Aut(A),

and R(Ĝ)−1 is the Grothendieck group of Ĝ-representations where the central U(1) acts
with weight −1.

(b) Suppose H is a closed subgroup of G. For any H-Dixmier-Douady bundle B → Y , there
is a natural isomorphism

IG
H : KH

q (Y,B ⊗ Cl(g/h))
∼=−→ KG

q (G×H Y, G×H B),

which is Poincaré dual to the isomorphism Kq
G(G ×H Y, G ×H Bopp) ∼= Kq

H(Y,Bopp).
If Y = pt, the left hand side may be evaluated as in (a). If H ⊂ H ′ ⊂ G are closed
subgroups, we have

IG
H = IG

H′ ◦ IH′

H .

Here we are identifying Cl(g/h) ∼= Cl(g/h′) ⊗ Cl(h′/h), and we are using the canonical
isomorphism H ′ ×H Cl(g/h′) ∼= H ′/H × Cl(g/h′).

(c) Let A → pt be a G-Dixmier-Douady algebra as in (a), and let H be a closed subgroup
of G. Then G ×H A is canonically isomorphic to π∗A, the pull-back under the map
π : G/H → pt. By composing the map IG

H with the push-forward KG
q (π), we obtain an

induction homomorphism,

indG
H : KH

q (pt,A⊗ Cl(g/h)) → KG
q (pt,A).

An H-invariant complex structure on g/h defines a spinor module S, hence a Morita
trivialization C ≃S Cl(g/h). In this case the induction map simplifies to a map

indG
H : KH

0 (pt,A) = R(Ĥ)−1 → KG
0 (pt,A) = R(Ĝ)−1

known as holomorphic induction.

For other examples of calculations of twisted K-groups, see [6, Section 8].

3. The Dixmier-Douady bundle over G

For the rest of this paper, G will denote a compact, simple, simply connected Lie group,
acting on itself by conjugation. Then H3

G(G) is canonically isomorphic to Z. Hence there exists
a G-Dixmier-Douady bundle A → G, unique up to Morita isomorphism, such that DDG(G,A)
corresponds to the generator 1 ∈ Z. Any two bundles A,A′ → G representing the generator are
related by a G-equivariant Morita isomorphism, unique up to equivalence (since H2

G(G) = 0).
The quickest construction of A is as an associated bundle

A = PeG×LeG K(H),

where PeG is the space of based paths in G, LeG = LG ∩ PeG the based loop group, and H a

representation of the standard central extension L̂G of LG where the central circle acts with
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weight −1. The construction given in this Section is essentially just a slow-paced version of this
model for A, avoiding some infinite-dimensional technicalities. Our strategy is to first give a
direct construction of the family of central extensions of the centralizers Gg ⊂ G, corresponding
to their action on A.

3.1. Pull-back to the maximal torus. Let T ⊂ G be a maximal torus of G, with Lie algebra
t. Consider the map

(8) H3
G(G) → H3

T (T )

obtained by first restricting the action to T and then pulling back to T . We will compute the
image of the generator of H3

G(G) under this map. Denote by Λ ⊂ t the integral lattice (i.e. the
kernel of exp: t → T ). Recall that the basic inner product B on the Lie algebra g is the unique
invariant inner product, with the property that the smallest length of a non-zero element λ ∈ Λ
equals

√
2. One of the key properties of B is that it restricts to an integer-valued bilinear form

on Λ. That is, B|t ∈ Λ∗ ⊗ Λ∗ where Λ∗ = Hom(Λ,Z) ⊂ t∗ is the (real) weight lattice.

Proposition 3.1. The map (8) is injective, and takes the generator of H3
G(G) to the element

(9) −B|t ∈ Λ∗ ⊗ Λ∗ ∼= H2
T (pt) ⊗H1(T ) ⊂ H3

T (T )

given by minus the basic inner product.

Proof. Since HG(G) and HT (T ) have no torsion in degree ≤ 3, we may pass to real coefficients,
and hence work with Cartan’s equivariant de Rham model Ωp

G(M) =
⊕

2i+j=p(S
ig∗⊗Ωj(M))G

for the equivariant cohomology HG(M,R) of a G-manifold, with differential (dGα)(ξ) = dα(ξ)−
ι(ξM )α(ξ) where ξM is the vector field defined by ξ ∈ g. Note H3

T (T,R) = t∗⊗H1(T )⊕H3(T,R)

since the T -action on T is trivial. Let θL, θR ∈ Ω1(G, g) be the left-, right- invariant Maurer
Cartan forms. The generator of H3

G(G) is represented by an equivariant de Rham form,

(10) ηG(ξ) =
1

12
B(θL, [θL, θL]) − 1

2
B(θL + θR, ξ).

Its pull-back to T is ι∗T ηG(ξ) = −B(θT , ξ), where θT ∈ Ω1(T, t) the Maurer-Cartan form for T .
Thus

ι∗T [ηG] = [B♭(θT )] ∈ t∗ ⊗H1(T,R) ⊂ H3
T (T,R).

The identification H1(T,R) ∼= t∗ takes [B♭(θT )] to B|t ∈ t∗ ⊗ t∗. �

3.2. The family of central extensions T̂(t). As discussed in Section 2.2, any element of

H2
T (pt)⊗H1(T ) is realized as the holonomy of a family of central extensions. For any µ ∈ Λ∗ let

T → U(1), t 7→ tµ be the corresponding homomorphism. Let the lattice Λ act on T̂ = T ×U(1)
as

Λ × T̂ → T̂ , λ.(h, z) = (h, h−B♭(λ)z).

Then the holonomy of the family

(11) t ×Λ T̂ → t/Λ = T.

is the element B|t. The action of the Weyl group W = N(T )/T on T lifts to an action on this
family, by

(12) w.[(ξ;h, z)] = [(wξ;wh, z)].
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Let T̂(t) be the fiber of (11) over t ∈ T . The choice of ξ with exp ξ = t defines a trivialization

(13) T → T̂(t), h 7→ [(ξ;h, 1)] ∈ t ×Λ T̂ .

Shifting ξ by λ ∈ Λ changes the trivialization by the homomorphism T → U(1), h 7→ h−B♭(λ).

3.3. Simplicial description. It will be useful to have the following equivalent description of
the bundle (11). Let t+ ⊂ t be the choice of a closed Weyl chamber, and let ∆ ⊂ t+ be the
corresponding closed Weyl alcove. Recall that ∆ labels the W -orbits in T , in the sense that
every orbit contains a unique point in exp(∆). Label the vertices of ∆ by 0, . . . , l = rank(G), in
such a way that the label 0 corresponds to the origin. For every non-empty subset I ⊂ {0, . . . , l}
let ∆I denote the closed simplex spanned by the vertices in I, and let WI ⊂ W denote the
subgroup fixing exp(∆I) ⊂ T . Then the maps W/WI × ∆I → T, (wWI , ξ) 7→ w exp ξ define
an isomorphism

(14) T ∼=
∐

I

W/WI × ∆I

/
∼

using the identifications,

(15) (x, ιIJ (ξ)) ∼ (φJ
I (x), ξ), J ⊂ I.

Here ιIJ : ∆J →֒ ∆I is the natural inclusion, giving rise to an inclusion WI →֒WJ of Lie groups
and hence to projection φJ

I : W/WI →W/WJ .
Let λI : WI → Λ be defined by w∆I = ∆I − λI(w). It is a group cocycle, λI(uv) =

λI(u) + u · λI(v), and λJ |WI
= λI for J ⊂ I. We thus obtains compatible actions of wI on

T̂ = T × U(1):

(16) w.(h, z) = (wh, h−B♭(λI (w−1))z).

Lemma 3.2. The isomorphism (14) extends to an isomorphism of the family (11) of central
extensions,

(17)
⋃

t∈T

T̂t = t ×Λ T̂ ∼=
∐

I

(W ×WI
T̂ ) × ∆I

/
∼ .

Proof. The maps T̂ ×∆I → t×Λ T̂ , (h, z; ξ) 7→ [(ξ, h, z)] are WI-equivariant, by the calculation
(for ξ ∈ ∆I , w ∈WI)

w.[(ξ;h, z)] = [(wξ;wh, z)] = [(ξ − λI(w);wh, z)]

= [(ξ;wh, (wh)B
♭ (λI (w))z)] = [(ξ;wh, h−B♭(λI (w−1))z)].

They hence extend to W -equivariant maps (W×WI
T̂ )×∆I → t×Λ T̂ , which glue to the desired

isomorphism. �

3.4. The centralizers GI and their central extensions. For any g ∈ G, we denote by Gg

its centralizer. For any given I, the centralizer Gexp ξ for ξ in the interior of ∆I is independent
of the choice of ξ, and will be denote GI . Equivalently, GI is the closed subgroup of G fixing
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exp ∆I . Each GI is a connected subgroup containing T , and we have WI = NGI
(T )/T . For

J ⊂ I we have GI ⊂ GJ . The description (14) of the maximal torus extends to the group G:

(18) G ∼=
∐

I

G/GI × ∆I

/
∼

using the equivalence relations (15) for the natural maps φJ
I : G/GI → G/GJ for J ⊂ I. In

this Section, we generalize (17) to define a G-equivariant collection of central extensions,
⋃

g∈G

Ĝg
∼=

∐

I

(G×GI
ĜI) × ∆I

/
∼ .

(Of course, this is no longer a fiber bundle.) Our construction of A → G will realize Ĝg as the
opposite of the central extension, defined by action of Gg on the fiber Ag.

Lemma 3.3. There are distinguished central extensions

1 → U(1) → ĜI → GI → 1,

together with lifts îJI : ĜI →֒ ĜJ of the inclusions iJI : GI →֒ GJ for J ⊂ I, such that

(a) Ĝ{0,...,l} = T̂ ,

(b) the lifted inclusions satisfy the coherence condition îKI = îKJ ◦ îJI for K ⊂ J ⊂ I,

(c) the WI-action on T̂ ⊂ ĜI (cf. (16)) is induced by the conjugation action of NGI
(T ).

Proof. Recall π1(GI) = Λ/ΛI , where ΛI is the co-root lattice of GI [8, Theorem (7.1)]. But

λ ∈ ΛI , t ∈ exp(∆I) ⇒ tB
♭(λ) = 1

(see [28, Proposition 5.4]). Hence, for any given t ∈ exp(∆I), there is a homomorphism

̺t,I : π1(GI) = Λ/ΛI → U(1), λ+ ΛI 7→ t−B♭(λ).

We therefore obtain a family of central extensions ĜI,(t) = G̃I ×π1(GI ) U(1) parametrized by
the points of exp(∆I). Since exp(∆I) ∼= ∆I is contractible, we may use the flat connection on

the family of central extensions (cf. Section 2.2) to identify all ĜI,(t). The resulting ĜI has the
desired properties. In particular, if J ⊂ I and t ∈ exp(∆J) ⊂ exp(∆I), the homomorphism ̺t,I

is given by the inclusion π1(GI) → π1(GJ) followed by ̺t,J . This defines an inclusion ĜI,(t) →֒
ĜJ,(t), compatible with the flat connection and (hence) satisfying the coherence condition. Fix

ξ ∈ ∆ with expT ξ = t. The inclusion of T̂ = T × U(1) into ĜI
∼= ĜI,(t) is explicitly given as

(19) iI : (expT ζ, z) 7→ [(exp eGI
ζ, e−2π

√
−1B(ξ,ζ)z)],

for ζ ∈ t, z ∈ U(1). If g ∈ NGI
(T ) lifts w ∈WI , we have

g.[(exp eGI
ζ, e−2π

√
−1B(ξ,ζ)z)] = [(exp eGI

(w.ζ), e−2π
√
−1B(ξ,ζ)z)]

= iI(expT (w.ζ), e−2π
√
−1B(ξ,ζ−w.ζ)z))

= iI(w.(expT ζ, z))

proving that iI is equivariant for the actions of WI and NGI
(T ). �
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Remarks 3.4. (i) The central extension ĜI admits a trivialization if and only if the affine span of

B♭(∆I) ⊂ t∗ contains a point in the weight lattice, Λ∗. In particular, this is the case whenever

0 ∈ I. If G is of type An or Cn, then all ĜI are isomorphic to trivial extensions. (ii) The choice

of any t ∈ exp(∆I) gives a trivialization ĝI
∼= ĝI,(t) = gI × R, by the definition of ĜI,(t) as a

quotient of G̃I × U(1).

3.5. Construction of the Dixmier-Douady bundle A → G. Our construction of the
Dixmier-Douady bundle A → G involves a suitable Hilbert space H.

Lemma 3.5. There exists a Hilbert space H, equipped with unitary representations of the

central extensions ĜI such that (i) the central U(1) acts with weight −1, and (ii) for J ⊂ I the

action of ĜJ restricts to the action of ĜI .

One may construct such an H using the theory of affine Lie algebras. Let L(g) = gC ⊗
C[z, z−1] be the loop algebra associated to g. For all roots α of G, let eα ∈ gC be the corre-
sponding root vector. Then gC

I is spanned by tC together with the root vectors eα such that

〈α, ξ〉 ∈ Z for ξ ∈ ∆I . The map jI : gC
I → L(g) given by ζ 7→ ζ ⊗ 1 for ζ ∈ tC and

eα 7→ eα ⊗ z〈α,ξ〉,

for 〈α, ξ〉 ∈ Z is an injective Lie algebra homomorphism (independent of ξ). Consider the

standard central extension L̂(g) = L(g) ⊕ Cc, with bracket

[ζ1 ⊗ f1 + s1c, ζ2 ⊗ f2 + s2c] = ([ζ1, ζ2] ⊗ f1f2) +B(ζ1, ζ2)Res(f1df2)c.

Its restriction to constant loops is canonically trivial, thus t̂C is embedded in L(gC) by the map

(ζ, s) 7→ ζ+ sc. The inclusions jI lift to inclusions ĵI : ĝI →֒ L̂(g) extending the given inclusion

of t̂C. To see this, take ξ ∈ ∆I (defining a trivialization gI
∼= gI,(exp ξ) = gI × R). Then the

desired lift reads,

ĵI,ξ : ĝC

I,(exp ξ) → L̂(g), ĵI,ξ(ζ, s) = jI(ζ) + (s+B(ξ, ζ))c.

By the theory of affine Lie algebras [20], there exists a unitarizable L̂g-module where the central

element c acts as −1. Unitarizibility means in particular that the t̂-action exponentiates to a

unitary T̂ -action, and hence all ĝI -actions exponentiate to unitary ĜI -actions.
With H as in the Lemma, put AI = G×GI

K(H). For J ⊂ I, the map φJ
I : G/GI → G/GJ

is covered by a homomorphism of Dixmier-Douady bundles, AI → AJ . Hence we may define
a G-Dixmier-Douady bundle,

(20) A =
∐

I

(AI × ∆I)/ ∼

with identifications similar to those in (18). By construction, the central extension of GI

defined by the restriction A|exp(∆I) coincides with the opposite of ĜI . Hence, the family of

central extensions defined by the action of T on A|T is the opposite of the family T̂(t). We

had seen that the class in H2
T (pt) ⊗ H1(T ) ⊂ H3

T (T ) is the class defined by −Bt, and hence
coincides with the image of the generator of H3

G(G) ∼= Z. It follows that DDG(A) is a generator
of H3

G(G).
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4. Conjugacy classes

As is well-known, coadjoint orbits O ⊂ g∗ carry a distinguished invariant complex structure,
hence a Spinc-structure. If O admits a pre-quantum line bundle L→ O (i.e. a line bundle with
curvature equal to the symplectic form), one may twist the original Spinc-structure by this line
bundle. The resulting equivariant index is the irreducible representation parametrized by O.
In this Section, we will describe a similar picture for conjugacy classes C ⊂ G.

4.1. Pull-back to conjugacy classes. Given ξ ∈ ∆, define a G-equivariant map Ψ: G/T →
G, gT 7→ Adg(exp ξ). The pull-back Ψ∗A admits a canonical Morita trivialization, defined by
the Hilbert space bundle G×T H. More generally, for any l ∈ Z and any weight µ ∈ Λ∗ there
is a Morita trivialization,

(21) C ≃E Ψ∗Al, E = G×T (Hl ⊗ Cµ)

where Cµ is the 1-dimensional 1-dimensional T -representation of weight µ. Equivariant Dixmier-
Douady bundles over G, together with Morita trivializations of their pull-backs by Ψ, are clas-
sified by the relative cohomology group H3

G(Ψ). (See Appendix A.) The map Ψ =: Ψ1 is equiv-
ariantly homotopic to the constant map Ψ0 : gT 7→ e, by the homotopy Ψt(gT ) = exp(tAdg(ξ)).
Hence H3

G(Ψ) = H3
G(Ψ0) = H2

G(G/T ) ⊕ H3
G(G). Identifying H2

G(G/T ) = H2
T (pt) = Λ∗ and

H3
G(G) = Z, we obtain an isomorphism

H3
G(Ψ) = Λ∗ ⊕ Z,

The element (µ, l) ∈ H3
G(Ψ) is realized by the Morita trivialization (21).

Now let C be the conjugacy class of exp(ξ), and Φ: C → G the inclusion. Let π : G/T → C
be the G-invariant projection such that Ψ = Φ ◦ π. We obtain a map of long exact sequences
in relative cohomology,

· · · −−−−→ 0 −−−−→ H2
G(C) −−−−→ H3

G(Φ) −−−−→ H3
G(G) −−−−→ H3

G(C) −−−−→ · · ·
y

y
y

y=

y
· · · −−−−→ 0 −−−−→ H2

G(G/T ) −−−−→ H3
G(Ψ) −−−−→ H3

G(G) −−−−→ 0 −−−−→ · · ·

From the identifications H2
G(C) = Hom(Gexp ξ,U(1)) and H2

G(G/T ) = Hom(T,U(1)), it is
evident that the second vertical map is injective. Hence the 5-Lemma implies that the map
H3

G(Φ) → H3
G(Ψ) is injective. Hence we obtain an injective map,

H3
G(Φ) → H3

G(Ψ) = Λ∗ ⊕ Z.

By a parallel discussion with real coefficients, there is an injective mapH3
G(Φ,R) → H3

G(Ψ,R) =
t∗ ⊕ R.

4.2. Pre-quantization of conjugacy classes. We return to Cartan’s de Rham model for
H•

G(M,R) (cf. the proof of Proposition 3.1) with ηG ∈ Ω3
G(G) representing the generator of

H3
G(G). The conjugacy class C carries a unique invariant 2-form ω ∈ Ω2(C)G ⊂ Ω2

G(C) with the
property [1, 18],

(22) dGω = Φ∗ηG.
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The triple (C, ω,Φ) is an example of a quasi-Hamiltonian G-space in the terminology of [1].
Equation (22) together with dGηG = 0 say that (ω, ηG) ∈ Ω3

G(Φ) is a relative equivariant
cocycle. Let [(ω, ηG)] be its class in H3

G(Φ,R).

Lemma 4.1. The inclusion H3
G(Φ,R) → t∗ ⊕ R takes the class [(ω, ηG)] to the element

(B♭(ξ), 1).

Proof. Let ht : Ω•
G(G) → Ω•−1

G (G/T ) be the homotopy operator defined by homotopy Ψt. Thus
d ◦ ht + ht ◦ d = Ψ∗

t − Ψ∗
0. Then

Ω•
G(Ψt) → Ω•

G(Ψ0), (α, β) 7→ (α− ht(β), β)

is an isomorphism of chain complexes, inducing the isomorphism H•
G(Ψt,R) → H•

G(Ψ0,R). In
particular, the isomorphism H3

G(Ψ1,R) → H•
G(Ψ0,R) takes [(ω, ηG)] to [(ω − h∗1ηG, ηG)].

The family of maps Ψt is a composition of the map f : G/T → g, gT 7→ Adg(ξ) with the
family of maps g → G, ζ 7→ exp(tζ). Let jt : Ω•

G(G) → Ω•−1(g) be the homotopy operator for
the second family of maps. Then ht = f∗ ◦ jt. By [28], we have j1ηG = ̟G, where ̟G ∈ Ω2

G(g)
is of the form ̟G(ζ)|ξ = ̟|ξ −B(ξ, ·). It follows that the image of [(ω, ηG)] under the map to

t∗ ⊕ R is (B♭(ξ), 1). �

As a special case of pre-quantization of group-valued moment maps [2], we define:

Definition 4.2. A level k ∈ Z pre-quantization of a conjugacy class C is a lift of the class
k [(ω, ηG)] ∈ H3

G(Φ,R) to an integral class.

By the long exact sequence in relative cohomology, if C admits a level k pre-quantization,
then the latter is unique (since H2

G(C) has no torsion).

Proposition 4.3. The conjugacy class C of the element exp ξ with ξ ∈ ∆ admits a pre-
quantization at level k if and only if (B♭(kξ), k) ∈ Λ∗ × Z.

Proof. According to the Lemma, k [(ω, ηG)] maps to (B♭(kξ), k) ∈ t∗×R. Since all maps in the
commutative diagram

H3
G(Φ) −−−−→ Λ∗ ⊕ Z
y

y
H3

G(Φ,R) −−−−→ t∗ ⊕ R

are injective, it follows that k [(ω, ηG)] is integral if and only if (B♭(kξ), k) ∈ Λ∗ × Z. �

Geometrically, a level k pre-quantization is given by a G-equivariant Morita trivialization of
Φ∗Ak. This can be seen explicitly, as follows.

Lemma 4.4. Let ξ ∈ ∆I , and suppose that B♭(kξ) ∈ Λ∗. Then the k-th power of the central

extension of GI admits a unique trivialization GI → Ĝ
(k)
I extending the map

(23) T → T̂ (k) = T × U(1), h 7→ (h, hB♭(kξ)).

Proof. By GI -equivariance, a trivialization GI → Ĝ
(k)
I is uniquely determined by its restriction

to T . For existence, recall that t = exp ξ determines an identification ĜI
∼= ĜI,(t) = G̃I ×π1(GI )

U(1), using the homomorphism ̺t,I : π1(GI) = Λ/ΛI → U(1), λ + ΛI 7→ t−B♭(λ). The powers
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Ĝ(l) are obtained similarly, using the l-th powers of the homomorphism ̺t,I . Since B♭(kξ) is a
weight, we have

(̺t,I)
k(λ+ ΛI) = e−2π

√
−1B(kξ,λ) = 1.

This defines a trivialization,

Ĝ
(k)
I

∼= Ĝ
(k)
I,(t) = GI × U(1).

By (19), this trivialization intertwines the standard inclusion T̂ (k) → Ĝ
(k)
I with the map

T̂ = T × U(1) → GI × U(1), (h, z) 7→ (h, h−B♭(kξ)z).

The composition of this map with (23) is h 7→ (h, 1), as required. �

Let Φ: C →֒ G be the conjugacy class of t = exp ξ, and let I be the unique index set such
that ξ lies in the relative interior of ∆I . If C is pre-quantizable at level k, so that B♭(kξ) ∈ Λ∗,

the Lemma defines a trivialization of G
(k)
I . Hence, its action on Hk descends to an action of

GI , and the Hilbert bundle E = G×GI
Hk defines a Morita trivialization of Φ∗Ak.

Proposition 4.5. The relative Dixmier-Douady class DDG(Ak, E) ∈ H3
G(Φ) (cf. Appendix A)

is an integral lift of the class k[(ω, ηG)] ∈ H3
G(G, C,R).

Proof. We have to show that the image of DDG(A, E) in H3
G(Ψ) = Λ∗ ⊕ Z is (B♭(kξ), k). But

this follows from the discussion in the last Section, since the pull-back of E under the map
π : G/T → C is

π∗E = G×T (Hk ⊗ CB♭(kξ)).

�

4.3. The h∨-th power of the Dixmier-Douady bundle. For any coadjoint orbit O ⊂ g∗,
the compatible complex structure defines a G-invariant Spinc-structure, i.e. Morita trivial-
ization of Cl(TO). We show show that similarly, for all conjugacy classes C ⊂ G, there is a

distinguished Morita isomorphism between Cl(TC) and Ah∨ |C , where h∨ is the dual Coxeter
number. That is, conjugacy classes carry a canonical ‘twisted Spinc-structure’. There are
examples of conjugacy classes that do not admit Spinc-structures let alone almost complex
structures.

Example 4.6. The simplest example of a conjugacy class not admitting an almost complex
structure is the conjugacy class C ∼= Spin(5)/Spin(4) ∼= S4 of the group Spin(5). (Its image in
SO(5) is the conjugacy class of the matrix with entries (−1,−1,−1,−1, 1) down the diagonal.)
Similarly, the group G = Spin(9) has a conjugacy class G/H with H = (SU(2) × Spin(6))/Z2

that does not admit a Spinc-structure. Indeed, if such a Spinc-structure existed it could be
made G-equivariant (since G is simply connected), hence it would give an H-invariant Spinc-
structure on g/h. Since H is semi-simple, this is equivalent to the condition that the half-sum
of positive roots of H, is a weight of H. But by explicit calculation, one checks that this is not
the case. I thank Reyer Sjamaar for discussion of these and similar examples.

We will need some additional notation. Let S0 = {α1, . . . , αl}, l = rank(G), be a set
of simple roots for g, relative to our choice of fundamental Weyl chamber. We denote by
α0 = −αmax minus the highest root, and let

S = S0 ∪ {α0} = {α0, . . . , αl}.
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Thus ∆ ⊂ t+ is the l-simplex cut out by the inequalities 〈αi, ·〉 + δi,0 ≥ 0 for i = 0, . . . , l, and
t+ is cut out by the inequalities with i > 0. The roots of GI are those roots α of G for which
〈α, ξ〉 ∈ Z for ξ ∈ ∆I , and a set of simple roots is

SI = {αi ∈ S| i 6∈ I}
That is, the Dynkin diagram of GI is obtained from the extended Dynkin diagram of G by
removing the vertices labeled by i ∈ I. Let ρ be the half-sum of positive roots of G, let
ρ♯ = B♯(ρ) with B♯ = (B♭)−1, and let

h
∨ = 1 + 〈αmax, ρ

♯〉
be the dual Coxeter number.

Theorem 4.7. For any conjugacy class Φ: C →֒ G, there is a distinguished G-equivariant
Morita isomorphism Cl(TC) ≃ Φ∗Ah∨ .

Proof. Let ξ ∈ ∆ be the unique point of the alcove corresponding with exp ξ ∈ C, and I the
index set such that ξ ∈ int(∆I). Thus C = G/GI and Cl(TC) = G×GI

Cl(g⊥I ), where g⊥I is the

orthogonal complement of gI in g. By construction, Φ∗Ah∨ = G ×GI
K(Hh∨). Hence it is our

task to construct a GI -equivariant Morita isomorphism

Cl(g⊥I ) ≃ K(Hh∨).

Let Ĝ′
I be the central extension of GI defined by its action on Cl(g⊥I ). It fits into a pull-back

diagram,

Ĝ′
I −−−−→ Spinc(g

⊥
I )

y
y

GI −−−−→ SO(g⊥I ).

Equivalently, Ĝ′
I = G̃I ×π1(GI) U(1) where G̃I is the universal covering group, and the homo-

morphism π1(GI) → U(1) is defined by the commutative diagram,

1 −−−−→ π1(GI) −−−−→ G̃I −−−−→ GI −−−−→ 1
y

y
y

1 −−−−→ U(1) −−−−→ Spinc(g
⊥
I ) −−−−→ SO(g⊥I ) −−−−→ 1

Let ΛI be the co-root lattice of GI , so that π1(GI) = Λ/ΛI . By a direct calculation (cf.
Sternberg [40, Section 9.2]), the homomorphism π1(GI) → U(1) is

(24) π1(GI) = Λ/ΛI → U(1), λ 7→ e2π
√
−1〈ρ−ρI ,λ〉 = ±1

where ρ is the half-sum of positive roots of G, and ρI is the half-sum of positive roots of GI ,
relative to the given system SI of simple roots. Let

(25) νI =
1

h∨
(ρ− ρI), ν♯

I = B♯(νI).

The element ν♯
I is contained in the the interior of the face ∆I (see e.g. [30]). Hence, the

homomorphism (24) is just the −h∨-th power of the homomorphism ̺t,I , t = exp ν♯
I in the
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definition of ĜI,(t)
∼= ĜI . That is, we have identified

Ĝ′
I = Ĝ

(−h∨)
I .

Recall that ĜI acts with weight −h∨ on Hh∨ , or equivalently Ĝ−h∨

I acts with weight 1. Hence,

if SI is any spinor module over Cl(g⊥I ), the Cl(g⊥I ) − K(Hh∨)-bimodule

Hom(Hh∨ ,SI)

is GI -equivariant, and gives the desired Morita isomorphism Cl(g⊥I ) ≃ K(Hh∨). An explicit

spinor module SI for Cl(g⊥I ), constructed as follows. Let n+ ⊂ gC and nI,+ ⊂ gC
I be the sum

of root spaces for positive roots of G and GI , respectively. (Here positivity is defined by the
respective sets S0,SI of simple roots.) Then S = ∧n+ is a spinor module for Cl(t⊥), and
SI = ∧nI,+ is a spinor module for Cl(gI ∩ t⊥). (Cf. [40, Section 9.2].) We define

(26) SI = HomCl(gI∩t⊥)(S
I ,S).

�

The spinor modules S, SI are T -equivariant, since they are constructed using T -invariant
complex structures on t⊥, gI ∩ t⊥. Hence SI is T -equivariant as well.

Proposition 4.8. Let C be the conjugacy class of exp ξ, ξ ∈ ∆. The pull-back of Cl(TC) under
the projection map

π : G/T → C, gT 7→ Adg(exp(ξ)).

admits a canonical G-equivariant Morita trivialization

(27) C ≃ π∗ Cl(TC).

Proof. Let I be the index set such that GI is the stabilizer of exp ξ. We have π∗ Cl(TC) =
Cl(π∗TC) = G×T Cl(g⊥I ). Hence we need a T -equivariant Morita trivialization of Cl(g⊥I ), and
this is provided by SI . �

If the conjugacy class C is pre-quantized at level k, the Morita equivalences Cl(TC) ≃ Φ∗Ah∨

and C ≃ Φ∗Ak, combine to a Morita isomorphism

(28) Cl(TC) ≃ Φ∗Ak+h∨

Recall Ψ = Φ ◦π : G/T → G. The composition of the Morita isomorphisms (27) and Cl(TC) ≃
Φ∗Ah∨ is the Morita trivialization C ≃ Ψ∗Ah∨ defined by the bundle G ×T Hh∨ . It is thus
labeled by (0, h∨) ∈ Λ∗⊕Z. Hence, in the pre-quantized case, the composition of (27) and (28)

is the Morita trivialization of Ψ∗Ak+h∨ parametrized by (B♭(kξ), k + h∨) ∈ Λ∗ ⊕ Z.

4.4. Freed-Hopkins-Teleman. The twisted equivariant K-homology group

KG
• (G,Ak+h∨)

carries a ring structure, with product given by the cross-product for G×G, followed by push-
forward under group multiplication Mult : G ×G → G. Indeed, since Mult∗ x = pr∗1 x + pr∗2 x
for all x ∈ H3

G(G,Z), there is a Morita isomorphism,

pr∗1 Ak+h∨ ⊗ pr∗2 Ak+h∨ ≃ Mult∗Ak+h∨ .
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The Morita bimodule is unique up to equivalence since H2
G(G × G) = 0. It defines a product

structure
KG

• (Mult) : KG
• (G,Ak+h∨) ⊗KG

• (G,Ak+h∨) → KG
• (G,Ak+h∨),

given by the cross productKG
• (G,Ak+h∨)⊗KG

• (G,Ak+h∨) → KG
• (G×G,pr∗1 Ak+h∨⊗pr∗2 Ak+h∨)

followed by KG
• (Mult). The product is commutative and associative, again since the relevant

Morita bimodules are unique up to equivalence. (For non-simply connected groups G, the
existence of a ring structures on the twisted K-homology is a much more subtle matter [42].)

The inclusion ι : {e} →֒ G of the group unit induces a ring homomorphism

(29) KG
• (ι) : R(G) = KG

• (pt) → KG
• (G,Ak+h∨).

Theorem 4.9 (Freed-Hopkins-Teleman). For all non-negative integers k ≥ 0 the ring ho-
momorphism (29) is onto, with kernel the level k fusion ideal Ik(G) ⊂ R(G). That is,

KG
1 (G,Ak+h∨) = 0, while KG

0 (G,Ak+h∨) is canonically isomorphic to the level k fusion ring,
Rk(G) = R(G)/Ik(G).

We will explain a proof of this Theorem in Section 5. The ring Rk(G) may be defined as the
ring of level k projective representations of the loop group LG, or in finite-dimensional terms
(cf. [3]): Let

Λ∗
k = Λ∗ ∩B♭(k∆)

be the set of level k weights. Identify R(G) with ring of characters of G. Then Rk(G) =
R(G)/Ik(G), where Ik(G) is the vanishing ideal of the set of elements {tν ∈ T, ν ∈ Λ∗

k} where

tν = exp(B♯( ν+ρ
k+h∨

)).

It turns out that as an additive group, Rk(G) is freely generated by the images of irreducible
characters χµ for µ ∈ Λ∗

k. Thus Rk(G) = Z[Λ∗
k] additively.

Remark 4.10. If G has type ADE (so that all roots have equal length), the lattice B♯(Λ∗) ⊂ t

is identified with the set of elements ξ ∈ t with exp ξ ∈ Z(G), the center of G. Hence the ideal
Ik(G) may be characterized, in this case, as the vanishing ideal of the set of all g ∈ Greg such

that gk+h∨ ∈ Z(G).

Remark 4.11. Freed-Hopkins-Teleman compute twisted K-homology groups of G for arbitrary
compact groups, not necessarily simply connected. The case of simple, simply connected groups
considered here is considerably easier than the general case.

Remark 4.12. It is also very interesting to consider the non-equivariant twisted K-homology
rings K•(G,Ak+h∨). These are studied are in the work of V. Braun [7] and C. Douglas [12].

4.5. Quantization of conjugacy classes. Suppose Φ: C →֒ G is the conjugacy class of
exp ξ, ξ ∈ ∆, pre-quantized at level k ≥ 0. Thus µ := B♭(kξ) is a weight. The Morita
isomorphism (28) defines a push-forward map in K-homology,

(30) KG
0 (Φ): KG

0 (C,Cl(TC)) → KG
0 (G,Ak+h∨)

where Φ: C →֒ G is the inclusion.

Theorem 4.13. The push-forward map (30) takes the fundamental class [C] ∈ KG
0 (C,Cl(TC))

to the equivalence class of the character χµ in Rk(G) = R(G)/Ik(G).
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Proof. Let π : G/T → C and Ψ = Φ ◦ π : G/T → G be as in Section 4.1. The Morita trivializa-
tions

C ≃ Cl(T (G/T )), C ≃ π∗ Cl(TC)

defined by G×T S resp. G×T SI (cf. Proposition 4.8) define a push-forward map

KG
0 (π) : KG

0

(
G/T,Cl(T (G/T ))

) ∼= KG
0 (G/T ) → KG

0 (C,Cl(TC))

with KG
0 (π)([G/T ]) = [C]. Hence

KG
0 (Φ)([C]) = KG

0 (Ψ)([G/T ]).

Recall now that Ψ = Ψ1 is equivariantly homotopic to the constant map Ψ0 onto e ∈ G. That
is, the diagram

G/T −−−−→
π

C
yp

yΦ

pt −−−−→
ι

G,

commutes up to a G-equivariant homotopy. As discussed at the end of Section 4.3, the compo-
sition of the Morita isomorphisms C ≃ π∗ Cl(TC) and Cl(TC) ≃ Φ∗Ak+h∨ (see Equations (27)
and (28)) is the Morita trivialization,

Ψ∗Ak+h∨ ∼= K(G×T (Cµ ⊗Hk+h∨)).

On the other hand, ι∗Ak+h∨ = K(Hk+h∨) by construction of A, hence

Ψ∗
0Ak+h∨ ∼= p∗K(Hk+h∨) = K(G×T Hk+h∨).

The two Morita isomorphisms are thus related by a twist by the line bundle G ×T Cµ. It
follows that KG

0 (Ψ) is the automorphism of K0(G/T ) defined by the class of the line bundle
G×T Cµ, followed by KG

0 (Ψ0) = KG
0 (ι) ◦KG

0 (p). But KG
0 (p) is just the equivariant index map

for G/T . As is well-known, it takes [G/T ], twisted by G×T Cµ, to the class [Vµ] ∈ KG
0 (pt) of

the irreducible G-representation labeled by µ. We conclude that

KG
0 (Ψ)([G/T ]) = KG

0 (ι)([Vµ]).

The identification KG
0 (pt) ∼= R(G) takes [Vµ] to the character χµ. �

4.6. Twisted K-homology of the conjugacy classes. Suppose Φ: C →֒ G is an arbitrary
conjugacy class (not necessarily pre-quantized) corresponding to ξ ∈ ∆. Let I be the index
set such that ξ ∈ int(∆I), thus C = G/GI . Write B = K(H) so that AI = G ×GI

B. In 4.3

we had constructed a GI -equivariant Morita isomorphism Cl(g⊥I ) ≃ Bh∨ , or equivalently (since

Cl(g⊥I ) ∼= Cl(g⊥I )opp) C ≃ Bh∨ ⊗ Cl(g⊥I ). We have, by 2.3(a)-(c),

KG
q (C,Φ∗Ak+h∨) = KG

q (G/GI , G×GI
Bk+h∨)

= KGI

q (pt, Bk+h∨ ⊗ Cl(g⊥I ))

= KGI

q (pt, Bk).
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This vanishes for q = 1, and is equal to R(Ĝ
(−k)
I )−1 for q = 0. But a representation of Ĝ

(−k)
I ),

where the central circle acts with weight −1, is the same as a representation of ĜI where the
central circle acts with weight k. Thus

(31) KG
0 (C,Φ∗Ak+h∨) = KG

0 (G/GI , G×GI
Bk+h∨) ∼= R(ĜI)k

as R(G)-modules. (The module structure is given by the restriction homomorphism R(G) →
R(GI) = R(ĜI)0, which acts on R(ĜI) by multiplication.) If J ⊂ I, we have a natural map
φJ

I : G/GI → G/GJ covered by a map of Dixmier-Douady bundles G×GI
B → G×GJ

B. Hence
we obtain a push-forward map,

(32) KG
0 (φJ

I ) : KG
0 (G/GI , G×GI

Bk+h∨) → KG
0 (G/GJ , G×GJ

Bk+h∨)

The naturality of the maps IG
H (cf. 2.3(b)) and the definition of indJ

I ≡ indGJ

GI
(cf. 2.3(c)) gives

a commutative diagram,

KGI

0 (pt, Bk+h∨ ⊗ Cl(g/gI))
indJ

I−−−−→ KGJ

0 (pt, Bk+h∨ ⊗ Cl(g/gJ ))
yI

GJ
GI

y=

KGJ

0 (GJ/GI ,
(
GJ ×GI

Bk+h∨
)
⊗ Cl(g/gJ )) −−−−→ KGJ

0 (pt, Bk+h∨ ⊗ Cl(g/gJ ))
yI

G
GJ

yI
G
GJ

KG
0 (G/GI , G×GI

Bk+h∨)
KG

0
(φJ

I
)−−−−−→ KG

0 (G/GJ , G×GJ
Bk+h∨)

That is, KG
0 (φJ

I )◦ IG
GI

= IG
GJ

◦ indJ
I . The entries on the top row are identified with R(ĜI)k and

R(ĜJ )k, and (cf. 2.3(c)) the map indJ
I is the holomorphic induction map

(33) indJ
I : R(ĜI)k → R(ĜJ)k,

relative to the complex structure on GJ/GI = ĜJ/ĜI defined by the collections of simple roots
SJ ⊂ SI . To summarize,

Proposition 4.14. The identifications KG
0 (G/GI , G ×GI

Bk+h∨) ∼= R(ĜI)k intertwine the

push-forward maps KG
0 (φJ

I ) with the holomorphic induction maps indJ
I .

5. Computation of KG
• (G,Ak+h∨)

The Dixmier-Douady bundleA → G, as described in (20), may be viewed as the geometric re-
alization of a co-simplicial Dixmier-Douady bundle, with non-degenerate p-simplices the bundle∐

|I|=p+1 AI over
∐

|I|=p+1G/GI . This defines a spectral sequence computing the K-homology

group KG
• (G,Ak+h∨), in terms of the known K-homology groups KG

• (G/GI ,Ak+h∨

I ) = R(ĜI)k
and the holomorphic induction maps between these groups. As it turns out, the spectral
sequence collapses at the E2-stage, and computes the level k fusion ring.
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5.1. The spectral sequence for KG
• (G,Ak+h∨). The construction (20) of A → G as a

quotient of
∐

I AI × ∆I →
∐

I G/GI × ∆I may be thought of as the geometric realization
of a ‘co-simplicial Dixmier-Douady bundle’. See [37] and [31] for background on co-simplicial
(semi-simplicial) techniques. Here the G-Dixmier-Douady bundles

∐

|I|=p+1

AI →
∐

|I|=p+1

G/GI

are the non-degenerate p-simplices; the full set of p-simplices is a union
∐

f Af([p]) →
∐

f G/Gf([p])

over all non-decreasing maps f : [p] = {0, . . . , p} → {0, . . . , l}. By the theory of co-simplicial

spaces (see [37, Section 5]), one obtains a spectral sequence E1
p,q ⇒ KG

p+q(G,Ak+h∨) where

(34) E1
p,q =

⊕

|I|=p+1

KG
q (G/GI ,Ak+h∨

I ).

The differential d1 : E1
p,q → E1

p−1,q is given on KG
q (G/GI ,Ak+h∨

I ) as an alternating sum,

d1 =

p∑

r=0

(−1)rKG
q (φδrI

I ).

Here δrI is obtained from I by omitting the r-th entry: δrI = {i0, . . . , îr, . . . , ip} for I =
{i0, . . . , ip} with i0 < · · · < ip. Recall that φJ

I : G/GI → G/GJ are the natural maps for J ⊂ I.
By mod 2 periodicity of the K-homology, we have E1

p,q = E1
p,q+2. Since the groups GI are

connected, and since dimG/GI is even, one has KG
1 (G/GI ,Ak+h∨

I ) = 0, thus E1
•,1 = 0. Hence,

the E1-term is described by a single chain complex (C•, ∂), where

Cp = E1
p,0, ∂ = d1.

The map R(G) → KG
• (G,Ak+h∨) defined by the inclusion ι : e →֒ G may be also be described

by the spectral sequence. Think of ι as the geometric realization of a map of co-simplicial

manifolds, given as the inclusion of {e} = G/G{0} into
∐l

i=0G/G{i}. The co-simplicial map

gives rises to a morphism of spectral sequences, Ẽ• → E•, where

Ẽ1
p,q =

{
KG

q (pt,C) if p = 0

0 otherwise

At the E1-stage, this boils down to a chain map

(35) R(G) → C•

where R(G) = Ẽ1
0,0 carries the zero differential. Our goal is to show that the homology of

(C•, ∂) vanishes in positive degrees, while the induced map in homology R(G) → H0(C, ∂) is
onto, with kernel Ik(G).

5.2. The induction maps in terms of weights. To get started, we express the chain com-
plex in terms of weights of representations. Recall that R(T ) is isomorphic to the group ring
Z[Λ∗]. The restriction map R(G) → R(T ) is injective, and identifies

R(G) ∼= Z[Λ∗]W .
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Let us next describe R(ĜI)k in terms of weights. Each ĜI has maximal torus T̂ = T × U(1),
hence the weight lattice is

Λ̂∗ = Λ∗ × Z ⊂ t̂∗ = t∗ × R.

The simple roots for ĜI are (αi, 0) with αi ∈ SI , the corresponding co-roots are

(36) (α∨
i , δi,0) ∈ t̂ = t × R, αi ∈ SI .

These define a fundamental Weyl chamber

(37) t̂∗I,+ = {(ν, s)| 〈ν, α∨
i 〉 + sδi,0 ≥ 0, αi ∈ SI}

The elements νI satisfy 〈νI , α
∨
i 〉 + δi,0 = 0. Hence, (ν, s) ∈ t̂∗I,+ is and only if ν − sνI ∈ t∗I,+.

Let Λ∗
I,k ⊂ Λ∗ be the intersection of (37) with Λ∗ × {k} ∼= Λ∗. Thus

Λ∗
I,k = {ν ∈ Λ∗| 〈ν, α∨

i 〉 + kδi,0 ≥ 0, i 6∈ I}

labels the irreducible ĜI -representations for which the central circle acts with weight k. The

Weyl group WI of GI is also the Weyl group of ĜI . Its action on Λ̂∗ preserves the levels
Λ∗ × {k}, hence it takes the form w.(ν, k) = (w •k ν, k) for a level k-action ν 7→ w •k ν on Λ∗.
Explicitly,

(38) w •k ν = w(ν − kνI) + kνI .

Fix k, and denote by Z[Λ∗]WI−as the anti-invariant part for the WI-action ν 7→ w •k+h∨ ν at
the shifted level k + h∨. Observe that this space is invariant under the action of Z[Λ∗]W . Let

SkI : Z[Λ∗] → Z[Λ∗]WI−as, ν 7→
∑

w∈WI

(−1)length(w)w •k+h∨ ν

denote skew-symmetrization relative to the action at level k+h∨. For µ ∈ Λ∗
k, let χI

µ ∈ R(ĜI)k

be the character of the irreducible ĜI -representation of weight (µ, k).

Lemma 5.1. The map χI
µ 7→ SkI(µ+ ρ) extends to an isomorphism

(39) R(ĜI)k → Z[Λ∗]WI−as.

Under this isomorphism, the R(G) ∼= Z[Λ∗]W -module structure is given by multiplication in the
group ring. Furthermore, the identification (39) intertwines the holomorphic induction maps

indJ
I : R(ĜI)k → R(ĜJ )k for J ⊂ I with skew-symmetrizations

SkJ
I =

1

|WI |
SkJ : Z[Λ∗]WI−as → Z[Λ∗]WJ−as.

Note that the statement involves a shift by ρ, rather than ρI . Thus, even in the case

I = {0, . . . , l} where GI = T and WI = {1}, ρI = 0, the identification R(T̂ )k → Z[Λ∗] involves
a ρ-shift.

Proof. Let Λ∗,reg
I,k+h∨

be the intersection of Λ∗×{k+h∨} with int(̂t∗I,+). Since obviously R(ĜI)k =

Z[Λ∗
I,k], the first part of the Lemma amounts to the assertion that

µ ∈ Λ∗
I,k ⇔ µ+ ρ ∈ Λ∗,reg

I,k+h∨
.

We have µ ∈ Λ∗
I,k if and only if 〈µ, α∨

i 〉 + kδi,0 ≥ 0 for i 6∈ I. Since 〈ρ, α∨
i 〉 + h∨δi,0 = 1 this is

equivalent to 〈µ+ρ, α∨
i 〉+(k+h∨)δi,0 ≥ 1, i 6∈ I, i.e. µ+ρ ∈ Λ∗,reg

I,k+h∨
as claimed. The assertion
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about the R(G)-module structure is obvious. Finally, for J ⊂ I the holomorphic induction
map indJ

I is given by

indJ
I (χI

µ) = (−1)length(w)χJ
w•k(µ+ρJ )−ρJ

if there exists w ∈ WJ with w •k (µ+ ρJ) − ρJ ∈ Λ∗
J,k, while indJ

I (χI
µ) = 0 if there is no such

w. Using (38) together with ρI − kνI = ρ − (k + h∨)νI (by the definition of νI), this may be
re-written in terms of the action at level k + h∨:

w •k (µ+ ρJ) − ρJ = w •k+h∨ (µ+ ρ) − ρ.

�

By combining this discussion with Proposition 4.14, we have established a commutative
diagram

(40)

KG
0 (G/GJ ,Ak+h∨

J ) −−−−→∼=
R(ĜJ )k −−−−→∼=

Z[Λ∗]WJ−as

xK0(φJ
I
)

xindJ
I

xSkJ
I

KG
0 (G/GI ,Ak+h∨

I ) −−−−→∼=
R(ĜI)k −−−−→∼=

Z[Λ∗]WI−as

We can thus re-express the chain complex (C•, ∂) in terms of weights:

(41) Cp =
⊕

|I|=p+1

Z[Λ∗]WI−as, ∂φI =

p∑

r=0

(−1)r SkδrI
I (φI),

for φI ∈ Z[Λ∗]WI−as. The map R(G) → C0 ⊂ C• given by (35) is expressed as the inclusion
of Z[Λ∗]W−as, as the summand corresponding to I = {0}. By construction, C• is a complex of
R(G)-modules, and the map (35) is an R(G)-module homomorphism.

5.3. Fusion ring. Let us also describe the fusion ring in terms of weights. The subset
B♭(k∆) ⊂ t∗ defining the set Λ∗

k = Λ∗ ∩B♭(k∆) of level k weights is cut out by the inequalities

〈ν, α∨
i 〉 + kδi,0 ≥ 0.

It is a fundamental domain for the level k action ν 7→ w•k ν of the affine Weyl group, generated
by the simple affine reflections

ν 7→ ν − (〈ν, α∨
i 〉 + sδi,0)αi, i = 0, . . . , l.

This is consistent with our earlier notation: The level k action of Waff restricts to the level k
action of the subgroup WI , generated by the affine reflections with i 6∈ I.

Let Z[[Λ∗]] be the Z[Λ∗]-module consisting of all functions Λ∗ → Z, not necessarily of finite
support. Let

Skaff : Z[Λ∗] → Z[[Λ∗]]Waff−as, ν 7→
∑

w∈Waff

(−1)length(w)w •k+h∨ ν

be skew-symmetrization, using the action at the shifted level k+h∨. The map µ 7→ Skaff(µ+ρ)
extends to an isomorphism, Z[Λ∗

k] → Z[[Λ∗]]Waff−as. This identifies

(42) Rk(G) ∼= Z[[Λ∗]]Waff−as
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as an Abelian group. For any I we have R(G) = Z[Λ∗]W -module homomorphisms R(ĜI)k →
Rk(G),

(43) Z[Λ∗]WI−as → Z[[Λ∗]]Waff−as, φI 7→ 1

|WI |
Skaff φI .

For I = {0} we may use the obvious trivialization Ĝ = G × U(1) to identify R(G) = R(Ĝ0)k.
The following is clear from the description of the quotient map R(G) → Rk(G) (see e.g. [3]):

Lemma 5.2. The identifications R(G) = Z[Λ∗]W−as and (42) intertwine the quotient map
R(G) → Rk(G) with the skew-symmetrization map,

(44)
1

|W | Skaff : Z[Λ]W−as → Z[[Λ∗]]Waff−as.

In particular, (42) is an isomorphism of R(G) ∼= Z[Λ∗]W -modules.

In fact, we could define the ideal Ik(G) ⊂ R(G) as the kernel of the map (44). Let ǫ : C0 →
Rk(G) be the direct sum of the morphisms (43) for |I| = 1.

5.4. A resolution of the R(G)-module Rk(G).

Theorem 5.3. For all k ≥ 0 the chain complex (C•, ∂) defines a resolution

0 −→ Cl
∂−→ · · · ∂−→ C0

ǫ−→ Rk(G) −→ 0

of Rk(G) as an R(G)-module.

The proof will be given below. As mentioned in the introduction, Theorem 5.3 is implicit in
the work of Kitchloo-Morava [25].

Remark 5.4. It turns out that the twisted representations R(ĜI)k are projective modules over
R(G), hence (by the Quillen-Suslin theorem) free modules over R(G). That is, (C•, ∂) is a

free resolution of the R(G)-module Rk(G). If Ĝ
(k)
I

∼= GI × U(1), the R(G) module R(ĜI)k is
isomorphic to R(GI), and the claim follows from the Pittie-Steinberg theorem [33, 39]. The
general case requires a mild generalization of the Pittie-Steinberg theorem [29].

Remark 5.5. Theorem 5.3 implies the Freed-Hopkins-Teleman theorem (1): By acyclicity of
the chain complex C• the spectral sequence Er collapses at the E2-term, with

E2
p,q = E∞

p,q =

{
Rk(G) if p = 0 and q even

0 otherwise

Since Rk(G) is free Abelian as a Z-module, there are no extension problems and we conclude

KG
1 (G,Ak+h∨) = 0, while

(45) KG
0 (G,Ak+h∨) = Rk(G)

as modules over R(G). This isomorphism takes the ring homomorphismR(G) → KG
0 (G,Ak+h∨)

to the quotient map R(G) → Rk(G), hence (45) is an isomorphism of rings.
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The statement of Theorem 5.3 can be simplified. Indeed, the chain complex C• breaks up
as a direct sum of sub-complexes C•(µ), µ ∈ Λ∗

k, given as

Cp(µ) =
⊕

|I|=p+1

Z[Waff •k+h∨ µ]WI−as.

Similarly the map ǫ : C0 → Rk(G) splits into a direct sum of maps

ǫ : C0(µ) → Z[Waff •k+h∨ µ]Waff−as =

{
Z for µ ∈ Λ∗,reg

k+h∨

0 otherwise.

Finally the chain map R(G) →֒ C• splits into inclusions of Z[Waff •k+h∨ µ]W−as as the term

corresponding to I = {0}. Clearly, (C•(µ), ∂) depends only on the open face B♭((k + h∨)∆J)

of B♭((k + h∨)∆) containing µ. Indeed, since Z[Waff •k+h∨ µ] = Z[Waff/WJ ] we have

Cp(J) =
⊕

|I|=p+1

Z[Waff/WJ ]WI−as.

The differential ∂ is again given by anti-symmetrization as in (41), but with φI now an element
of Z[Waff/WJ ]WI−as. The map ǫ : C0 → Rk(G) translates into the zero map C0(J) → 0 unless
J = {0 . . . , l}, in which case it becomes a map ǫ : C0(J) → Z, given as the direct sum for
i = 0, . . . , l of the maps,

Z[Waff ]Wi−as → Z,
∑

w

nww 7→
∑

W

nw(−1)length(w).

The map R(G) → C• is again the inclusion of the summand of C0(J) corresponding to I = {0}.
Theorem 5.3 is now reduced to the following simpler statement:

Theorem 5.6. The homology H•(J) of the chain complex C•(J) vanishes in degree p > 0,
while

H0(J) =

{
0 if J 6= {0, . . . , l}
Z if J = {0, . . . , l}

In the second case, the isomorphism is induced by the augmentation map ǫ : C0(J) → Z.

5.5. Proof of Theorem 5.6. Throughout this Section, we consider a given face ∆J of the
alcove. We may think of Waff/WJ as the Waff -orbit of a point in the interior of the face ∆J ,

under the standard action of Waff on t. To be concrete, let us take the point ν♯
J . Denote its

orbit by

V = Waff .ν
♯
J ⊂ t.

We introduce a length function length : V → Z, defined in terms of the function on Waff as

length(x) = min{length(w)|w ∈Waff , x = w.ν♯
J}, x ∈ V.

Geometrically, length(x) is the number of affine root hyperplanes in the Stiefel diagram, crossed
by a line segment from the a point in the interior of ∆ to the point x.

For any I let tI,+ be defined by the inequalities 〈αi, ·〉 + δi,0 ≥ 0 for αi ∈ SI . (Equivalently,

it is the affine cone over ∆ at ν♯
I .) Then tI,+ is a fundamental domain for the WI-action. Let
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V I ⊂ V
I ⊂ V be the subsets,

V I = V ∩ int(tI,+), V
I

= V ∩ tI,+.

Every WI ⊂ Waff-orbit contains a unique point in V
I
. Thus, if x ∈ V , we may choose u ∈ WI

with u.x ∈ V
I
. Then

length(u.x) ≤ length(x),

with equality if and only if x ∈ V
I

and hence u.x = x.
The elements

(46) βI(x) = SkI(x), x ∈ V I

form a basis of the Z-module Z[V ]WI−as. (Note that if x ∈ V
I\V I then SkI(x) = 0.) Let us

describe the differential in terms of this basis. For |I| = p+ 1 and x ∈ V I we have,

∂βI(x) =

p∑

r=0

(−1)r SkδrI(x).

In general, the terms SkδrI(x) are not standard basis elements, since x need not lie in V δrI .
Letting ur ∈WδrI be the unique element such that urx ∈ V δrI , we have

(47) ∂βI(x) =

n∑

r=0

(−1)r+length(ur)βδrI(urx).

5.5.1. Computation of H0(J). Consider C0(J) =
⊕p

i=0 Z[V ]Wi−as. For all i, j and all x, the

elements Skj(x),Ski(x) are homologous since they differ by the boundary of Skij(x) ∈ C1(J).

Together with Skj(x) = (−1)length(w) Skj(wx) for w ∈Wj, this implies

Ski(x) ∼ (−1)length(w) Ski(wx)

for w ∈Wj . Since the subgroups Wj generate Waff , this holds in fact for all w ∈Waff . Thus

Skj(w.ν♯
J ) ∼ Ski(w.ν♯

J ) ∼ (−1)length(w) Ski(ν♯
J)

for all i, j, and all w ∈ Waff . If J 6= {0, . . . , l}, the choice of any i 6∈ J gives Ski(ν♯
J) = 0.

This proves H0(J) = 0. Suppose now J = {0, . . . , l}. The augmentation map C0(J) → Z is

described in terms of the basis by βi(x) 7→ (−1)length(x). It has a right inverse Z → C0(J), 1 7→
β0(ν

♯
0). Hence the induced map in homology Z → H0(J) is injective, but also surjective since

Ski(x) ∼ (−1)length(x)β0(ν
♯
0). Thus H0(J) = Z in this case.

5.5.2. Computation of Hl(J). Suppose φ ∈ Cl(J) = Z[V ]. Then ∂φ = 0 if and only if

Sk0···̂i···l φ = 0 for all i. That is, φ is invariant under every reflection σi ∈ Waff , hence un-
der the full affine Weyl group Waff . But since φ has finite length this is impossible unless
φ = 0. This shows Hl(J) = 0.
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5.5.3. Computation of Hp(J), 0 < p < l. To simplify notation, we will write C• instead
of C•(J). (This should of course not be confused with the chain complex C• considered in
previous sections.) Introduce a Z-filtration

0 = F−1C• ⊂ F0C• ⊂ F1C• ⊂ · · ·
where FNCp is spanned by basis elements (46) with |I| = p + 1 and length(x) ≤ N . Formula
(47) shows that for any basis element βI(x) ∈ FNCp,

(48) ∂βI(x) =
∑

r

′
(−1)rβδrI(x) mod FN−1Cp−1

where the sum is only over those r for which x ∈ V δrI ⊂ V I , i.e. ur = 1 (other terms lower the
filtration degree since length(urx) < length(x) unless x = urx). In particular, ∂ preserves the
filtration. Define operators hi : Cp → Cp+1 on basis elements, as follows:

hiβI(x) =

{
(−1)rβI∪{i}(x) if ir−1 < i < ir,

0 if i = ir, some r.

Note that hi preserves the filtration: hi(FNCp) ⊂ FNCp+1. Let

Ai = id−hi∂ − ∂hi.

Then Ai is a chain map, which is homotopic to the identity map.

Lemma 5.7. Let p > 0. For any basis element βI(x) ∈ FNCp we have Ai βI(x) ∈ FN−1Cp

unless i ∈ I and x 6∈ V I−{i}. In the latter case,

AiβI(x) = βI(x) mod FN−1Cp.

Proof. Write I = {i0, . . . , ip} where i0 < · · · < ip. Using (48) we obtain

(49) hi∂βI(x) =
∑

r

′
(−1)rhiβδrI(x) mod FN−1Cp,

summing over indices with x ∈ V δrI ⊂ V I . The calculation of AiβI(x) divides into two cases:
Case 1: i ∈ I. Thus i = is for some index s, and (−1)rhiβδrI(x) = 0 unless r = s, in which
case one obtains βI(x). Hence all terms in the sum (49) vanish, except possibly for the term

r = s which appears if and only if x ∈ V δsI = V I−{i}. That is,

hi∂βI(x) =

{
βI(x) mod FN−1Cp if x ∈ V I−{i}

0 mod FN−1Cp if x 6∈ V I−{i}

(using the assumption p > 0). Since hiβI(x) = 0 this shows AiβI(x) ∈ FN−1Cp unless x 6∈
V I−{i}, in which case AiβI(x) = βI(x) mod FN−1Cp.
Case 2: i 6∈ I. Exactly one of the terms in ∂hiβI(x) reproduces βI(x). The remaining terms
are organized in a sum similar to (47):

∂hiβI(x) = βI(x) −
∑

r

′′
(−1)rhiβδrI(x) mod FN−1Cp,

where the sum is over all r such that x ∈ V I∪{i}−{ir}. But x ∈ V δrI ⇔ x ∈ V I∪{i}−{ir}, since

V δrI = V I∪{i}−{ir} ∩ V I .



28 E. MEINRENKEN

Hence the sum
∑′

r and
∑′′

r are just the same. This proves Ai βI(x) ∈ FN−1Cp. �

Consider now the product A := A0 · · ·Al. By iterated application of the Lemma, we find
that if 0 < p < l, then AβI(x) ∈ FN−1Cp (because at least one index i is not in I). Thus

A : FNCp → FN−1Cp

for 0 < p < l. The chain map A is chain homotopic to the identity, since each of its factors
are. Thus, if φ ∈ FNCp is a cycle,

φ ∼ Aφ ∼ · · ·AN+1φ = 0.

This proves Hp(J) = 0 for 0 < p < l, and concludes the proof of Theorem 5.6.

Remark 5.8. N. Kitchloo pointed out a more elegant proof of Theorem 5.6, along the lines
of Kitchloo-Morava [25]. His argument produces an inclusion of C•(J) as a direct summand
of S• ⊗Z[WJ ] Z, where S• is the simplicial complex with respect to the Stiefel diagram, and
Z[WJ ] acts on Z by the sign representation. The acyclicity of C•(J) then follows from the
WJ -equivariant acyclicity of S•.

Appendix A. Relative Dixmier-Douady bundles

For any map f : Y → X, and cone(f) its mapping cone, obtained by gluing cone(Y ) =
Y ×I/Y ×{0} with X by the identification (y, 1) ∼ f(y). Let H•(f) = H•(cone(f)) denote the
relative cohomology of f . Equivalently H•(f) is the cohomology of the algebraic mapping cone
C•(f) of the cochain map C•(Y ) → C•(X), i.e. Cp(f) = Cp−1(Y ) ⊕ Cp(X) with differential
d(a, b) = (d a− f∗b, dc). If f is a smooth map of manifolds, the cohomology H•(f,R) may be
computed using differential forms, replacing the singular cochains in the above.

The group H2(f) has a geometric interpretation as isomorphism classes of relative line
bundles, i.e. pairs (L,ψY ), where L is a Hermitian line bundle over X, and ψY : Y ×C → f∗L
is a unitary trivialization of its pull-back to Y . The class of a relative line bundle is the Chern
class of the line bundle L̃→ cone(f), obtained by gluing cone(Y ) × C with L via ψY .

Similarly, H3(f) is interpreted in terms of relative Dixmier-Douady bundles, i.e. pairs
(A, EY ), where A → X is a Dixmier-Douady bundle, and EY → Y is a Morita trivialization of
the pull-back f∗A.

Given such a triple, one may construct a Dixmier-Douady bundle Ã → cone(f). First
stabilize: Let H be a fixed infinite-dimensional Hilbert space, and K = K(H) = the compact
operators. Then Est

Y = EY ⊗ H defines a Morita trivialization of the pull-back of Ast = A⊗ K.
Since the Hilbert space bundle Est

Y is stable, it is equivariantly isomorphic to the trivial bundle

Y ×H. Define Ã by gluing the trivial bundle cone(Y )×K with f∗Ast, using this identification.

We define the relative Dixmier-Douady class DD(A, EY ) := DD(Ã) ∈ H3(f).
Tensor products and opposites of relative Dixmier-Douady bundles are defines in the obvious

way. A Morita trivialization (A, EY ) is a Morita trivialization C ≃EX
A together with an

isomorphism EY
∼= f∗EX intertwining the module structures. From the usual Dixmier-Douady

theorem, one deduces that DD(A, EY ) is the obstruction to the existence of a relative Morita
trivialization.

More generally, one may define relative equivariant Dixmier-Douady bundles; these are clas-
sified by an equivariant class DDG(A, EY , ψY ) ∈ H3

G(f) := H3(fG), where fG : YG → XG is the
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induced map of Borel constructions. (For the stabilization procedure, one replaces H with the
stable G-Hilbert space HG containing all G-representations with infinite multiplicity.)

Appendix B. Review of Kasparov K-homology

In this Section we review Kasparov’s definition of K-homology [23, 22] for C∗-algebras.
Excellent references for this material are the books by Higson-Roe [19] and Blackadar [5].
Suppose A is a Z2-graded C∗-algebra, equipped with an action of a compact Lie group G by
automorphisms. An equivariant Fredholm module over A is a triple x = (H, ̺, F ), where H
is a G-equivariant Z2-graded Hilbert space, ̺ : A → L(H) is a morphism of Z2-graded G-C∗-
algebras, and F ∈ L(H) is a G-invariant odd operator such that for all a ∈ A,

(F 2 − I)̺(a) ∼ 0, (F ∗ − F )̺(a) ∼ 0, [F, ̺(a)] ∼ 0.

Here ∼ denotes equality modulo compact operators. There is an obvious notion of direct sum
of Fredholm modules over A. One defines a semi-group KG

0 (A), with generators [x] for each
Fredholm module over A, and equivalence relations

[x] + [x′] = [x⊕ x′],

and
[x0] = [x1]

provided x0, x1 are related by an ‘operator homotopy’ xt = (H, ̺, Ft) (cf. [5, 19]). One then
proves that every element in this semi-group has an additive inverse, so that KG

0 (A) is actually
a group. More generally, for q ≤ 0 one defines KG

q (A) = KG
0 (A ⊗ Cl(Rq)). This has the mod 2

periodicity propertyKq+2
G (A) = Kq

G(A), which is then used to extend the definition to all q ∈ Z.
The assignment A → Kq

G(A) is homotopy invariant, contravariant functor, depending only on
the Morita isomorphism class of A. It has the stability property, Kq

G(A⊗KG) = Kq
G(A), where

KG are the compact operators on a G-Hilbert-space HG containing all G-representations with
infinite multiplicity. With this definition, let us now review some basic examples of twisted
K-homology groups KG

q (X,A) = Kq
G(Γ0(X,A)) for Dixmier-Douady bundles A → X.

Example B.1. Let A → pt be a G-equivariant Dixmier-Douady bundle over a point. Disre-
garding the G-action, we have A ∼= K(E) for some Hilbert space E . As in Section 2.2 the action

G → Aut(A) defines a central extension Ĝ of G by U(1). The group Ĝ acts on E , in such a

way that the central circle acts with weight 1. Let V be a Ĝ-module where the central circle
acts with weight −1. Then the Hilbert space H = V ⊗E is a G-module. Letting ρ : C → L(H)
be the action by scalar multiplication, the triple (H, ̺, 0) is a G-equivariant Fredholm module

over C(pt) = C. This construction realizes the isomorphism R(Ĝ)−1 → KG
0 (pt,A).

Example B.2. Let M be a compact Riemannian G-manifold, and D an invariant first order
elliptic operator acting on a G-equivariant Z2-graded Hermitian vector bundle E = E+ ⊕ E−.
Suppose also that a finite rank Z2-graded G-Dixmier-Douady bundle A → M acts on E ,
where the action is equivariant and compatible with the grading. Let H be the space of L2-
sections of E , with the natural representation ̺ of Γ(M,A), and F = D(1 +D2)−1/2 ∈ L(H).
The commutator of F with elements ̺(a) for a ∈ Γ(M,A) are pseudo-differential operators
of degree −1, hence are compact. Thus (H, ̺, F ) is an equivariant Fredholm module over
Γ(M,A), defining a class in KG

0 (M,A).
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Example B.3. [24, page 114] LetM be a compact Riemannian G-manifold, and A = Cl(TM) its
Clifford bundle. Take E = ∧T ∗M , H its space of L2-sections, and ̺ the usual action of sections
of Γ(M,Cl(TM)). Let D = d + d∗ be the de-Rham Dirac operator. By B.2 above, we obtain
a Fredholm module (H, ̺, F ) over Γ(M,Cl(TM)), defining a class [M ] ∈ KG

0 (M,Cl(TM)).
This is the Kasparov fundamental class of M . (Actually, Cl(TM) is a Dixmier-Douady bundle
only if dimM is even. If dimM is odd, one can use the isomorphism KG

0 (M,Cl(TM)) =
KG

1 (M,Cl+(TM)) if needed. )

Example B.4. Let H be a closed subgroup of G, and B → pt an H-Dixmier-Douady bundle of
finite rank. As explained in B.1, any class in KH

0 (pt,Cl(g/h) ⊗ B) is realized by a Fredholm

module of the form (E , ̺, 0) where E if a Hilbert space of finite dimension. Let Ê = G×H E . The
action of Cl(T (G/H)) defines a Dirac operator, which together with the action of IG

H(B) yields

a Fredholm module and hence an element of KG
0 (G/H, IG

H (B)). This construction realizes the

isomorphism KH
0 (pt,B ⊗ Cl(g/h)) → KG

0 (G/H, indG
H(B)) if B has finite rank. As remarked in

Section 2.1, all H-Dixmier-Douady bundles over pt are Morita isomorphic to finite rank ones.
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