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Abstract. We prove a formula for the quantization of a proper Hamiltonian LG-space M
with terms indexed by the components of the critical set of the norm-square of the moment
map. Combined with a certain Lie-theoretic inequality, the formula implies that the multi-
plicity of the minimal irreducible positive energy representation at a given level is a quasi-
polynomial function of the power of the prequantum line bundle. This is closely related to
the [Q,R] = 0 Theorem for Hamiltonian LG-spaces. Our approach is based on the theory
of quasi-Hamiltonian G-spaces, as well as the approach of Paradan and Szenes-Vergne to the
[Q,R] = 0 Theorem for compact Hamiltonian G-spaces.
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1. Introduction

Let G be a compact connected Lie group, and let M be a compact symplectic manifold
equipped with a Hamiltonian G-action, with moment map φ : M → g∗. Given a G-equivariant
prequantum line bundle L, the equivariant index of the Dolbeault-Dirac operator twisted by L
is an element in the representation ring,

Q(M) = index(DL) ∈ R(G).

The Guillemin-Sternberg quantization commutes with reduction principle states that the mul-
tiplicity of the trivial representation in Q(M) equals the index of the similarly-defined operator
on the symplectic quotient Mred = φ−1(0)/G, assuming the latter is non-singular:

(1) Q(M)G = Q(Mred).
1
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This was first proved in [26] for regular symplectic quotients; in the singular case (1) still holds
true after a suitable desingularization [29].

An early approach [24] to the [Q,R] = 0 Theorem involved replacing L with L = Lk and
studying the asymptotics of Q(M,k) = index(DL) as k → ∞ using the stationary phase
approximation. An important theme is that the family Q(M,k) has good behavior as k varies.
By Ehrhart’s Theorem and the fixed-point formula, one shows that, for sufficiently large k,
the multiplicity of the trivial representation in Q(M,k) is a quasi-polynomial function of k.
This implies the o(k−∞) errors in the stationary phase approximation must vanish, leading to
a proof of (1) for L = Lk, assuming k is sufficiently large. To deduce the result for k = 1, one
needs a separate argument showing that Q(M,k)G is a quasi-polynomial function of k for all
k ≥ 1. This was proved in [24] for the case that G is abelian. An argument for the general
case was achieved many years later by Szenes-Vergne [38].

The Szenes-Vergne argument was motivated by a different approach to the [Q,R] = 0 The-
orem, due to Paradan [32]. Using a deformation argument for transversally elliptic operators,
Paradan proved a formula for the multiplicities in Q(M), with terms labelled by the compo-
nents of the critical set of the norm-square of the moment map ‖φ‖2. The leading term of
Paradan’s formula comes from the zero level of the moment map, all other terms are ‘correc-
tion terms’ which, as shown by Paradan, do not contribute to the multiplicity of the trivial
representation. Szenes-Vergne [38] observed that Paradan’s norm-square localization formula
for Q(M,k) could be derived from the Atiyah-Bott fixed-point formula using a combinatorial
argument. The resulting formula leads to a proof that Q(M,k)G is a quasi-polynomial function
of k ≥ 1.

The goal of this paper is to carry out a similar strategy in the case of Hamiltonian loop group
spaces. A Hamiltonian LG-space M is an infinite dimensional symplectic manifold equipped
with a Hamiltonian action of the loop group LG (the precise definition is given in Section 3). In
addition we assume throughout that the moment map ΦM : M→ Lg∗ is proper. An important
example of a proper Hamiltonian LG-space is the moduli space of flat connections on a compact
oriented surface with one boundary component, with framing along the boundary; the moment
map is induced by restriction of the connection to the boundary, cf. [30] for details.

There have been several approaches to define the ‘quantization’ of a Hamiltonian LG-space,
as an element in the Verlinde ring of projective positive energy representations of LG. In the
earliest approach [3], an Atiyah-Singer-type fixed-point formula for the multiplicities was taken
as the definition of the quantization of M. A symplectic cutting argument was used to show
that this definition satisfies quantization-commutes-with-reduction. Specialized to the moduli
space examples, this proves the Verlinde formulas: indeed the fixed-point formula in these
examples is the Verlinde formula, while the quantization of the reduced spaceMred = Φ−1

M(0)/G
is the Euler characteristic of the cohomology of Lred.

A more conceptual understanding of the fixed-point formula proposed in [3] was developed
in [28, 2]. In this approach one works with the finite dimensional quasi-Hamiltonian G-space
M =M/ΩG associated toM [1]. The quantization of M is defined in terms of a pushforward
in twisted K-homology from M to G, and the twisted K-homology of the latter is known to
be isomorphic to the Verlinde ring by the celebrated Freed-Hopkins-Teleman theorem. The
fixed-point formula of [3] is recovered by Atiyah-Segal localization.

A third approach to the quantization of M was developed in [21, 22] and proved to yield
the same result as the twisted K-homology approach in [19]. In this approach one defines
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the quantization in terms of the equivariant index of a Dirac-type operator on a non-compact
finite-dimensional submanifold of M. In [23] a norm-square localization formula for the index
was proved using analytic techniques.

In this article we return to the fixed-point formula for the quantization Q(M, k), and im-
plement the Szenes-Vergne strategy directly. Let us give an overview of the article. In Section
2 we prove a Lie theoretic inequality. The inequality is difficult to motivate in general, but in
the very special case g = sun and σ = {ξ} a vertex of the Stiefel diagram, the inequality is
simply ‖ξ − ρ

n‖ ≥ ‖
ρ
n‖, where ρ is half the sum of the positive roots and ‖ · ‖ is the norm on

t ' t∗ induced by the basic inner product. This inequality reappears at the end of the article,
where we find that our approach to the quasi-polynomiality theorem hinges on its truth.

Section 3 provides a brief introduction to Hamiltonian LG-spaces M and the associated
quasi-Hamiltonian G-spaces M . The norm-square of the moment map ‖ΦM‖2 as well as its
perturbation ‖ΦM‖2ε by an element ε ∈ t are briefly studied. In particular the discrete subset
Bε = {ξ ∈ t|Mξ−ε ∩ Φ−1

M(ξ) 6= ∅} indexing the components of the critical set of ‖ΦM‖2ε is
introduced.

The quantization of a Hamiltonian LG-spaceM (or the associated quasi-Hamiltonian space
M) is described in Section 4. The fixed-point formula for the quantization [3] is given towards
the end of this section; it has an appearance similar to the Atiyah-Singer fixed-point formula
for the index of a Spinc Dirac operator on M , even though M does not have a Spinc structure
in general. An introduction to the Atiyah-Singer integrand is contained in Appendix A. The
quantization Q(M, k) at level k > 0 can be described in terms of its multiplicity function
N(−, k) : Λ∗ → Z, where Λ∗ is the weight lattice of a maximal torus T ⊆ G; N(−, k) is
antisymmetric under an action of the affine Weyl group Waff = Λ o W , and N(0, k) is the
multiplicity of the minimal level k positive energy representation in Q(M, k). Let h∨ be the
dual Coxeter number of g. Here and throughout the article ` = k+h∨. The fixed-point formula
for N is

(2) N(λ, k) =
1

#T`

∑
t∈T reg

`

∑
F⊆Mt

t−λ
∏
α∈R−

(1− tα)

∫
F
ASt(ν

F̃
),

where T` = `−1Λ∗/Λ (a finite subgroup of T ), andASt(ν
F̃

) is a suitable Atiyah-Singer integrand
depending on k.

The heart of the argument is contained in Sections 5 and 6. The first step in Section 5 is
to reverse the order of the summations in (2). The sum over T` (intersect a subtorus of T
stabilizing some fixed-point set F ) is then shown to be essentially an example of a Verlinde
sum or rational trigonometric sum. This type of sum first appeared in the Verlinde formula
itself. For example if α = (α1, ..., αm) is a list of weights, then

Vα(λ, `) =
∑′

t∈T`

t−λ∏
j(1− tαj )

is an example of a Verlinde sum, where the prime next to the summation means to omit terms
from the sum such that the denominator vanishes. The algebraic and combinatorial properties
of Verlinde sums were studied by Szenes, who proved a remarkable residue formula for them
[36]. One should also see recent work of Szenes and Trapeznikova [37] related to the residue
formula, the Verlinde formula and wall-crossing.
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In [20], Szenes’ result along with methods pioneered by Boysal-Vergne [9] for closely-related
Bernoulli series, were used to derive a ‘decomposition formula’ for Verlinde sums. The latter
is a purely combinatorial analogue of the norm-square localization formula; it expresses a
Verlinde sum in terms of an infinite collection of contributions from affine subspaces of different
dimensions in t ' t∗. When applied to (2), one obtains a formula

(3) N =
∑
∆∈S

Nqpol
∆

where S is essentially the collection of all affine subspaces of t ' t∗ generated by the image of
some T -orbit-type stratum under the moment map. For a subset I ⊆ t∗ and vector δ ∈ t∗, let

CI,δ = {(tξ + δ, t) ∈ t∗ × R|ξ ∈ I, t > 0}

be the cone generated by I × {1}, shifted by δ. The contributions Nqpol
∆ are given by rather

complicated explicit formulae (equation (46)), but more importantly, they have the following
properties (Proposition 5.7):

(a) For each δ ∈ t∗, Nqpol
∆ restricts to a quasi-polynomial function of (λ, `) on C∆,δ. In

particular Nqpol
t∗ is a quasi-polynomial function.

(b) For ∆ 6= t∗ and at any fixed `, the function Nqpol
∆ is supported in a half space.

Thus to prove that k 7→ N(0, k) is quasi-polynomial, it suffices to show that for each ∆ not

containing the origin, the half space containing the support of Nqpol
∆ does not contain the origin.

In Section 6 we prove the following theorem giving an alternative characterization of the

terms Nqpol
∆ in (3).

Theorem 1.1 (Norm-square localization formula). Let N∆(−, k) denote the Fourier transform
of the measure

(4) Q∆(t, k) = δT∆T`(t)
∑
F∈Ft∆

∫
F

Cht(LF̃∆
)ASt(νF̃ ,∆)Cht(Symτ∆(ν⊥F,∆)⊗ ∧n−) ∈ D′(T ).

The multiplicity function N admits a decomposition

(5) N =
∑
∆∈S

Nqpol
∆

where Nqpol
∆ is the unique function such that (i) Nqpol

∆ is quasi-polynomial on all subsets C∆,δ,
δ ∈ t∗, and (ii) there is a constant K and an open neighborhood b of ε∆ in t such that

Nqpol
∆ (λ, k) = N∆(λ, k) for λ ∈ ` · b, k > K.

In other words the contribution Nqpol
∆ is obtained by passing to what one might call the

‘quasi-polynomial germ at ε∆ in the ∆-directions’ of the Fourier transform of (58). Here
ε∆ = pr∆(ε) is the orthogonal projection of the generic small perturbation ε ∈ t onto ∆.

Towards the end of Section 6 we use a stationary phase argument to prove that Nqpol
∆ vanishes

unless ε∆ ∈ Bε, indicating that Theorem 1.1 is a norm-square localization formula.
Section 7 contains examples of the norm-square localization formula, including that illus-

trated in Figure 1. In Section 8 we complete the last step in the strategy indicated above,
in order to prove the quasi-polynomiality theorem. The key ingredients are the norm-square
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Figure 1. The left image shows a single contribution to the norm-square lo-
calization formula for a multiplicity-free q-Hamiltonian SU(3)-space (at level
k = 2). The right image shows the sum of the first 6 contributions.

localization formula, the description of the T action on the ‘canonical bundle’ [31] involved in
the fixed-point formula, and of course the inequality from Section 2.

Theorem 1.2 (Quasi-polynomiality theorem). The function k 7→ N(0, k) is quasi-polynomial
for all k ≥ 1. In other words, the multiplicity of the minimal irreducible level k positive energy
representation in the quantization Q(M, k), is a quasi-polynomial function of k.

The [Q,R] = 0 theorem for Hamiltonian LG-spaces can be deduced from an additional ar-
gument using the stationary phase expansion, as in [24]. Specialized to the moduli space
examples, this provides a new proof of the Verlinde formula.

This is a preliminary version of the article. The results described here appeared a few years
ago in the PhD thesis of the first author [16], based on joint work of both authors. In the
intervening years the authors have attempted to simplify the presentation and proofs of the
results.

Acknowledgements. It is a pleasure to thank Michéle Vergne for discussions and encourage-
ment, as well as for her careful reading of [16].

2. An inequality for Stiefel diagrams

We begin by discussing the key Lie-theoretic inequality alluded to in the introduction.

2.1. Notation. Let G be a compact, 1-connected, simple Lie group with maximal torus T .
The Lie algebras will be denoted g, t. Let Λ = ker(exp: t → T ) be the integral lattice and
Λ∗ = Hom(Λ,Z) its dual, the (real) weight lattice. Denote by R ⊆ Λ∗ the set of roots α, and
by R∨ ⊆ Λ the set of coroots α∨. Recall that the coroots generate Λ.
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Let Raff = R×Z be the set of affine roots. The Stiefel diagram of G is defined by the affine
root hyperplanes

Hα,k = {ξ ∈ t| 〈α, ξ〉+ k = 0}
for (α, k) ∈ Raff. The closures of the connected components of t −

⋃
α,kHα,k are simple

polytopes called the (closed) alcoves. The open faces σ of these polytopes will be referred to
as the open faces of the Stiefel diagram; thus t is a disjoint union over the open faces. A
zero-dimensional face is also called a vertex. Let W be the Weyl group of (G,T ). The affine
Weyl group Waff = Λ oW acts on t by reflections across affine root hyperplanes; any of the
alcoves is a fundamental domain for this action.

Fix a fundamental Weyl chamber t+, and let R+ be the corresponding set of positive roots,
taking on nonnegative values on t+. The highest root θ ∈ R+ defines the fundamental alcove

a = {ξ ∈ t+|〈θ, ξ〉 ≤ 1}.
Let Raff,+ be the positive affine roots, taking on nonnegative values on a:

Raff,+ = {(α, k) ∈ Raff| ∀ξ ∈ a : 〈α, ξ〉+ k ≥ 0}.
Thus, either k = 0 and α ∈ R+, or k > 0 and α arbitrary. The half-sum of the positive roots
is denoted

ρ =
1

2

∑
α∈R+

α,

and the dual Coxeter number is

h∨ = 1 + 〈ρ, θ∨〉.
The basic inner product · on g is the unique invariant inner product on g such that the coroot

θ∨ satisfies θ∨ · θ∨ = 2. The associated norm will be denoted ‖ · ‖. Throughout this paper, we
often identify g ∼= g∗ and t ∼= t∗ using the basic inner product.

2.2. The inequality. Given an open face σ of the Stiefel diagram, let

Raff(σ) = {(α, k) ∈ Raff| σ ⊆ Hα,k},
the set of affine roots vanishing on σ. The quotient map Raff → R, (α, k) 7→ α restricts to a
bijection of this set with the root system R(σ) of the centralizer Gexp(ξ) ⊆ G of the element
exp(ξ), for any ξ ∈ σ. Its rank is equal to the codimension of σ in t. There are two natural
choices for systems of positive roots in R(σ), both of which will play a role in what follows.
One choice is

R+(σ) = R(σ) ∩R+;

let tσ,+ be the corresponding positive Weyl chamber, and put ρσ = 1
2

∑
α∈R+(σ) α. Another

choice is the image of

Raff,+(σ) = Raff(σ) ∩Raff,+

under (α, k) 7→ α; we will denote this choice by R′+(σ). Let t′σ,+ be the associated Weyl
chamber, and ρ′σ the corresponding half-sums of positive roots.

Lemma 2.1. For ξ ∈ σ,

ρ′σ = −ρσ +
∑

α∈R+ : 〈α,ξ〉∈Z≤0

α.



VERLINDE SUMS AND [Q,R] = 0 7

Proof. Note that ρ′σ + ρσ is the sum over all α ∈ R+(σ)∩R′+(σ). The roots in R(σ) are those
α ∈ R for which there exists k ∈ Z with 〈α, ξ〉+ k = 0. The affine root (α, k) is positive if and
only if either k = 0 and α ∈ R+, or k > 0. Hence, the condition that α lies in R+(σ) ∩R′+(σ)
just means that 〈α, ξ〉 = −k is a non-positive integer. �

Recall next that the interior of the fundamental alcove contains a distinguished element [14]

ζ̊a =
1

h∨
ρ.

For the open faces σ of the fundamental alcove we define a distinguished element ζσ ∈ σ to be
the orthogonal projection of ζ̊a onto σ; we extend this definition to all open faces of the Stiefel
diagram by requiring that ζwσ = wζσ for all w ∈Waff.

Theorem 2.2 (Key inequality). Let σ be an open face of the Stiefel diagram, and ξ = ζσ its
distinguished element. Then

(6) h∨‖ξ‖2 − 〈ρ− ρ′σ, ξ〉 ≥ 0,

with equality if and only if σ is a face of the fundamental alcove.

Remark 2.3. (a) Equation (6) can be written

‖ξ − τσ‖ ≥ ‖τσ‖, τσ =
ρ− ρ′σ

2h∨
.

(b) Combining (6) with Lemma 2.1, we obtain

(7) h∨‖ξ‖2 − 〈ρ+ ρσ, ξ〉 ≥ 0.

This inequality will be used later in the paper, for the special case that σ is a vertex
{ξ} of the Stiefel diagram. If ξ is furthermore in the co-weight lattice, so that it
exponentiates to an element of the center of G, then ρσ = ρ, hence the inequality says
that

‖ξ − ζ̊a‖ ≥ ‖ζ̊a‖.

We will prepare the proof of Theorem 2.2 with several lemmas. Denote by Waff(σ) the
stabilizer of points in σ under the action of the affine Weyl group. It is generated by the affine
reflections for affine roots vanishing on σ; its image under the quotient map Waff → W is the
Weyl group W (σ) of R(σ). In particular, Waff(σ) acts simply transitively on the set of affine
Weyl chambers at σ, by which we mean the Weyl chambers of R(σ), shifted by ξ = ζσ. For
instance, ξ + t′σ,+ is an affine Weyl chamber at σ.

Lemma 2.4. Given any open face σ of the Stiefel Diagram, there is a unique shortest element
w ∈Waff such that σ ⊆ wa. With this choice of w,

wa ⊆ ξ + t′σ,+

for ξ ∈ σ. Alternatively, w is uniquely characterized by the properties that τ := w−1σ ⊆ a and
wt′τ,+ = t′σ,+, where w ∈W is the image of w ∈Waff.

Proof. Recall that length of the unique Weyl group element taking a given alcove a1 to the
fundamental alcove a equals the number of affine root hyperplanes that are crossed by a line
segment from a point in the interior of a to a point in the interior of a. Hence, the length of
the shortest shortest Weil group element w taking σ to a face of a is the number of affine root
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hyperplanes from a point in the interior of a to a point in σ. The corresponding alcove a1 = wa
contains σ, and is the unique alcove containing ξ and contained in ξ + t′σ,,+. [....]

The alternative characterization of w is obvious if σ ∈ a (so that w = 1), the general case
follows because wa ⊆ w

(
ζτ + t′τ,+

)
= ζwτ + wt′wτ for w ∈Waff. �

Lemma 2.5. Suppose σ is an open face of the Stiefel diagram, and let w ∈Waff be the unique
shortest element such that w−1σ ⊆ a. (cf. Lemma 2.4). Then the distinguished element ζσ ∈ σ
is given by

ζσ = w
( 1

h∨
ρ
)
− 1

h∨
ρ′σ

Proof. For the case σ ⊆ a, w = 1 this is the statement of [31, Lemma 3.1]. In the general
case, write τ = w−1σ ⊆ a, so that ζσ = wζτ , and t′σ,+ = wt′τ,+, hence also ρ′σ = wρ′τ . Since

ζτ = 1
h∨
ρ− 1

h∨
ρ′τ by [31], we obtain

ζσ = wζτ = w
( 1

h∨
(ρ− ρ′τ )

)
= w

( 1

h∨
ρ
)
− w

( 1

h∨
ρ′τ
)

= w
( 1

h∨
ρ
)
− 1

h∨
ρ′σ. �

This following is a version of a standard fact about affine root systems [15, Corollary 1.3.22].

Lemma 2.6. For all w ∈Waff, we have that

1

h∨
ρ− w

( 1

h∨
ρ
)

=
1

h∨
∑

α

where the sum is over all positive affine (α, k) ∈ Raff,+ such that the alcoves a, wa are on
opposite sides of the affine hyperplane Hα,k.

Proof. If w is a reflection corresponding to one of the simple roots, this is well known. If w is
the affine reflection ξ 7→ ξ − (〈θ, ξ〉 − 1)θ corresponding to the affine root (−θ, 1), it follows by
direct computation:

w
( 1

h∨
ρ
)

=
1

h∨
ρ−

(
〈θ, 1

h∨
ρ〉 − 1

)
θ =

1

h∨
(ρ+ θ).

This proves the lemma for all simple affine reflections. By applying the action of Waff, it follows
more generally that if a1, a2 are two adjacent alcoves of the Stiefel diagram, separated by an
affine root hyperplane Hα,k, with 〈α, ·〉+k positive on å1 and negative on å2, then the difference
of their distinguished elements is

(8) ζ̊a1
− ζ̊a2

=
1

h∨
α.

For the general case of the Lemma, we may choose the points in å and ẘa in such a way that the
line segment between these points crosses the various affine root hyperplanes H(α,k), (α, k) ∈
Raff,+ at distinct times 0 < t1 < . . . < tN < 1. Note that this line segement always crosses
from positive sides to negative sides. Letting a0 = a, . . . , aN = wa be the sequence of alcoves
through which this line segment passes, write

1

h∨
ρ− w

( 1

h∨
ρ
)

=
N−1∑
i=0

(ζ̊ai − ζ̊ai+1
)

and apply (8) at each step. �
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Proof of Theorem 2.2. Let ξ = ζσ. Combining Lemmas 2.4, 2.5 and 2.6, we obtain

(9) ξ − 1

h∨
(ρ− ρ′σ) = w

( 1

h∨
ρ
)
− 1

h∨
ρ,

hence

(10) ‖ξ‖2 − 1

h∨
〈ρ− ρ′σ, ξ〉 =

〈
w
( 1

h∨
ρ
)
− 1

h∨
ρ, ξ

〉
= − 1

h∨
∑
(α,k)

〈α, ξ〉

where the sum is over all positive affine roots (α, k) ∈ Raff,+ such that the line segment from
ζ̊a to ξ = ζσ crosses Hα,k. In other words, there exists t ∈ [0, 1] such that

〈α, (1− t)ζ̊a + tξ〉+ k = 0.

Note that for k ≥ 0, this can only happen if 〈α, ξ〉 < 0. Hence, the right hand side of (10) is
≥ 0, with equality if and only if σ is a face of a (so that the line segment does not cross any
affine root hyperplanes). �

2.3. The level k fusion ring. Recall that we use the basic inner product on g to identify
g = g∗, t = t∗. Under this identification, Λ is identified with a sublattice of Λ∗. For ` ∈ N, the
quotient

T` :=
(

1
`Λ
∗)/Λ ⊆ t/Λ = T,

is a finite subgroup of T = t/Λ. Let Λ∗+ = Λ∗ ∩ t+ be the dominant weights, and Λ∗k = Λ∗ ∩ ka
for k ∈ N ∪ {0} the level k weights. Let χλ, λ ∈ Λ∗+ be the characters of the irreducible
representations of highest weight λ; these span R(G) ⊆ C∞(G). The level k fusion ring
(Verlinde algebra) is the quotient

Rk(G) = R(G)/Ik(G),

where Ik(G) is the ideal of characters vanishing at all points of T reg
k+h∨

= Tk+h∨ ∩Greg. It has an

additive basis given by the images τλ of the characters χλ for λ ∈ Λ∗k. For elements τ ∈ Rk(G),
the evaluation at points t ∈ T reg

k+h∨
is well-defined, and τ is recovered from these values by finite

Fourier transform. In fact, writing τ =
∑

µ∈Λ∗k
N(µ)τµ we obtain the multiplicities as

(11) N(µ) =
1

#T`

∑
t∈T reg

`

t−µ τ(t)
∏
α∈R−

(1− tα)

where ` = k+h∨. It is convenient to extend the domain of the multiplicity function N from Λ∗k
to the entire weight lattice, by requiring the following anti-symmetry under the shifted Weyl
group action at level `:

N(w •` µ) = (−1)l(w)N(µ),

where

w •` µ = `w(
µ+ ρ

`
)− ρ.

With this definition, formula (11) applies to all µ ∈ Λ∗.

Remark 2.7. The fusion ring can be regarded as the Grothendieck group of projective level
k positive energy representations of LG. For τ ∈ Rk(G), the character of the corresponding
positive energy representation is described by the Weyl-Kac formula. The function N is the
multiplicity function for the distributional character (on T ) given as the Weyl-Kac enumerator.
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3. Hamiltonian LG-spaces

Throughout this section, G is compact, 1-connected, and simple, although many of the
results discussed here hold in much greater generality. We take · to be the basic inner product
on g.

3.1. The coadjoint LG-action. Let LG denote the Banach Lie group consisting of maps
S1 → G of some fixed Sobolev class s > 1

2 , and Lg = Ω0
s (S

1, g) its Lie algebra. We define the

smooth dual of the Lie algebra to be Lg∗ = Ω1
s−1(S1, g), with the pairing given by the inner

product on g followed by integration: 〈µ, ξ〉 =
∫
S1 µ · ξ. The loop group LG acts smoothly on

Lg∗ by gauge transformations:

(12) µ 7→ Adg µ− g∗θR;

we refer to (12) as the coadjoint LG-action. The generating vector fields for this action are
ξLg∗(µ) = dµξ, where

dµ = d + adµ : Ω0
s (S

1, g)→ Ω1
s−1(S1, g)

is the covariant derivative. We shall regard g as the submanifold of Lg∗ consisting of constant
loops. It is well-known that the intersection of a coadjoint LG-orbit with t ⊆ g ⊆ Lg∗ is an
orbit of the affine Weyl group Waff on t.

The coadjoint LG-action has canonical slices, as follows. Let σ ⊆ t be an open face of the
Stiefel diagram. The stabilizer of elements ξ ∈ σ under the coadjoint LG-action depends only
on σ, and is denoted by LGσ. The set

(13) Uσ = LGσ ·
⋃
τ⊇σ

τ

(union is over the set of faces whose closure contains σ) is an open subset of the affine subspace
ξ + ran(d∗ξ) ⊆ Lg∗ for ξ ∈ σ, and is a slice at ξ for the coadjoint action. For σ ⊆ τ we have
LGτ ⊆ LGσ, hence Gexp τ ⊆ Gexpσ, and equivariant embeddings

LGσ ×LGτ Uτ ↪→ Uσ
as dense open subsets.

The slices for the coadjoint LG-action are closely related to slices for the conjugation action.
The exponential map exp: g→ G extends equivariantly to the holonomy map

Hol : Lg∗ → G,

with Hol(g · µ) = Adg(0) Hol(µ). It maps coadjoint LG-orbits to conjugacy classes; the map
LG → G, g 7→ g(0) restricts to isomorphisms of stabilizers LGµ → GHol(µ). For µ ∈ σ,
the centralizer Gexp(µ) depends only on σ, and will be denoted Gexp(σ). The sets Uexpσ =
Gexpσ ·

⋃
τ⊇σ exp τ are slices for the conjugation action, and Hol restricts to diffeomorphisms

Uσ → Uexpσ, intertwining the actions of LGσ ∼= Gexpσ.

3.2. The central extension of the loop group. Let L̂G be the basic central extension of
LG. We will need some facts regarding the restriction of these central extension to various

subgroups of the loop group. Over G ⊆ LG, the central extension L̂G is canonically trivial (as
is any central extension of a simply connected group). Hence the restriction to T ⊆ G is trivial
as well. On the other hand, the restriction to the lattice Λ ⊆ LT ⊆ LG of ‘exponential loops)
may be non-trivial. It may be described, up to isomorphism, in terms of the corresponding
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group commutator: If λ̂1, λ̂2 ∈ Λ̂ are elements lifting λ1, λ2, then the commutator is expressed
in terms of the basic inner product λ1 · λ2 ∈ Z as

(14) λ̂1λ̂2λ̂
−1
1 λ̂−1

2 = (−1)λ1·λ2 ,

see [33, 39]. Over the product Λ × T ⊆ LG, the central extension restricts to a semi-direct
product

(15) L̂G|Λ×T = Λ̂ o T

with Λ̂ = L̂G|Λ. Here the T -action on Λ̂ is given, on the fiber of a given element λ ∈ Λ, as
scalar multiplication by tλ, where the basic inner product is used to regard Λ as a sublattice
of Λ∗; see [3, Proposition 4.1].

For ` ∈ Z, we use a superscript (`) to indicate the `-th power of the extension of LG (and

its subgroups). Equation (14) shows that Λ̂(`) for even ` can be trivialized, by choosing lifts of
a basis of Λ. Furthermore, by (15)

L̂G
(`)
|Λ×T` = Λ̂× T`

(a direct product) for any ` ∈ N.

3.3. Hamiltonian LG-spaces. The basic theory of Hamiltonian loop group spaces was de-
veloped in [30, 3, 7, 10].

Definition 3.1. A proper Hamiltonian LG-space (M, ωM,ΦM) is a Banach manifold M
equipped with a smooth LG-action, an LG-invariant weakly symplectic form ωM, and a proper
LG-equivariant smooth moment map

ΦM : M→ Lg∗

satisfying ι(ξM)ω = −d〈ΦM, ξ〉 for all ξ ∈ Lg.

In [1], it was observed that proper Hamiltonian loop group spaces are in 1-1 correspondence
with finite-dimensional quasi-Hamiltonian spaces, as follows. Denote by θL, θR ∈ Ω1(G, g) the
left-invariant, right-invariant Maurer-Cartan forms, and by η ∈ Ω3(G) the Cartan 3-form

η = 1
12〈θ

L, [θL, θL]〉.

It has an equivariant extension, for G acting on itself by conjugation,

ηG(ξ) = η − 1
2〈θ

L + θR, ξ〉, ξ ∈ g.

Definition 3.2. [1] A q-Hamiltonian G-space (M,ω,Φ) is a G-manifold M , together with an
invariant 2-form ω and a smooth equivariant map Φ: M → G (the group-valued moment map)
satisfying

(16) dGω = −Φ∗ηG,

and such that ker(ωm) ∩ ker(TmΦ) = {0} for all m ∈ M . This last condition is referred to as
‘minimal degeneracy’; if it is not satisfied, then we refer to M as a degenerate q-Hamiltonian
G-space.
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As shown in [1], the quotient ofM by the based loop group L0G is a q-Hamiltonian G-space
M ; in turn, M is recovered from M as the pullback of the holonomy fibration Lg∗ → G under
the moment map Φ: M → G. Let p : M→M be the quotient map:

M
ΦM
//

p

��

Lg∗

��

M
Φ
// G

The 2-form ωM is related to ω by an equality

ωM = p∗ω + Φ∗M$,

where $ ∈ Ω2(Lg∗) is a distinguished LG-invariant primitive of the pullback of η under the
holonomy fibration Lg∗ → G. Since G is connected, the q-Hamiltonian G-space M is even-
dimensional [1], and since G simply connected it comes with a canonical volume form [4],
defining in particular an orientation.

Given a face σ of the Stiefel diagram, the pre-image of the corresponding slice is a finite-
dimensional symplectic manifold Yσ = Φ−1

M(Uσ) called the symplectic cross-section. Its image
under the quotient map to M is a q-Hamiltonian Gexpσ-space Yexpσ = Φ−1(Uexpσ).

Here is one way of describing the canonical orientation of M . One first observes that the
symplectic structure on Yexpσ induced by the diffeomorphism with Yσ depends only on expσ
(not on σ). In particular, Yexpσ has a canonical orientation. The normal bundle to Yexpσ inside
M is Gexpσ-equivariantly isomorphic to the trivial bundle with fibers g/gexpσ. This space has
an orientation, obtained as the quotient of the orientations on g/t and on gexpσ/t ∼= Lgσ/t.
Here, the latter orientation is defined by the Weyl chamber t′+,σ discussed in Section 2.2., or
equivalently by the complex structure on Lgσ/t ⊆ Lg/t. This explains the orientation of M
along Yexpσ, hence also on its flow-out under the conjugation action; one finds that the local
orientations agree on overlaps.

3.4. The norm-square of the moment map. For s > 1, the elements of Lg∗ have Sobolev
class > 0, hence the energy functional

‖ · ‖2 : Lg∗ → R, µ 7→ ‖µ‖2 =

∫
S1

µ · ∗µ

(where ∗(ds) = 1, ∗(1) = ds) is a well-defined smooth function, invariant under the action of
G ⊆ LG. More generally, for given ε ∈ Lg∗ we consider the ε-shifted energy functional ‖ · ‖2ε
defined as

‖µ‖2ε = ‖µ− ε‖2.
This satisfies ‖g · µ‖2ε = ‖µ‖2g−1·ε, in particular, ‖ · ‖2ε is LGε-invariant. From now on, we will

take ε in t ⊆ Lg∗ (mostly ε ∈ a). The following is a straightforward extension of a result of
Bott (for ε = 0):

Proposition 3.3. Let ε ∈ t. For any coadjoint LG-orbit O ⊆ Lg∗, the set of critical points of
the restriction of ‖ · ‖2ε to O is

LGε.(O ∩ t).

In particular, if ε is regular (with stabilizer T ) the critical set is the intersection of O∩ t, while
for ε = 0 it is the intersection O ∩ g.
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Proof. Every tangent vector at a given point µ ∈ O is realized as the derivative, at t = 0, of a
path µt = gt · µ = Adgt(µ− g∗t θL), with gt ∈ LG, g0 = e. Let ξ = ∂

∂t

∣∣
t=0

gt ∈ Lg. Then µ is a
critical point if and only if

d

dt

∣∣∣
t=0
‖µt‖2ε = −2

∫
S1

(µ− ε) · ∗dεξ = 2

∫
S1

dε(∗µ) · ξ

(noting that dε ∗ ε = 0) vanishes for all ξ, which is the case if and only if dε(∗µ) = 0. But this
is equivalent to Adexp sε µ being constant, i.e. in g ⊆ Lg∗. Thus, µs = Adexp(−sε) ν for some
ν ∈ g. The condition that µ is a loop means that ν is in the Lie algebra of the centralizer of
exp(ε). Equivalently, ν ∈ Adk t for some k ∈ Gexp(ε), i.e. µ ∈ g · t, where g ∈ LGε is the loop
s 7→ Adexp(−sε)(k), i.e., the pre-image of k under the isomorphism LGε ∼= Gexp(ε). �

Given a proper Hamiltonian LG-space (M, ωM,ΦM), the composition of the moment map
with the shifted energy functional for ε ∈ a gives a smooth LGε-equivariant map,

‖ΦM‖2ε : M→ R.
The following description of its critical set is the loop group counterpart of a result of Kirwan
[12]; it was proved in [8, 17] for the case ε = 0. The description is in terms of the subset

(17) Bε = {ξ ∈ t : Mξ−ε ∩ Φ−1
M(ξ) 6= ∅}.

where Mξ ⊆M denotes the fixed point set of ξM.

Proposition 3.4. Let (M, ωM,ΦM) be a proper Hamiltonian LG-space, and ε ∈ t. Then the
set of critical points of the shifted energy functional is

crit(‖ΦM‖2ε ) = LGε ·
⋃
ξ∈Bε

Mξ−ε ∩ Φ−1
M(ξ).

In particular, the set of critical values is LGε.(Bε).

Proof. For ε = 0, the proof may be found in [8, 17]. The argument in the general case is similar:
We first observe that by equivariance of the moment map, if x ∈M is a critical point for ‖ΦM‖2ε ,
then ξ = ΦM(x) ∈ LGε · t is a critical point for the restriction of ‖ ·‖2ε to the orbit O containing
ξ; hence Proposition 3.3 shows that ξ ∈ LGε · t. Using the action of LGε, we may therefore
assume ξ ∈ t ⊆ Lg∗. Let σ be the open face of the Stiefel diagram containing ξ, and Yσ the
corresponding symplectic cross-section containing x. Then x is a critical point for the function
‖ΦM‖2ε if and only if it is a critical point for the restriction to the finite dimensional symplectic
manifold Yσ. Thus as in Kirwan [12], x is in the critical set if and only if the vector field
generated by ξ− ε vanishes at x, or in other words x ∈ (Yσ)ξ−ε∩Φ−1

M(ξ) =Mξ−ε∩Φ−1
M(ξ). �

As an aside, we note that the critical set of ‖ΦM‖2ε also admits an interpretation in terms
of the associated q-Hamiltonian space M =M/L0G:

Proposition 3.5. The quotient map M→M restricts to bijections, for all ξ ∈ t,

Mξ−ε ∩ Φ−1
M(ξ)

∼=−→M ξ−ε ∩ Φ−1(exp(ξ)).

Proof. Regarding M as the fiber product M ⊆ M × Lg∗ over G, with moment map given
by projection to the second factor, the elements in Φ−1

M(ξ) for ξ ∈ t are exactly those of the
form x = (m, ξ) ∈ M with Φ(m) = exp(ξ). Furthermore, x is (ξ − ε)-fixed if and only if m is
(ξ − ε)-fixed. �
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To get a better understanding of the set Bε, one uses some basic facts about orbit type
decompositions of Hamiltonian spaces. Consider the collection S = {∆} of all affine subspaces
of the form

(18) ∆ = ΦM(x) + (tx)⊥ ⊆ t

for elements x ∈ Φ−1
M(t), where tx is the infinitesimal stabilizer under the action of T ⊆ LG,

and (tx)⊥ its orthogonal complement inside t.

Lemma 3.6. The collection S is Waff-invariant and locally finite, in the sense that every
bounded subset of t meets only finitely many elements of S.

Proof. The pre-image Φ−1
M(t) is covered by the collection of cross sections Yσ, where σ ranges

over the open faces of the Stiefel diagram. By well-known results in symplectic geometry (see
e.g. [34]), letting Yσ be the cross-section containing x, the image of the T -orbit type stratum of
x in Yσ is an open subset of the symplectic submanifold YTxσ , and its image under the moment
map is an open subset of the affine subspace ∆ = ΦM(x) + (tx)⊥. Since Yσ has only finitely
many orbit type strata, there are only finitely many such affine subspaces, all passing through
the union of alcoves adjacent to σ. Hence S is locally finite. The second claim follows since
Waff permutes the collection of symplectic cross-sections. �

Lemma 3.7. For all ε ∈ t,
Bε ⊆ {ε∆ := pr∆(ε)| ∆ ∈ S},

where pr∆ : t→ ∆ is the orthogonal projection. In particular, the set Bε is discrete.

Proof. By definition, ξ ∈ Bε if and only if there exists x ∈M with ΦM(x) = ξ and ξ − ε ∈ tx.
Letting ∆ be the affine subspace ΦM(x) + (tx)⊥, this means that ξ ∈ ∆, with ξ− ε orthogonal
to ∆. Equivalently, ξ = pr∆(ε). �

4. Quantization of Hamiltonian LG-spaces

4.1. The canonical twisted Spinc-structure. A Spinc-structure on a finite-dimensional
even-rank vector bundle V → M is given by Euclidean metric on V , together with a Z2-
graded unitary spinor module S → M over the Clifford bundle Cl(V ), identifying the latter
with End(S). For any spinor module S, the dual bundle is again a spinor module in a canonical
way; the line bundle Z = HomCl(V )(S

∗, S) → M is called the anti-canonical line bundle asso-
ciated to the Spinc-structure. Finite-dimensional symplectic manifolds have canonical Spinc-
structures, up to isomorphism, defined by compatible almost complex structures. By contrast,
q-Hamiltonian G-spaces need not be Spinc, in general. However, we have the following fact.

Suppose as before that G is simple and 1-connected, and let L̂G denote the basic central ex-

tension of the loop group. Given a L̂G-equivariant vector bundle E →M, we say that E is at

level ` ∈ Z if the central elements z ∈ U(1) ⊆ L̂G act as multiplication by z`.

Theorem 4.1. [2, 21] For any q-Hamiltonian G-space M , with associated proper Hamiltonian
loop group space M, the pull-back bundle

p∗TM →M

has an L̂G-equivariant Spinc-structure, which is canonical up to equivariant isomorphism. The

associated Z2-graded spinor bundle S→M is L̂G-equivariant at level h∨.
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The anti-canonical line bundle Z associated to the Spinc-structure is equivariant at level
2h∨; its dual is the ‘canonical line bundle’ K →M, constructed in [31].

4.2. Prequantization. The triple

(19) (M, kωM, kΦM)

can be thought of as a Hamiltonian L̂G-space, where the central circle acts trivially, with
moment map k. In particular, the moment map (kΦM, k) is equivariant for the usual coadjoint
action on

L̂g
∗ ∼= Lg∗ × R.

A level k prequantization of (M, ωM,ΦM) is given by a L̂G-equivariant line bundle L → M
for (19), equipped with an invariant connection ∇ such that

i

2π
curv(∇) = kω,

and the lift of the group action is given by Kostant’s moment map condition for the moment
map (kΦM, k). In particular, L is equivariant at level k. Note that a level k prequantization
determines prequantizations for all multiples of k.

Given a level k pre-quantization, we may tensor the spinor bundle S→M from Theorem 4.1

by L to obtain a new L̂G-equivariant spinor bundle L⊗S over p∗Cl(TM), which is equivariant
at level k + h∨. The associated anti-canonical line bundle

L2 ⊗Z →M

is thus equivariant at level 2(k + h∨).

4.3. Quantization. A level k prequantization L gives rise to a canonically defined element of
the level k fusion ring Rk(G), denoted

(20) Q(M, k) ∈ Rk(G)

and called the quantization. (This element may well depend on the choice of L, but we will not
indicate this dependence in the notation.) In [3], (20) was defined through an ‘Atiyah-Bott’-
like fixed point formula; in [28] it was defined as a K-homology push-forward and the fixed
point formula was obtained as a theorem. We will recall this formula in Section 4.4 below.
Equivalently, (20) is described in terms of the associated multiplicity function (see Section 2.3)

N(·, k) : Λ∗ → Z,

which is anti-invariant under the shifted affine Weyl group action at level k + h∨.

Remark 4.2 (Interpretation of the Waff-anti-invariant extension). If the moment map ΦM
is transverse to t ⊆ Lg∗, then X = Φ−1

M(t) is a finite-dimensional submanifold, with a T -
equivariant Spinc-structure induced from that on p∗TM , and LX = L|Φ−1

M (t) is a pre-quantum

line bundle for the presymplectic form given as the pullback of kωM. Even though X is non-
compact, the corresponding Spinc-Dirac operator with coefficients in LX has a well-defined
T -equivariant index, with finite multiplicities. The function N(·, k) is the corresponding mul-
tiplicity function. See [22] for details.
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Remark 4.3 (Tensor powers of the line bundle). A level k0 prequantization of (M, ωM,ΦM)
canonically induces a level k = k0n prequantization for all n ∈ N, by taking powers of the
pre-quantum line bundle L. We hence obtain a sequence of quantizations Q(M,k) ∈ Rk(G)
for k = k0n, where n = 1, 2, . . ., with associated multiplicity functions µ 7→ N(µ, k) on Λ∗. We
extend the definition to all k ∈ N, by putting N(µ, k) = 0 if k is not a multiple of k0.

Example 4.4. For G = SU(2), we have that h∨ = 2, and Λ∗ = Z with 1 ∈ Z corresponding to
the element ρ. The affine Weyl group action at level k + 2 is generated by affine reflections
across the points −1 and k + 2. The multiplicity function N(·, k) for any level k prequantized
Hamiltonian LSU(2)-space (or equivalently, the associated q-Hamiltonian SU(2)-space) is anti-
invariant under this action, and so is determined by the values N(µ, k) for µ = 0, . . . , k. Some
examples of such multiplicity functions are worked out in [27]. For the ‘multiplicity-free’ q-
Hamiltonian SU(2)-space M = S4, one finds

N(µ, k) = 1

for all k ∈ N and µ = 0, . . . , k. Another example is the ‘fused double’ M = D(SU(2)), with
corresponding Hamiltonian LG-space M the moduli space of flat connections on a surface of
genus 1 with one boundary component. Here

N(µ, k) =

{
0 µ odd,

k + 1− µ µ even.

for 0 ≤ µ ≤ k.

4.4. Fixed point formula. We will state the fixed point formula from [3] and explain its
ingredients; our eventual aim is to derive from it a ‘norm-square’ localization formula. Recall
that for elements τ ∈ Rk(G), the evaluation τ(t) at regular elements t ∈ T reg

k+h∨
is defined,

and these values determine τ . Suppose (M, ωM,ΦM) is a proper Hamiltonian LG-manifold,
prequantized at level k, and let Q(M) ∈ Rk(G) be its quantization. Let M be the associated
q-Hamiltonian G-space. The fixed point formula for (20) reads as

(21) Q(M)(t) =
∑
F⊆Mt

∫
F
ASt(ν

F̃
), t ∈ T reg

k+h∨

a sum over connected components F of the fixed point set of t in M , where the differential
form

(22) ASt(ν
F̃

) ∈ Ω(F )

is ‘essentially’ the integrand for the fixed point formula (Atiyah-Segal-Singer) of a Spinc-Dirac
operator – even though M does not have a Spinc-structure, in general. To explain the definition,
let

F̃ = F ×T t ⊆ F × t

be the fiber product of F and t over T , so that Λ acts on F̃ with quotient F .

Lemma 4.5. There is a Λ× T -equivariant embedding of F̃ as a finite-dimensional symplectic
submanifold

F̃ ↪→M,
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taking values in Mt ∩ Φ−1
M(t), in such a way that the quotient map M → M restricts to the

covering map F̃ → F = F̃ /Λ.

Proof. The inclusion is given by the natural map of fibered products, F×T t→M×GLg∗ ∼=M.
For any face σ of the Stiefel diagram, the intersection with the corresponding cross-section,

F̃ ∩ Yσ is a union of components of the fixed point set Ytσ. We hence see that F̃ is a union of
symplectic submanifolds. �

Let νF be the normal bundle to F inside M . We define

(23) ν
F̃

:= p∗TM |
F̃
/T F̃ ' p∗νF → F̃ .

The spinor bundle S for p∗TM →M restricts to a Λ̂ o T -equivariant spinor bundle S|
F̃

for

(24) p∗TM |
F̃
' T F̃ ⊕ νF̃ → F̃

at level h∨. On the other hand, the prequantum line bundle L restricts to a Λ̂o T -equivariant
equivariant line bundle L

F̃
at level k; their tensor product S|

F̃
⊗ L

F̃
is a Spinc-structure at

level k+h∨. After choosing Λ̂oT -invariant bundle metrics and connections, the Atiyah-Singer
integrand for the given element t ∈ T reg

k+h∨
and the t-equivariant Spinc-structure S|

F̃
⊗ L

F̃
on

T F̃ ⊕ ν
F̃

,

(25) ASt(ν
F̃

) ∈ Ω(F̃ )

is a well-defined differential form. The general definition and several equivalent formulae for
ASt(ν

F̃
) are recalled in Appendix A. However in this case there is a simpler expression for

ASt(ν
F̃

).

Since F̃ is symplectic, the 2-out-of-3 principle for Spinc-structures gives a Λ̂oT -equivariant
spinor bundle Sν

F̃
for ν

F̃
. For this case the Atiyah-Singer integrand takes on the simpler form

(26) ASt(ν
F̃

) =
Td(F̃ ) Cht(L

F̃
)

Cht(S∗ν
F̃

)
.

where the denominator is the equivariant (super) Chern character of the dual spinor module
S∗ν

F̃
. Under the action of λ ∈ Λ, the factor Cht(L

F̃
) in (26) is preserved up to a phase factor

tkλ, while the denominator Cht(S∗ν
F̃

) transforms similarly with a phase factor t−h∨λ. Since

t(k+h∨)λ = 1 for t ∈ Tk+h∨ , we see that the product is Λ-invariant, and so descends to F . This
is our form (22).

Remark 4.6. Our definition of (25) works more generally for elements t ∈ T and F a connected
component of M t, provided that the subgroup TF ⊆ T fixing F pointwise contains some regular
element. (We will soon need this more general situation.) Indeed, this assumption guarantees
that F ⊆ Φ−1(T ) and Lemma 4.5 is unchanged. If furthermore t ∈ Tk+h∨ , then (25) descends
to F .

Remark 4.7. If k + h∨ is even, then the Λ̂-action on p∗TM |
F̃

descends to a Λ-action, and we
obtain a Tk+h∨-equivariant Spinc-structure on the bundle TM |F (and equivalently, on the total
space of νF ). In this case, the integrand (22) is directly defined as in the Atiyah-Singer fixed

point formula, without the need to work on the cover F̃ . If k + h∨ is odd, one can still define
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an equivariant Spinc-structure on TM |F , but it depends on a choice and results in a slightly
different formula. See [28] for details.

Remark 4.8. One option is to interpret ASt(νF̃ ) as the Atiyah-Singer fixed point integrand for
the Spinc structure on the ambient space Tot(νF̃ ). Alternatively it is possible to construct an

‘ambient space’ that works for all components F̃ simultaneously, as follows. Let

U ∼= T × g/t ↪→ G

be an N(T )-equivariant tubular neighbourhood embedding, with pre-image X = Φ−1(U). Let

Ũ ∼= t×T U and X̃ ∼= t×TX be the fiber products over T . There exists a ΛoNG(T )-equivariant
embedding

Ũ ∼= t× g/t ↪→ Lg∗,

restricting to the inclusion of t, such that the holonomy map Lg∗ → G restricts to the covering

map Ũ → U . (See [21] for details.) Its pre-image under ΦM defines an embedding of X̃ into

M. Regarding X̃ as a submanifold of M in this way, its tangent bundle is identified with

p∗TM |
X̃

, and so it has a level h∨ spinor bundle S|
X̃

. The normal bundle of F̃ inside X̃ is

identified with ν
F̃

, and ASt(ν
F̃

) is the corresponding Atiyah-Singer integrand. This point of
view will become important in Section 6.3.

5. Rearrangement of the fixed point contributions and the decomposition
formula

In this section we re-write the fixed-point formula for Q(M, k) in terms of Verlinde sums
(see Section 5.4), and then apply the Decomposition formula proved in [20].

5.1. Orbit type rearrangement. Let (M, ωM,ΦM,L0) be a level k0 prequantized Hamil-
tonian LG-space. As in Remark 4.3, M acquires a prequantization L = L⊗n0 at each level
k = nk0 for n ∈ Z>0. Let Q(M, k) ∈ Rk(G) be its quantization.

By (11), the associated multiplicity function N(·, k) : Λ∗ → Z is expressed in terms of the
values Q(M,k)(t) for t ∈ T reg

` , which are given, in turn, by (21):

N(λ, k) =
1

#T`

∑
t∈T reg

`

∑
F⊆Mt

t−λ
∏
α∈R−

(1− tα)

∫
F
ASt(ν

F̃
).

Note that N(λ, k) is a function of k ∈ k0Z>0. The right hand side of this expression depends
on k due to the explicit appearance of ` = k+h∨, as well as through the line bundle L (defined
for k ∈ k0Z>0) that plays a role in the definition of ASt(ν

F̃
).

We will now exchange the two summations, by first summing over all possible F . Let

(27) F = {F ⊆M | ∃t ∈ T reg : F is a component of M t}.
Each F ∈ F is a T -invariant submanifold. Since F is fixed by at least one regular element
t, the equivariance of the map Φ shows that Φ(F ) ⊆ Gt = T . Let TF ⊆ T be the subgroup
(possibly disconnected) fixing F pointwise. Some points of F will have a larger stabilizer, but
basic properties of orbit type stratifications (see e.g. [34, Section 2]) show that the principal
stratum of F (i.e, the subset of elements in F with stabilizer exactly equal to TF ) is open,
dense and connected in F . The set F has a partial ordering given by

F ′ � F ⇔ F ′ ⊆ F,
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and in this case TF ⊆ TF ′ . In terms of this partial ordering, the principal stratum of F is
F\ ∪F ′≺F F ′.

We now rewrite the multiplicities by first summing over all F ∈ F, and then over all t ∈ T`
having F as a fixed point component. Note for a given t ∈ T , the submanifold F ∈ F is a
component of M t if and only if t ∈ TF and the action of t on the normal bundle does not fix
any non-zero vectors. The formula for the multiplicities becomes

N(λ, k) =
1

#T`

∑
F∈F

∑′

t∈TF∩T`

t−λ
∏
α∈R−

(1− tα)

∫
F
ASt(ν

F̃
),

where the prime indicates that we leave out any t whose action on νF has a non-trivial fixed
point set. Observe that we dropped the superscript ‘reg’ from T`, since the product over
negative roots is zero when t is not regular; on the other hand, in Remark 4.6 we had defined
ASt(νF̃ ) even for non-regular t, so long as TF contains some regular element.

Thinking of this sum as a finite Fourier transform, we may move the factor
∏
α∈R−(1− tα)

outside the sum, replacing it with finite difference operators
∏
α∈R− ∇α. We hence arrive at

the expression

(28) N(·, k) =
1

#T`

( ∏
α∈R−

∇α
)
N(·, k)

with

(29) N(λ, k) =
∑
F∈F

∑′

t∈TF∩T`

t−λ
∫
F
ASt(ν

F̃
).

5.2. Action of components of TF . In general, the subgroups TF for F ∈ F may be discon-
nected. Let TF,0 denote the identity component. For a ∈ TF /TF,0, let TF,a be the corresponding
component of TF , let `F,a ∈ Z>0 be the smallest natural number such that TF,a ∩ T`F,a 6= ∅,
and choose an element tF,a in this intersection.

Lemma 5.1. For ` ∈ Z>0, we have that TF,a ∩ T` 6= ∅ if and only if ` is a multiple of `F,a.
Furthermore, in this case

TF,a ∩ T` = tF,a · (TF,0 ∩ T`).

Proof. The condition TF,a ∩ T` 6= ∅ is equivalent to

(30) ` exp−1(TF,a) ∩ Λ∗ 6= ∅
It is immediate that the set of ` ∈ Z with this property is a subgroup of Z which implies the
first claim. The second claim follows from TF,a = tF,a · TF,0. �

Suppose ` = k+h∨ is a multiple of `F,a, so that tF,a ∈ T`. We are interested in the fixed point
contribution from elements in TF,a ∩ T`. Hence we will give a description of the Atiyah-Singer
integrand AStF,at(ν

F̃
, ) for t ∈ TF,0.

For any F ∈ F, the normal bundle νF splits TF -equivariantly as a direct sum

νF = ν ′F ⊕ ν ′′F ,
where ν ′′F is the subbundle fixed by the identity component TF,0. Pick a ‘Kronecker generator’
υ ∈ t, i.e., such that exp(υ) generates a dense subgroup of T . The bundle ν ′F has a unique
T -invariant orthogonal complex structure, with the property that the pairings of the complex



20 YIANNIS LOIZIDES AND ECKHARD MEINRENKEN

weights of the TF -action on ν ′F with prtF (υ) are all > 0. (Indeed, prtF (υ) ∈ tF acts as an
invertible skew-adjoint transformation of ν ′F ; dividing by its ‘absolute value’ we obtain a skew-
adjoint operator with the same eigenspaces and with eigenvalues ±i.) The complex structure
determines a T -equivariant Spinc-structure for ν ′F . On the other hand, the choice of an ωF -
compatible, T -invariant, almost complex structures on F gives a T -equivariant Spinc-structure

for TF . Pulling back to F̃ and using the Λ× T -equivariant decomposition

p∗TM |
F̃

= T F̃ ⊕ ν ′
F̃
⊕ ν ′′

F̃

where ν ′
F̃

= p∗ν ′F |F̃ , ν ′′
F̃

= p∗ν ′′F |F̃ , the bundle ν ′′
F̃

inherits a Λ̂o T -equivariant Spinc-structure

at level h∨, by quotient. For all t ∈ TF ,

Cht(S∗ν
F̃

) = Cht(S∗ν′
F̃

) Cht(S∗ν′′
F̃

) = DtC(ν ′
F̃

) Cht(S∗ν′′
F̃

),

where

DtC(ν ′
F̃

) = detC(1− t−1e
−iR(ν′

F̃
)/2π

),

the complex determinant being taken in the fibres of the complex vector bundle ν ′
F̃

(see also

Proposition A.8). The Atiyah-Singer integrand takes on the form

ASt(ν
F̃

) =
Td(T F̃ ) Cht(LF̃ )

DtC(ν ′
F̃

) Cht(S∗
ν′′
F̃

)
.

Let Φ
F̃

: F̃ → t∗ be the restriction of the moment map. For t ∈ TF,0, we have that

ChtF,at(L
F̃

) = t
prt∗

F
(kΦ

F̃
)
ChtF,a(L

F̃
)

since the TF,0-action fixes the base, and so the locally constant phase factor describing its
action on the pre-quantum line bundle L

F̃
is described in terms of the moment map (the

corresponding weight for TF,0 is the projection prt∗F (kΦ
F̃

)). (By contrast, it is usually not

possible to determine the tF,a-action on L
F̃

from the moment map alone.)
Similarly, the T -action on the anti-canonical line bundle Zν′′

F̃
defines a (Berline-Vergne)

moment map, which we write as 2h∨Ψ′′
F̃

: F̃ → t∗ to take into account the level 2h∨-equivariance

with respect to the Λ-action on F̃ , t∗. Since TF,0 acts trivially on the base F̃ , as well as on ν ′′
F̃

,

the prt∗F -component of Ψ′′
F̃

is locally constant, hence h∨ prt∗F Ψ′′
F̃

: F̃ → t∗F is a locally constant

weight for the TF -action such that

ChtF,at(S∗ν′′
F̃

) = t
−h∨ prt∗

F
Ψ′′
F̃ ChtF,a(S∗ν′′

F̃

).

We hence obtain

(31) AStF,at(ν
F̃

) = Q
F̃ ,a,k

tσF̃ ,`

DC(ν ′
F̃
, tF,at)

where σF̃ ,` is the affine-linear function of ` given by

σF̃ ,` = prt∗F (kΦ
F̃

+ h∨Ψ′′
F̃

) = `prt∗F (Φ
F̃

) + h∨ prt∗F (Ψ′′
F̃
− Φ

F̃
).



VERLINDE SUMS AND [Q,R] = 0 21

We also define σF̃ = σF̃ ,0 = h∨ prt∗F (Ψ′′
F̃
− Φ

F̃
). In equation (31) we have also collected the

t-independent factors into a single differential form Q
F̃ ,a,k

, defined by

(32) Q
F̃ ,a,k

=
Td(F̃ ) ChtF,a(L

F̃
)

ChtF,a(S∗
ν′′
F̃

)

when ` is a multiple of `F,a, and Q
F̃ ,a,k

= 0 when ` is not a multiple of `F,a. Note that σF̃ ,` is

locally constant on components of F̃ , and takes values in the weight lattice Λ∗F = prt∗F (Λ∗) of

TF,0; its values on different components differ by elements of the lattice prt∗F (`Λ). Consequently,

if t ∈ TF,0∩T`, the factor tσF̃ ,` descends to F . Likewise, the form (32) descends by Λ-invariance
to a form QF,a,k ∈ Ω(F ). Equation (29) becomes

(33) N(λ, k) =
∑
F∈F

∫
F

∑
a

t−λF,aQF,a,k
∑′

t∈TF,0∩T`

t
σF̃ ,`−prt∗

F
(λ)

DtF,atC (ν ′F )
.

The summation

(34)
∑′

t∈TF,0∩T`

t
σF̃ ,`−prt∗

F
(λ)

DtF,atC (ν ′F )

is an example of a (differential-form valued) Verlinde sum for the torus TF,0. The next step in
our analysis involves a combinatorial ‘decomposition formula’ for Verlinde sums.

5.3. Quasi-polynomials and shifted cones CI,δ. Let Γ be a finite rank lattice. A complex-

valued function on Γ of the form γ 7→ e2πi〈µ,γ〉 ∈ U(1) for some µ ∈ Hom(Γ,Q) is called a
rational character. The algebra of quasi-polynomials on Γ is the algebra generated by poly-
nomials on Γ together with the rational characters. Equivalently, a function q : Γ → C is
quasi-polynomial if there is a sublattice Γ′ ⊆ Γ of finite index such that the restriction of q
to each coset γ + Γ′ ⊆ Γ is a polynomial. More generally, a function from Γ to some vector
space V is quasi-polynomial if its components (in any basis of V ) are quasi-polynomial. A
function defined on a subset S ⊆ Γ is called quasi-polynomial if it is the restriction of a quasi-
polynomial function on Γ (clearly this only has content if S is an infinite subset). Similarly if
the restriction of a function to S ⊆ Γ equals the restriction of a quasi-polynomial function to
S, then the function will be said to be quasi-polynomial on S. Finally when there is no risk
of confusion, we use all the same terminology when S is in fact a subset of the ambient real
vector space Γ⊗Z R, with the understanding that we are referring to functions defined on the
intersection S ∩ Γ.

The definitions above apply to the special case Γ = Λ∗×Z ⊆ t∗×R, with elements γ = (λ, `).
We shall encounter partially-defined functions of (λ, `) ∈ Λ∗×Z. For example, the multiplicity
function N for a Hamiltonian LG-space prequantized at level k0 > 0 is defined for λ ∈ Λ∗ and
` ∈ h∨+k0 ·Z>0 ⊆ Z. Frequently these functions will be quasi-polynomial on the intersection of
their domain with a shifted cone in t∗×R. It is convenient to introduce the following notation.
For any subset I ⊆ t∗ and δ ∈ t∗, let

(35) CI,δ = {(tξ + δ, t)|ξ ∈ I, t > 0} ⊆ t∗ × R.
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For δ = 0 we also write CI = CI,0. If I is invariant under translation by elements of a rational

subspace h∗ then for δ ∈ t∗/h∗ we define CI,δ to be CI,δ̂ where δ̂ ∈ t∗ is any lift of δ.

5.4. The decomposition formula for Verlinde sums. In this section we provide a minimal
introduction to Verlinde sums and the decomposition formula. Instances of Verlinde sums
first appeared in the Verlinde formula [40]. They were studied by Szenes [36], under the
name rational trigonometric sums. Szenes proved a remarkable residue formula, implying
that Verlinde sums exhibit a piecewise quasi-polynomial behavior. Verlinde sums are discrete
analogues of multiple Bernoulli series [35]. Boysal-Vergne [9] proved a ‘decomposition formula’
for multiple Bernoulli series as an infinite sum consisting of a polynomial contribution, plus
corrections supported in half-spaces. In [20] we provided a proof of the discrete counterpart of
this formula; we refer the reader there for details.

Consider a torus T = t/Λ, with a unitary representation

(36) A : T → U(E)

on a Hermitian vector space E, with ET = {0}. Let g ∈ U(E) be a fixed unitary transformation
of finite order, commuting with all A(t), t ∈ T . Put

DgC(E, t) = detC(1− g−1A(t)−1).

Suppose we are given another lattice Ξ ⊆ t containing Λ; for ` ∈ Z>0, define a finite subgroup

T` =
(

1
`Ξ
)
/Λ ⊆ T.

Definition 5.2. The Verlinde sum V g
E : Λ∗×Z>0 → C associated to the T -representation (36),

and the element g ∈ U(E) is

(37) V g
E(λ, `) =

∑′

t∈T`

t−λ

DgC(E, t)
, λ ∈ Λ∗, ` ∈ Z>0.

The prime next to the summation sign means the sum only extends over elements t ∈ T` such
that the denominator does not vanish.

Remark 5.3. Equation (37) differs from the convention in [20] by a substitution λ −λ.

The Verlinde sum is periodic with respect to lattice translations of λ by elements of `Ξ∗. By
([20], Proposition 2.7) its support is contained in the subspace spanned by the weights of the
representation (36), along with its translates under Ξ.

The representation (36) determines a collection S(E) of affine subspaces, consisting of spans
of subsets of weights of the representation (36), along with their translates under the dual
lattice Ξ∗ ⊆ t∗. In particular, the elements of Ξ∗ are in S(E) (corresponding to the empty set
of weights). The affine subspaces in S(E) are called admissible in the terminology of Boysal-
Vergne [9]. For ∆ ∈ S(E), let t∆ ⊆ t be the annihilator of the subspace parallel to ∆, and
let E∆ be the subspace fixed by t∆. The representation (36) restricts to a subrepresentation
A∆ : T → U(E∆), and with the restriction of g to E∆ the Verlinde sum V g

E∆
is defined, with

support on `∆ together with its `Ξ∗-translates. Let V g
E∆,∆

(·, `) denote the part of V g
E∆

(·, `)
supported on `∆ (i.e. the Verlinde sum multiplied by the characteristic function of `∆). Then

(38) V g
E∆

=
∑
∆′

V g
E∆,∆′
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where the sum is over all distinct Ξ∗-translates ∆′ of ∆.
For any ∆ ∈ S(E), the connected components c of the complement of the admissible sub-

spaces that are strictly contained in ∆ are referred to as the (open) chambers of ∆. For any
such chamber, c, the function V g

E∆
is quasi-polynomial on the subset of (λ, `) with λ ∈ `c (see

([20], Theorem 2.8); in terms of the notation from Definition 35, V g
E∆

is quasi-polynomial on
the set of lattice points in contained in the cone

Cc = {(tξ, t)|ξ ∈ c, t > 0} ⊆ t∗ × R.

Let µ be any point in c.

Definition 5.4. The quasi-polynomial germ of V g
E∆

at c (or µ) is the unique function

VergE∆,µ
= VergE∆,c

: Λ∗ × Z>0 → C

quasi-polynomial on and with support contained in (Λ∗×Z)∩C∆, that coincides with VE∆
on

(Λ∗ × Z) ∩ Cc.

The continuous counterpart of the Verlinde sum is the partition function. It depends on the
choice of a polarizing vector for the representation (36), i.e., an element τ ∈ t that acts without
fixed points on E. Using the extension of (36) to a homomorphism TC → GL(E), we define:

Definition 5.5. The partition function P gE,τ : Λ∗ → C is given by the formula

(39) P gE,τ = lim
ε→0+

∫
T

t−λ

DgC(E, t exp(−iετ))
dt

One checks that this is well-defined, and depends only on the connected component of τ
in the set of elements of t acting without fixed points on E. The partition function P gE,τ has

support contained in the intersection of Λ∗ with the cone spanned by the polarized weights α+

of E, i.e., α+ = ±α with the sign chosen such that 〈α+, τ〉 > 0.
Fix an integral inner product on t identifying t ' t∗, and let γ ∈ t. For every ∆ ∈ S(E), let

γ∆ = pr∆(γ) denote the orthogonal projection of γ onto ∆, and put

τ∆ = γ∆ − γ.
For a generic choice of γ, all of the projections γ∆ for ∆ ∈ S(E) are in open chambers, and all
the normal vectors τ∆ are non-zero polarizing vectors for E⊥∆ ⊆ E.

Theorem 5.6 (Decomposition formula for Verlinde sums, [20]). Let γ ∈ t be generic. Then
the Verlinde sum decomposes as follows:

(40) V g
E =

∑
∆∈S(E)

VergE∆,γ∆
? P g

E⊥∆ ,τ∆

(a convolution of functions on Λ∗ for fixed ` ∈ Z>0).

For our purposes, we need a more general version of the decomposition formula incorporating
differential forms. Suppose E → N is a T -equivariant vector bundle, where the T -action fixes
the base N . (We have in mind the bundles ν ′F → F with the action of TF,0.) The T -action
is described by a group homomorphism A : T → Γ(U(E)), where U(E) denotes the unitary
bundle. Suppose also that g ∈ Γ(U(E)) has finite order and commutes with all A(t).
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Choose a T -invariant Hermitian connection on E, invariant under the action of g, and
consider the Chern-Weil forms

DgC(E, t) = detC
(
1− g−1A(t−1)e−iR/2π

)
∈ Ω(N), t ∈ T,

where R is the curvature. For all t ∈ T such that the bundle endomorphism 1 − g−1A(t−1) ∈
End(ν) is invertible, the form DgC(E, t) has a well-defined inverse. Using this inverse, we may
define the Verlinde sums and partition functions by the same formulas as before, now given as
differential forms. The decomposition formula (40) holds for this extended setting, at the level
of differential forms [20].

5.5. Application of the decomposition formula. We return to analysing the multiplicity
function N(λ, `), given by (40):

(41) N(λ, k) =
∑
F∈F

∫
F

∑
a

t−λF,aQF,a,k
∑′

t∈TF,0∩T`

t
σF̃ ,`−prt∗

F
(λ)

DtF,aC (ν ′
F̃
, t)

.

Recall that although σF̃ ,` : F̃ → Λ∗F is only locally constant, tσF̃ ,` ∈ U(1) is actually constant

(for a fixed t ∈ TF,0 ∩ T`), hence descends to F . At this stage it is convenient to break

the symmetry and fix a connected component F̃0 ⊆ F̃ and hence a choice of representative
σF̃0,`

∈ Λ∗F for the coset σF̃ ,` + prt∗F (`Λ). By the preceding comment, the locally constant

function σF̃ ,` may be replaced with the constant σF̃0,`
in (41) without changing the result.

With these preparations we re-phrase (41) in terms of Verlinde sums. For the term indexed
by F , the role of T is played by the torus TF,0 = tF /ΛF where ΛF := Λ∩ tF , and the role of Ξ
by the lattice ΞF = Λ∗ ∩ tF . The vector bundle E is ν ′F , with auxiliary endomorphism g given
by the action of tF,a. Using the definition of Verlinde sums, we have

N(λ, k) =
∑
F∈F

∫
F

∑
a

t−λF,aQF,a,kV
tF,a
ν′F

(
prt∗F (λ)− σF̃0,`

, `
)
.

Applying the decomposition formula for generic elements γF ∈ tF yields

(42) N(λ, k) =
∑
F∈F

∫
F

∑
a

t−λF,aQF,a,k
∑

∆̃∈S(ν′F )

Ver
tF,a
ν′
F,∆̃

,γF,∆̃
? P

tF,a
ν′⊥
F,∆̃

,τF,∆̃

(
prt∗F (λ)− σF̃0,`

, `
)
.

To choose the vectors γF , recall that our objective is to obtain an expression on the right-
hand-side of (42) optimized for studying the quasi-polynomial behavior of N(λ, k) on the ray
{(0, `)|` ∈ Z>0} ⊆ Λ∗×Z>0. Since the `-linear component of the shift σF̃0,`

is `ΦF̃0
, the choice

suited to this end is

(43) γF = −ΦF̃0
+ prt∗F (ε),

where ε ∈ t∗ is close to 0, does not depend on F , and is such that γF is generic, for all F ∈ F.
The next step in the analysis of (42) is to reverse the order of the summations over F , ∆̃.

This will require new notation. Let

S =
⋃
F∈F
{pr−1

t∗F
(∆̃ + ΦF̃0

)|∆̃ ∈ S(ν ′F )}.
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Then S is a Λ-invariant, locally finite collection of affine subspaces of t∗. Equivalently S is the

set of all affine subspaces of the form ΦM(x) + pr−1
t∗F

(R) for F ∈ F, x ∈ F̃ and R ⊆ t∗F the span

of a subset of the set of weights for the TF,0-action on the normal bundle νF .
For ∆ ∈ S, let

ε∆ = pr∆(ε), τ∆ = ε∆ − ε.
Note that if ∆ = pr−1

t∗F
(∆̃ + ΦF̃0

) then

prt∗F (ε∆) = γF,∆̃ + ΦF̃0
, prt∗F (τ∆) = τF,∆̃.

For each ∆ ∈ S, let t∆ denote the annihilator of the subspace parallel to ∆. Let F∆ be the
subset of those F ∈ F such that ∆ appears in the collection of subspaces pr−1

t∗F
(∆̃ + ΦF̃0

) for

some ∆̃ ∈ S(ν ′F ), i.e.,

F∆ = {F ∈ F|∆ ∈ pr−1
t∗F

(ΦF̃0
+ S(ν ′F ))}.

Define ν ′F,∆ = (ν ′F )t∆ and let ν ′⊥F,∆ be its orthogonal complement in ν ′F ; when ∆ = pr−1
t∗F

(ΦF̃0
+

∆̃), these agree with ν ′
F,∆̃

, ν ′⊥
F,∆̃

respectively. We also define

V
tF,a,σF̃0

ν′F,∆,∆
(λ, `) = V

tF,a

ν′F ,∆̃

(
λ− σF̃0,`

, `
)
,(44)

Ver
tF,a,σF̃0

ν′F,∆,ε∆
(λ, `) = Ver

tF,a
ν′
F,∆̃

,γF,∆̃

(
λ− σF̃0,`

, `
)
.(45)

(The motivation for the notation is that V
tF,a,σF̃0

ν′F,∆,∆
and Ver

tF,a,σF̃0

ν′F,∆,ε∆
are supported on C∆,σF̃0

,

where recall that σF̃0
= σF̃0,0

= h∨ prt∗F (Ψ′′
F̃0
− Φ

F̃0
).) On reordering the sums, equations (28),

(42) become

(46a) N =
∑
∆∈S

Nqpol
∆ , Nqpol

∆ =
1

#T`

( ∏
α∈R−

∇α
)
N

qpol
∆ ,

where

(46b) N
qpol
∆ (λ, k) =

∑
F∈F∆

∫
F

∑
a

t−λF,aQF,a,kVer
tF,a,σF̃0

ν′F,∆,ε∆
? P

tF,a
ν′⊥F,∆,τ∆

(
prt∗F (λ), `

)
.

For later reference, we record some properties of Nqpol
∆ .

Proposition 5.7. The function Nqpol
∆ has the following two properties:

(a) For each δ ∈ Λ∗ ⊗ Q, the function (λ, `) 7→ Nqpol
∆ (λ, ` − h∨) is quasi-polynomial on

the intersection of C∆,δ with its domain of definition. In particular if 0 ∈ ∆ then

k ∈ Z>0 7→ Nqpol
∆ (0, k) is quasi-polynomial.

(b) For ∆ 6= t∗, k ∈ Z>0, the function λ 7→ Nqpol
∆ (λ, k) is supported in a half-space, with

the interior-pointing normal to the boundary τ∆.

Proof. The function (λ, k) 7→ t−λF,aQF,a,k is quasi-polynomial. By definition the function

(λ, `) 7→ Ver
tF,a,σF̃0

ν′F,∆,ε∆
(prt∗F (λ)) is quasi-polynomial on subsets of the form C∆,δ for δ ∈ Λ∗ ⊗ Q.

From basic properties of convolution, it follows that the function (λ, `) 7→ N
qpol
∆ (λ, ` − h∨) is
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also quasi-polynomial on subsets C∆,δ. The latter property is preserved by finite difference
operators (which amount to taking finite linear combinations of the quasi-polynomials on dif-

ferent translates of C∆). Moreover, if (λ, `) 7→ (#T`) · Nqpol
∆ (λ, ` − h∨) is quasi-polynomial

on C∆,δ, then so is (λ, `) 7→ Nqpol
∆ (λ, ` − h∨). This is because Nqpol

∆ (λ, ` − h∨) is an integer

for ` − h∨ = k ≥ 1, hence #T` = (#T1)`dim(T ) must divide this quasi-polynomial, implying

Nqpol
∆ (λ, `− h∨) is itself quasi-polynomial on C∆,δ.

Property (b) is clear because the function λ 7→ Ver
tF,a,σF̃0

ν′F,∆,ε∆
(prt∗F (λ), `) is supported on a

subspace parallel to ∆, while the partition function P
tF,a
ν′⊥F,∆,τ∆

is τ∆-polarized. �

6. The norm-square localization formula

In this section we give a new description of the contributions Nqpol
∆ in (46). This description

is used to prove that Nqpol
∆ vanishes identically when M t∆ ∩ Φ−1(exp(ε∆)) = ∅. The surviv-

ing terms are indexed by the critical values of the norm-square of the moment map for the
Hamiltonian loop group space associated to M . This vanishing result is crucial to establish the
quasi-polynomial behavior of k 7→ N(0, k) in the next section.

Recall that Nqpol
∆ is quasi-polynomial on C∆,δ for each δ ∈ Λ∗ ⊗Q. To show Nqpol

∆ vanishes

on C∆,δ, it suffices to show that |Nqpol
∆ | decays asymptotically on an open cone in C∆,δ, as this

cannot occur for a quasi-polynomial unless it is identically 0. The first step is to replace Nqpol
∆

with a function N∆ having the same large ` asymptotics. The needed decay will follow from a
Kirillov-Berline-Vergne-type formula for the Fourier transform of N∆.

6.1. Asymptotic replacements. Replacing Ver
tF,a,σF̃0

ν′F,∆,ε∆
with V

tF,a,,σF̃0

ν′F,∆,∆
in (46b), leads to

closely related functions

(47a) N∆ :=

( ∏
α∈R−

∇α
)
N∆,

and

(47b) N∆(λ, k) =
∑
F∈F∆

∫
F

∑
a

t−λF,aQF,a,kV
tF,a,σF̃0

ν′F,∆,∆
? P

tF,a
ν′⊥F,∆,τ∆

(
prt∗F (λ), `

)
.

Example 6.1. For ∆ = t∗, F∆ = F hence N∆ = N is the original multiplicity function.

Proposition 6.2. There is a K ∈ Z>0 and an open neighborhood b of ε∆ in t∗, such that

N∆(λ, k) = Nqpol
∆ (λ, k), λ ∈ ` · b, k > K.

In particular, for each λ ∈ Λ∗, N∆(λ, k) = Nqpol
∆ (λ, k) for k � 0.

Remark 6.3. Note that given N∆, there is at most one function Nqpol
∆ satisfying the property

in the proposition and that is quasi-polynomial on subsets C∆,η, η ∈ Λ⊗Q.

Proof. By construction, Ver
tF,a,σF̃0

ν′F,∆,ε∆
(prt∗F (λ), `) and V

tF,a,σF̃0

ν′F,∆,∆
(prt∗F (λ), `) both have support con-

tained in C∆,σF̃0
⊆ t∗×R. Moreover, there is a relatively open chamber cF in prt∗F (∆) containing

prt∗F (ε∆) such that the two functions agree on the affine cone Cpr−1
t∗
F

(cF ),σF̃0

.



VERLINDE SUMS AND [Q,R] = 0 27

Recall P
tF,a
ν′⊥F,∆,τ∆

has support contained in the pointed cone RF,∆ ⊆ t∗F spanned by the τ∆-

polarized weights for the action of TF,0 on ν ′⊥F,∆. From the fact that the support of a convolution
is the pushforward of the supports under addition, it follows that the convolutions

V
tF,a,σF̃0

ν′F,∆,∆
? P

tF,a
ν′⊥F,∆,τ∆

, Ver
tF,a,σF̃0

ν′F,∆,ε∆
? P

tF,a
ν′⊥F,∆,τ∆

agree on the set Cb′F ,σF̃0
, where b′F is the complement in t∗ of (∆ \ pr−1

t∗F
(cF )) + pr−1

t∗F
(RF,∆).

Let b′ be the intersection over F ∈ F∆ of the b′F . Notice that b′ is non-empty and open,
since each b′F contains an open neighborhood of ε∆. Let σ̂F̃0

be any lift of σF̃0
to t∗; recall

Cb′F ,σF̃0
= Cb′F ,σ̂F̃0

. Then N∆, Nqpol
∆ agree on the set

(48)
⋂
η

⋂
F∈F∆

Cb′,σ̂F̃0
+η

where η ranges over the finite set of possible sums of subsets of the negative roots. For small
`, the intersection (over η, F ) of the sets (` · b′+ σ̂F̃0

+ η)×{`} might be empty, because of the

shifts. But if we let b ⊆ b′ be an open subset containing ε∆ such that the closure b ⊆ b′, then
for `� 0 one has

b ⊆ b′ + `−1(σ̂F̃0
+ η)

for each pair (F, η) in (48). �

6.2. The distributional character for N∆. The function N∆(−, k) introduced in Section
6.1 is the Fourier transform of a distributional character Q∆(−, k) ∈ D′(T ). We introduce
additional notation in order to give a compact formula for Q∆.

Example 6.4. By Example 6.1, for ∆ = t∗, F∆ = F and

Q∆(t, k) = δT`(t)Q(M)(t)
∏
α∈R−

(1− tα),

where δT` denotes the delta distribution for T` with total integral 1 (i.e. (#T`)
−1 times the

counting measure). The formula for Q∆ below generalizes this to arbitrary ∆ ∈ S.

To state the formula we introduce some additional notation. For ∆ ∈ S and t ∈ T we define

Ft∆ = {F ∈ F∆|F ⊆M t}.
For F ∈ F∆, let F̃∆ be the union of connected components of F̃ whose image under the moment
map lies in ∆, or in other words, F̃∆ is the fibre product

F̃∆ = F̃ ×t∗ ∆.

Then
F = F̃∆/(Λ ∩ t⊥∆)

where t⊥∆ is the orthogonal complement of t∆ in t. Let

νF̃ ,∆ = νt∆
F̃
|F̃∆

,

and ν⊥
F̃ ,∆

for the complementary vector bundle over F̃∆. We also have a decomposition

νF̃ ,∆ = ν ′
F̃ ,∆
⊕ ν ′′

F̃∆
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where ν ′′
F̃∆

= (νF̃ ,∆)tF = ν ′′
F̃
|F̃∆

.

In the proof of the next result, it will be convenient to consider distinct complex structures
on the same underlying real vector bundle, and we introduce the corresponding notation here.
If ξ ∈ t and ξ acts on a vector bundle ν with no eigenvalue equal to 0 (we say ξ is polarizing),
then we write Jξ for the complex structure on ν such that the weights are ξ-polarized, and ∧ξν,
detξ(ν), Symξ(ν) for the corresponding complex exterior algebra, determinant and symmetric
algebra bundles, respectively.

For example, τ∆ is polarizing for the action of TF on ν⊥F,∆, and so we have a corresponding

complex structure Jτ∆ . Below we will need the symmetric algebra bundle Symτ∆(ν⊥F,∆). The
latter has a distributional Chern character, defined for t ∈ TF :

Ch(Symτ∆(ν⊥F,∆), t) = lim
ε→0+

1

Ch(∧τ∆ν⊥F,∆, t exp(iετ∆))
.

On the same vector bundle we also have the complex structure Jυ (strictly speaking, Jprt∗
F

(υ)),

which is not the same in general. For use in the proof of the result below, we introduce the
sub-bundles ν⊥+

F,∆, ν⊥−F,∆, where ν⊥+
F,∆ is the sub-bundle where the complex structures Jτ∆ and Jυ

agree, thus
(ν⊥F,∆, Jτ∆) = (ν⊥+

F,∆, Jυ)⊕ (ν⊥−F,∆, J−υ).

It follows that we have an isomorphism of Z2-graded spinor modules:

∧τ∆ν⊥F,∆ = ∧υν⊥+
F,∆⊗̂∧−υν⊥−F,∆ = ∧−υν⊥F,∆⊗̂detυ(ν⊥+

F,∆)

where detυ(ν⊥+
F,∆) is regarded as a Z2-graded line bundle with parity equal to the complex rank

of ν⊥+
F,∆. The Chern characters thus satisfy

(49) Ch(∧τ∆ν⊥F,∆, u) = Ch(∧−υν⊥F,∆, u)Ch(detυ(ν⊥+
F,∆), u).

The T n Λ̂-equivariant spinor modules SνF̃ |F̃∆
for νF̃ |F̃∆

and ∧τ∆ν⊥F̃ ,∆ for the complex vector

bundle ν⊥
F̃ ,∆

determine a spinor module for νF̃ ,∆:

(50) SνF̃ ,∆ = HomCl(ν⊥
F̃ ,∆

)(∧−τ∆ν⊥F̃ ,∆, SνF̃ |F̃∆
) ⇒ SνF̃ |F̃∆

= SνF̃ ,∆⊗̂∧−τ∆ν⊥F̃ ,∆.
(The minus sign (−τ∆) is intentional here.)

Theorem 6.5. The distributional character Q∆ is given by the expression

(51) Q∆(t, k) = δT∆T`(t)
∑
F∈Ft∆

∫
F

Cht(LF̃∆
)ASt(νF̃ ,∆)Cht(Symτ∆(ν⊥F,∆)⊗ ∧n−),

where δT∆T` is the Dirac delta measure supported on T∆T` with total integral 1.

Remark 6.6. It is not difficult to see that the right hand side of (51) is a well-defined distribu-
tion. Consider a product of the form

δsT∆
(t) ·

∏
i

∑
n≥0

tnαi

where t0 ∈ T , α = (α1, ..., αr) is a list of weights forming a pointed cone Cone(α), and the sum
over n converges in the sense of generalized functions. The Fourier transform of δt0T∆

is product
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of the character λ ∈ Λ∗ 7→ t−λ0 ∈ U(1) with the characteristic function of Λ∗∩ann(t∆), while the
Fourier transform of the second factor is the partition function for the list α. The convolution
is well-defined when there is an open half-space H = H(τ∆ > 0) with ann(t∆) ⊆ ∂H and
(Cone(α)− {0}) ⊆ H, as is the case in (51). More generally one has

Cht(Sym(ν⊥F,∆)) = lim
ε→0+

1

Ch(∧τ∆ν⊥F,∆, t exp(iετ∆))
.

This is a generalized function of t ∈ TF , with values in Ω(F ) (differential forms on F ). It
admits a restriction to T∆T` ∩ TF , given by the same expression.

Remark 6.7. We claim that the differential form Cht(LF̃∆
)ASt(νF̃ ,∆) on F̃∆ can be taken to

be Λ ∩ t⊥∆-invariant, and so descends to give a differential form on

F̃∆/(Λ ∩ t⊥∆) = F,

which may then be integrated over F . One needs to check whether the locally constant phase
factor ζF̃∆

(t)1/2 (see Definition A.4) is (Λ ∩ t⊥∆)-invariant on F̃∆, for each t ∈ T∆T`. In brief:
we know that it is for t ∈ T`. On the other hand the phase factor for the connected group T∆ is
completely determined by moment maps (composed with the quotient map to t∗∆): prt∗∆ ΦF̃∆

(for

the prequantum line bundle), and pr∗t∆ ◦Ψ
′′
F̃∆

for the spinor module. These are locally constant

on F̃∆, by the abstract moment map condition (F̃∆ is fixed by t∆), and moreover change by

elements of B[(Λ ∩ t⊥∆) from component to component in F̃∆. But B[(t⊥∆) = ker(prt∗∆), so the

components prt∗∆ ΦF̃∆
, pr∗t∆ ◦Ψ

′′
F̃∆

are constant on F̃∆.

Note also that T∆T` is a union of finitely many connected components indexed by T`/(T∆ ∩
T`). Moreover Ft∆ = Fs∆ whenever s, t lie in the same component, i.e. differ by an element of
T∆, because all F ∈ F∆ are fixed by T∆. So the range of the summation only depends on the
connected component of T∆T`.

Proof. The argument is a mild generalization of that carried out in Section 5: we take the
Fourier transform, reverse the order of summation, and express the finite sums that appear in
terms of Verlinde sums. First note that under the Fourier transform, the equivariant Chern
character of ∧n− becomes the product of finite difference operators ∇α, α ∈ R−, so we instead
prove the slightly simpler analogue of (51) for N∆ and its distributional character Q∆.

Let q denote the right hand side of (51) without the factor Ch(∧n−,−) and multiplied by a
factor of #T`. We must prove q = Q∆, and we will do this by showing q̂ = N∆. For λ ∈ Λ∗,

q̂(λ, k) = (#T`)

∫
v∈T∆T`

dv v−λ
∑
F∈Fv∆

∫
F

Chv(LF̃∆
)ASv(νF̃ ,∆)Chv(Symτ∆(ν⊥F,∆)),

where as explained in Remark 6.7, the differential form Chv(LF̃∆
)ASv(νF̃ ,∆) is initially defined

on F̃∆, but it is (Λ∩ t⊥∆)-invariant, and so descends to F . For later reference we note in passing
that pulling the integrand back by the multiplication map T∆ × T` → T∆T` and incorporating
the factor of (#T`), the measure we should use on T∆ × T` is the product of normalized Haar
measure on T∆ and counting measure on T`.
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We begin by simplifying the Atiyah-Singer integrand. Recall (see Appendix A)

ASv(νF̃ ,∆) =
Td(F̃∆)

Chv(S∗νF̃ ,∆)

where

SνF̃ ,∆ = HomCl(ν⊥
F̃ ,∆

)(∧−τ∆ν⊥F̃ ,∆, SνF̃ |F̃∆
).

One has

νF̃ ,∆ = ν ′
F̃ ,∆
⊕ ν ′′

F̃∆
, ν ′

F̃
= ν ′

F̃ ,∆
⊕ ν⊥

F̃ ,∆

where ν ′′
F̃∆

= νtF
F̃∆

= ν ′′
F̃
|F̃∆

. To keep the notation from becoming excessive, we sometimes omit

the restriction from F̃ to F̃∆ below. Equipping ν ′
F̃ ,∆

with the υ-polarized complex structure

Jυ, we have

ASv(νF̃ ,∆) =
Td(F̃∆)

Chv(R∗
ν′′
F̃

)DvC(ν ′
F̃ ,∆

)
,

where Rν′′
F̃

is the spinor module for ν ′′
F̃

defined by

Rν′′
F̃

= HomCl(ν′
F̃ ,∆

)(∧υν ′F̃ ,∆,SνF̃ ,∆) = HomCl(ν′
F̃

)(∧υν ′F̃ ,∆⊗̂∧−τ∆ν⊥F̃ ,∆, SνF̃ ).

On the other hand we had already defined a spinor module Sν′′
F̃

for ν ′′
F̃

by

Sν′′
F̃

= HomCl(ν′
F̃

)(∧υν ′F̃ , SνF̃ ).

Then

Rν′′
F̃

= Sν′′
F̃
⊗̂D

where D is the Z2-graded line bundle

D = HomCl(νF̃ ′′ )
(Sν′′

F̃
,Rν′′

F̃
) = HomCl(ν⊥

F̃ ,∆
)(∧−τ∆ν⊥F̃ ,∆,∧υν⊥F̃ ,∆) = detυ(ν⊥+

F̃ ,∆
).

Consequently

1

Chv(R∗
ν′′
F̃

)
=

Chv(D)

Chv(S∗
ν′′
F̃

)
⇒ ASv(νF̃ ,∆) =

Td(F̃ )Chv(D)

Chv(S∗
ν′′
F̃

)DvC(ν ′F,∆)
.

Thus

q̂(λ, k) = (#T`)

∫
v∈T∆T`

dv v−λ
∑
F∈Fv∆

∫
F

Td(F̃ )Chv(LF̃∆
)

Chv(S∗
ν′′
F̃

|F̃∆
)DvC(ν ′F,∆)

Chv(D ⊗ Sym(ν⊥F,∆)).

Let tF,a be as before, and decompose v = tF,au where u ∈ TF,0 ∩ (T∆T`). We have

Chv(LF̃∆
) = u

k prt∗
F

ΦF̃∆ ChtF,a(LF̃∆
),

and

Chv(S∗ν′′
F̃

|F̃∆
) = u

−h∨ prt∗
F

Ψ′′
F̃∆ ChtF,a(S∗ν′′

F̃

|F̃∆
),
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where ΦF̃∆
, Ψ′′

F̃∆
denote the restrictions of ΦF̃ , Ψ′′

F̃
to F̃∆ ⊆ F̃ . Hence

Td(F̃ )Chv(LF̃∆
)

Chv(S∗
ν′′
F̃

|F̃∆
)

= uσF̃ ,`QF,a,k|F̃∆
.

Rearranging the sums like before we arrive at
(52)

q̂(λ, k) = (#T`)
∑
F∈F∆

∫
F

∑
a

t−λF,aQF,a,k

∫ ′
u∈TF,0∩(T∆T`)

u
σF̃∆,`

−λ

DtF,aC (ν ′F,∆, u)
ChtF,a(D ⊗ Sym(ν⊥F,∆), u),

and the prime next to the integral means to only integrate over components of TF,0∩ (T∆T`) =
T∆(TF,0 ∩ T`) such that tF,au acts with no eigenvalue equal to 1 on the bundle ν ′F,∆. The
expression

(53)

∫ ′
u∈TF,0∩(T∆T`)

u
σF̃∆,`

−λ

DtF,aC (ν ′F,∆, u)
ChtF,a(D ⊗ Sym(ν⊥F,∆), u),

can be regarded as the Fourier transform of a product of two Ω(F )-valued distributions on
TF,0, and in particular, the integral results in a function on Λ∗ which is pulled back from a
function on Λ∗F . The Ω(F )-valued distributions on TF,0 in question are

(54) u 7→ ChtF,a(D ⊗ Sym(ν⊥F,∆), u)

and

(55) u 7→
u
σF̃∆,`δ′TF,0∩T∆T`

(u)

DtF,aC (ν ′F,∆, u)
,

where δ′TF,0∩T∆T`
denotes the delta distribution supported on the union of components of TF,0∩

(T∆T`) = T∆(TF,0 ∩ T`) such that tF,au acts with no eigenvalue equal to 1 on the bundle
ν ′F,∆. Hence (53) results in a convolution of the Fourier transforms of the factors. The Fourier

transform of (54) is the partition function P
tF,a
ν⊥F,∆,τ∆

, as one checks by noting that the latter is

the Fourier transform of the generalized function of u ∈ TF,0:

lim
ε→0+

1

ChtF,a(∧−υν⊥F,∆, u exp(−iετ∆))
,

and using the identity (49). For the Fourier transform of (55), we decompose u into a product
st with s ∈ T∆ and t ∈ T`, and so re-write the Fourier transform as

(56)
∑′

t∈T`∩TF,0

t
σF̃∆,`

−λ

DtF,aC (ν ′F,∆, t)

∫
s∈T∆

s
σF̃∆,`

−λ
.

We have used the fact that T∆ acts trivially on ν⊥F,∆ to omit s from the denominator. The
measure on T∆ is the normalized Haar measured, as we noted in passing earlier on, and so the
integral over T∆ results in the characteristic function of Λ∗F ∩ (ann(t∆) + σF̃∆,`

).
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The sum over T`∩TF,0 in (56) is the Verlinde sum V
tF,a
ν′F,∆

translated by σF̃∆,`
. Since the weights

of the TF,0 action on ν ′F,∆ are contained in ann(t∆), the latter Verlinde sum is supported on a

collection of translates of Λ∗F ∩ ann(t∆); more precisely the sum over T` ∩TF,0 in (56) takes the
form

(57)
∑
∆′

V
tF,a,σF̃0

ν′F,∆,∆
′ (prt∗F (λ), `),

where the sum is over affine subspaces of the form ∆′ = ∆ + η, η ∈ Λ, and we are using
the shifted Verlinde sum defined in (44). Multiplying by the characteristic function of Λ∗F ∩
(ann(t∆) +σF̃∆,`

) coming from the integral over s ∈ T∆, the ∆′ = ∆ term in (57) is picked out.

The final result is

q̂(λ, k) =
∑
F∈F∆

∫
F

∑
a

t−λF,aQF,a,kV
tF,a,σF̃0

ν′F,∆,∆
? P

tF,a
ν⊥F,∆,τ∆

(
prt∗F (λ), `

)
.

This shows q̂ = N∆, completing the proof. �

As a corollary of Theorem 6.5 and Remark 6.3, we have the following alternative character-
ization of the contributions in the (46).

Corollary 6.8. Let N∆(−, k) denote the Fourier transform of the measure

(58) Q∆(t, k) = δT∆T`(t)
∑
F∈Ft∆

∫
F

Cht(LF̃∆
)ASt(νF̃ ,∆)Cht(Symτ∆(ν⊥F,∆)⊗ ∧n−).

The multiplicity function N admits a decomposition

(59) N =
∑
∆∈S

Nqpol
∆

where Nqpol
∆ is the unique function such that (i) Nqpol

∆ is quasi-polynomial on all subsets C∆,δ,
δ ∈ Λ∗ ⊗ Q, and (ii) there is a constant K and an open neighborhood b of ε∆ in t such that

Nqpol
∆ (λ, k) = N∆(λ, k) for λ ∈ ` · b, k > K.

In other words the contribution Nqpol
∆ is obtained by taking the ‘quasi-polynomial germ at

ε∆ in the t⊥∆-directions’ of the Fourier transform of (58). It will be shown in Corollary 6.13
below that the non-vanishing contributions in (59) are labelled exactly by the set Bε. Thus
Corollary 6.8 is a norm-square localization formula for N .

Remark 6.9. The integral in (58) has the form of a fixed-point formula on the manifold
X∆, for the index of a Dirac operator twisted by the infinite dimensional graded vector
bundle Symτ∆(ν⊥F,∆). It is tempting to view this as the quantization of the non-compact

space tot(ν⊥F,∆), and then to go a step further and interpret the passage to the ‘quasi-

polynomial germ’ as the quantization of tot(ν⊥F,∆|U ) where U is a suitable open neighborhood

of X∆ ∩ Φ−1(exp(ε∆)) in X∆. We will not need this and so will not pursue this here. For
the simpler analogous case of Duistermaat-Heckman measures of Hamiltonian G-spaces, an
interpretation of the contributions in the norm-square localization formula along these lines
was given by Harada-Karshon [11]. See also [17] for an analogue in the case of Hamiltonian
LG-spaces.
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6.3. The Kirillov-Berline-Vergne formula. Let D be a Dirac operator on a compact Rie-
mannian G-manifold M acting on sections of a G-equivariant Clifford bundle E. The Kirillov-
Berline-Vergne formula [6] for the equivariant index is

(60) index(D)(g exp(ξ)) =

∫
Mg

ASg(ν, ξ)

where ν is the normal bundle to Mg in M , and the formula holds for ξ ∈ gg sufficiently
small. Here ASg(ν, ξ) is an equivariant extension of the usual Atiyah-Segal-Singer integrand;
see Appendix A for a brief introduction.

In this section we derive a formula of this type for the distributional character Q∆. For the
reader’s convenience, we recall equation (51) here:

(61) Q∆(t, k) = δT∆T`(t)
∑
F∈Ft∆

∫
F

Cht(LF̃∆
)ASt(νF̃ ,∆)Cht(Symτ∆(ν⊥F,∆)⊗ ∧n−).

Recall that one subtlety of (61) is that Cht(LF̃∆
), ASt(νF̃ ,∆) are initially defined on the covering

space F̃∆, and then we argued that the product descends to F , when t ∈ T∆T`. T -equivariant
extensions of these differential forms, as in (60), do not descend to F . For example, the
equivariant extension of Cht(LF̃∆

) will involve the moment map of LF̃∆
, which does not descend.

This means that the Kirillov-Berline-Vergne-type formula must be formulated in terms of
covering spaces.

This leads to a second issue. For g = 1, equation (60) involves an integral over the entire
manifold. It is not initially clear what manifold should play this role in our setting. Because
of the comments in the previous paragraph, it should contain all of the covering spaces F̃ as
fixed-point submanifolds. A manifold that contains all the F̃ as submanifolds is the infinite
dimensional Hamiltonian loop group spaceM, but this obviously cannot be used to formulate
an analogue of (60). We are thus led to consider a new manifold, mentioned briefly already in
Remark 4.8. We give a fresh description here.

The map
T × t⊥ → G, (t, ξ) 7→ t exp(ξ)

restricts to a NG(T )-equivariant diffeomorphism on a sufficiently small ball Br(t
⊥) ⊆ t⊥ around

the origin in t⊥. Let U be the image of T × Br(t
⊥) under this map; U is a NG(T )-invariant

tubular neighborhood of T in G, with canonical maps πT : U → T and πg/t : U → t⊥ ' g/t.

Definition 6.10. Define
X = Φ−1(U)

a NG(T )-invariant open subset of the q-Hamiltonian space M . Let

X̃ = t×T Y
be the fibre product, which is a Λ-covering space of X.

Note that X̃ has canonical maps

ΦX̃ : X̃ → t ' t∗, µg/t : X̃ → g/t.

It was explained in [21] that X̃ embeds NG(T ) n Λ-equivariantly into the Hamiltonian loop

group space, compatible with the embedding of all the F̃ . The spinor module S for p∗TM then
pulls back to a spinor module for X̃.
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For ∆ ∈ S define

X∆ = exp(∆)×T X t∆ ⊆ X, X̃∆ = ∆×T X∆ ⊆ X̃.
Note that X̃∆ is a Λ∩ t⊥∆-covering space of X∆. As X∆ contains all the F ∈ Ft∆ (see (61)), X̃∆

contains the F̃ , F ∈ Ft∆ as submanifolds.

Let Λ∆ = Λ ∩ t⊥∆. The manifold X̃∆ has a T n Λ̂∆-equivariant spinor module

(62) S∆ = HomCl(νX̃∆
)

(∧−τ∆νX̃∆
, S|X̃∆

)
,

where we use the −τ∆-polarized complex structure on the normal bundle νX̃∆
to X̃∆ in X̃.

Using T n Λ̂∆-invariant connections, the Atiyah-Singer integrand ASg(νX̃∆,X̃
g
∆
, ξ) is a well-

defined T -equivariant differential form on X̃g
∆ (see Appendix A). Similarly one has a T n Λ̂∆-

invariant twisted Chern character form Chg(LX̃g
∆
, ξ). These differential forms transform at

level h∨, k respectively under the action of Λ∆, hence

(63) η∗ASg(νX̃∆,X̃
g
∆
, ξ)Chg(LX̃g

∆
, ξ) =

(
g exp(ξ)

)`ηASg(νX̃∆,X̃
g
∆
, ξ)Chg(LX̃g

∆
, ξ),

for all η ∈ Λ∆.
Applying the discussion from Section B to V = t⊥ ' g/t ' n−, and taking the Thom form

τV g to have support contained in the ball Br(V
g), results in a differential form Chg(b, ξ) whose

pullback by µg/t to Xg
∆ has compact support. Pulling back further to X̃g

∆, we obtain a closed
T ×Λ∆-equivariant differential form. To avoid excessive notation, we will denote this pullback
by Chg(b, ξ) as well.

Theorem 6.11. The expression

(64) Q∆,g(ξ, k) =

∫
X̃g

∆

Chg(LX̃g
∆
, ξ)ASg(νX̃∆,X̃

g
∆
, ξ)Chg(b⊗ Symτ∆(νX∆

), ξ)

defines a distribution on a neighbourhood of 0 ∈ t, whose push-forward under the map

expg : ξ ∈ t 7→ g exp(ξ) ∈ T
agrees with Q∆ on a small neighbourhood of g ∈ T .

Proof. Choose a fundamental domain X̃g
∆,0 ⊆ X̃g

∆ for the action of Λ∆. Since the differential

form Chg(LX̃g
∆
, ξ) (resp. ASg(νX̃∆,X̃

g
∆
, ξ)) transforms at level k (resp. h∨) under the action of

Λ∆ on X̃g
∆, equation (64) can be written

(65) Q∆,g(ξ, k) =
∑
η∈Λ∆

(g exp(ξ))`η
∫
X̃g

∆,0

Chg(LX̃g
∆
, ξ)ASg(νX̃∆,X̃

g
∆
, ξ)Chg(b⊗Symτ∆(νX∆

), ξ).

Let g = exp(ξg) for some ξg ∈ t. By the Poisson summation formula (cf. [20] for the version
used here),

(66) Q∆,g(ξ, k) =
∑
V

δV (ξ + ξg)

∫
X̃g

∆,0

Chg(LX̃g
∆
, ξ)ASg(νX̃∆,X̃

g
∆
, ξ)Chg(b⊗ Symτ∆(νX∆

), ξ).

The sum is over t∆ cosets V = µ+ t∆, µ ∈ `−1Λ∗. The normalization of δV is induced by the
Haar measure on T∆T` = exp(`−1Λ∗ + t∆) having total integral 1. From (66) and using the
same argument as Remark 6.6, it follows that Q∆,g defines a distribution on a sufficiently small
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neighborhood of 0 ∈ t, where the equivariant characteristic form ASg(νX̃∆,X̃
g
∆
, ξ) is an analytic

function of ξ.
The delta distribution in (66) forces ξ + ξg to lie in t∆ + `−1Λ∗ ⊆ t. By equation (63), when

ξ + ξg is in the support of the delta distribution, the integrand in (66) descends to a smooth

form on Xg
∆ = X̃g

∆/Λ∆, and

(67) Q∆,g(ξ, k) =
∑
V

δV (ξ + ξg)

∫
Xg

∆

Chg(LX̃g
∆
, ξ)ASg(νX̃∆,X̃

g
∆
, ξ)Chg(b⊗ Symτ∆(νX∆

), ξ).

The manifold Xg
∆ may be non-compact, but the Chern character of the Bott element has

compact support, ensuring that the integrand is compactly supported. The integrand is closed
for the equivariant differential dξ = d + 2πiι(ξX), and thus localizes to the fixed-point set of
the vector field generated by ξ on Xg

∆. Let t = g exp(ξ) = expg(ξ). For ξ sufficiently small

(Xg
∆)ξ = Xt

∆.

Applying the abelian localization formula, the integral in (67) becomes

Q∆,g(ξ, k) =
∑
V

δV (ξ + ξg)

∫
Xt

∆

Cht(LX̃t
∆

)
ι∗
X̃t

∆

ASg(νX̃∆,X̃
g
∆
, ξ)

Eul(νX̃g
∆,X̃

t
∆
, ξ)

Cht(b⊗ Symτ∆(νX∆
)).

Equations (50), (62), (93) show that

ι∗
X̃t

∆

ASg(νX̃∆,X̃
g
∆
, ξ)

Eul(νX̃g
∆,X̃

t
∆
, ξ)

= ASt(νX̃∆,X̃
t
∆

),

hence

(68) Q∆,g(ξ, k) =
∑
V

δV (ξ + ξg)

∫
Xt

∆

Cht(LX̃t
∆

)ASt(νX̃∆,X̃
t
∆

)Cht(b⊗ Symτ∆(νX∆
)),

where t = g exp(ξ) = exp(ξ+ ξg), with ξ assumed to be sufficiently small and chosen such that
t ∈ T∆T` (equivalently, ξ + ξg lies in the support of the delta distributions). Let χ be a bump
function with support contained in a neighborhood of 0 ∈ t where exp is a diffeomorphism and
(68) holds. Then

(expg)∗(χQ∆,g)

is a well-defined distribution on T , supported on T∆T` (this corresponds to the image of the
cosets V under the map expg).

If the coset tT∆ contains a regular element h ∈ T , then, since X∆ ⊆ XT∆ ,

Xt
∆ = Xh

∆ ⊆ Φ−1(Gh) = Φ−1(T ).

It follows that Xt
∆ is compact, and the Bott element b can be replaced by its pullback to 0 ∈ g/t,

namely [∧n−] ∈ K0
T (pt). In this case the connected components of Xt

∆ are the F ∈ Ft∆, and
νX̃∆,X̃

t
∆
|F̃ = νF̃ ,∆. Comparing equations (61), (68) shows that the distributions (expg)∗(χQ∆,g)

and ((expg)∗χ)Q∆ agree on a neighbourhood of g ∈ T .
We claim that on the other hand, if tT∆ does not contain any regular points, then the

contribution in (68) vanishes. Indeed if tT∆ does not contain any regular points, then t must
be fixed by some non-trivial reflection w ∈ W that also fixes T∆. Choose a representative
n ∈ NG(T ) for w. Then n lies in Gt ∩ GT∆ . The latter subgroup is connected, as one may
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deduce by observing that Gt ∩ GT∆ = Gtt
′

where t′ is any topological generator of T∆, and
using the fact that Gg is connected for any g ∈ G since G is simply connected. In particular,
the linear transformation Adn on gt is orientation-preserving. Since Adn reverses orientation
on t ⊆ gt, Adn reverses orientation on (g/t)t as well. Hence, under pull-back by Adn (cf. (94),
remembering Adn(t) = t),

Ad∗n Cht(b) = −Cht(b),

in the compactly-supported cohomology of (g/t)t.
A second consequence of the connectedness of Gt ∩ GT∆ is that n acts by an orientation-

preserving diffeomorphism on each component F ⊆ Xt
∆, and acts trivially on the compactly-

supported cohomology of F . The map µg/t is NG(T )-equivariant. Combining these observa-
tions,

µ∗g/tCht(b) = n∗µ∗g/tCht(b) = µ∗g/t Ad∗n Cht(b) = −µ∗g/tCht(b) ⇒ µ∗g/tCht(b) = 0

in the compactly-supported de Rham cohomology of F .
The other differential forms on the right hand side of (68) are preserved by n∗ (in cohomology,

or even exactly if we use suitably invariant connections for the Chern-Weil representatives).
This is immediate for ASt(νX̃∆,X̃

t
∆

), Cht(LX̃t
∆

) because of the NG(T )-equivariance of the spinor

module and line bundle L. For Cht(Symτ∆(νX∆
)) this holds because Adn(τ∆) = τ∆ as τ∆ ∈ t∆.

Thus, for such cosets tT∆, the right hand side of (68) vanishes. �

6.4. An asymptotic decay result. Fix ∆ ∈ S throughout this section. Let Σ ⊆ X∆ be a
connected component, and let Σ̃ = ∆×T Σ ⊆ X̃∆ the corresponding covering space. Let F∆,Σ

(resp. Ft∆,Σ) be the subset of F ∈ F∆ (resp. Ft∆) such that F ⊆ Σ. Define Nqpol
∆,Σ , N∆,Σ, Q∆,Σ

by replacing F∆ with F∆,Σ. Define Q∆,Σ,g as in (64), except restricting the range of integration

to Σ̃g ⊆ X̃g
∆.

The main result of this section is the following.

Theorem 6.12. Assume the perturbation ε used in the decomposition formula is sufficiently
small. Let β be the orthogonal projection of 0 onto ∆ and let Σ ⊆ X∆ be a connected component.

The contribution Nqpol
∆,Σ is zero unless exp(β) ∈ Φ(Σ).

Following the strategy of Szenes and Vergne in the case of compact Hamiltonian G-spaces
[38], below we deduce Theorem 6.12 from the Kirillov-Berline-Vergne formula (64), combined
with a stationary phase argument as the level k → ∞. A further corollary of Theorem 6.12

is the following, which shows that the non-vanishing contributions Nqpol
∆ in the formula of

Corollary 6.8 are indexed by Bε.

Corollary 6.13. For a sufficiently small, generic perturbation ε, the contribution Nqpol
∆ van-

ishes unless ε∆ = pr∆(ε) ∈ Bε.

Proof. Suppose Nqpol
∆ 6= 0. By Theorem 6.12 there exists a component Σ ⊆ X∆ such that

exp(β) ∈ Φ(Σ). For ε sufficiently small this implies exp(ε∆) ∈ Φ(Σ) since β ≈ ε∆. Thus

ε∆ ∈ ΦM(X̃∆) and therefore X̃∆ ∩ Φ−1
M(ε∆) 6= ∅. Since X̃∆ ⊆Mt∆ ⊆Mε∆−ε, this shows that

ε∆ ∈ Bε. �

We turn to the proof of Theorem 6.12. The function Nqpol
∆,Σ is quasi-polynomial on C∆,δ for

every δ ∈ Λ∗ ⊗ Q. By an open cone in C∆,δ, we mean an open subset of C∆,δ which is a
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translate of a set invariant under scalar multiplication by R>0. A quasi-polynomial function

that decays on an open cone must be identically zero. Thus, to show Nqpol
∆,Σ vanishes, it suffices

to show that it decays on an open cone inside each subset C∆,δ. By Proposition 6.2, there is

an open neighborhood b of ε∆ in t∗ such that Nqpol
∆,Σ , N∆,Σ are equal on the set of (λ, `) such

that k = (`− h∨) > K and which are contained in the set

(69) C∆,δ ∩ Cb ⊆ t∗ × R>0.

As the intersection in (69) contains an open cone inside C∆,δ, Theorem 6.12 follows immediately
from the next lemma.

Lemma 6.14. Suppose ε ∈ t is sufficiently close to 0. Let β be the orthogonal projection of 0
onto ∆, and suppose exp(β) /∈ Φ(Σ). Then there is an open neighborhood b of ε∆ in t∗ such
that N∆,Σ decays on the set (69).

Proof. We begin by passing to a ‘truncation’ of N∆,Σ in order to simplify the stationary phase
analysis. Symmetric powers Symn

τ∆
(νΣ) in (51) with n� 0 do not contribute to the restriction

of N∆,Σ to C∆,δ. This is because the τ∆-polarized weights of the T∆ action on νΣ form a
pointed cone, and thus the minimum value of 〈α, τ∆〉, as α ranges over the weights of T∆ on
Symn

τ∆
(νΣ), increases linearly with n. For n sufficiently large, this minimum is much larger

than the constant 〈τ∆,∆ + δ〉. Taking Fourier transforms, this implies that the support of

the contribution of Symn
τ∆

(νΣ) to N∆,Σ does not intersect C∆,δ. Therefore let Q
(n)
∆,Σ denote

the distribution on T defined by equation (51), except replacing Symτ∆(νΣ) with the finite

dimensional subbundle Sym
(n)
τ∆ (νΣ) only including symmetric powers not exceeding n. Let

N
(n)
∆,Σ be the Fourier transform of Q

(n)
∆,Σ. It suffices to prove the statement for N

(n)
∆,Σ.

Choose a finite open cover {Ug|g ∈ I} of T by neighbourhoods as in Theorem 6.11, and let
χg be bump functions on t such that {(expg)∗χg|g ∈ I} is a partition of unity subordinate to
the cover. By Theorem 6.11

(70) Q∆,Σ =
∑
g∈I

(expg)∗(χgQ∆,Σ,g).

The Fourier transform of (70) is

N∆,Σ(λ, k) =
∑
g∈I

∫
ξ∈t

χg(ξ)(g exp(ξ))−λQ∆,Σ,g(ξ, k).

The same formula holds for N
(n)
∆,Σ, replacing Q∆,Σ,g with Q

(n)
∆,Σ,g, where Q

(n)
∆,Σ,g is defined as in

(64) except replacing Symτ∆(νΣ) with Sym
(n)
τ∆ (νΣ).

The n-truncated version of equation (65) for Q
(n)
∆,Σ,g reads

(71) Q
(n)
∆,Σ,g(ξ, k) =

∑
η∈Λ∆

(g exp(ξ))`η
∫

Σ̃g0

Chg(LΣ̃g , ξ)AS
g(νΣ̃,Σ̃g , ξ)Chg(b⊗ Sym(n)

τ∆
(νΣ), ξ),

where Σ̃g
0 is a fundamental domain for the action of Λ∆ = Λ∩t⊥∆ on Σ̃g by Deck transformations.

It is convenient to choose Σ̃g
0 to be of the form Φ−1(∆0)∩Σ̃g, where ∆0 is a (closed) fundamental

domain for the action of Λ∆ on ∆.
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The product e−`〈ΦΣ̃,ξ〉Chg(LΣ̃g , ξ)AS
g(νΣ̃,Σ̃g , ξ) is quasi-polynomial in k: the dependence on

k comes the g-twisted Chern class of the level k prequantum line bundle L, and in particular
the polynomial degree is at most dim(M)/2. Define

P gΣ(ξ, k) = χg(ξ)e
−`〈ΦΣ̃,ξ〉Chg(LΣ̃g , ξ)AS

g(νΣ̃,Σ̃g , ξ)Chg(b⊗ Sym(n)
τ∆

(νΣ), ξ).

Then P gΣ is a family of differential forms on Σ̃g with quasi-polynomial dependence on k and
smooth dependence on ξ. Note that this last property would not hold if the full symmetric
algebra bundle were used, or if the cutoff function χg(ξ) were omitted.

By (71),

(72) N
(n)
∆,Σ(λ, k) =

∑
g∈I

∑
η∈Λ∆

g`η−λ
∫

Σ̃g0

∫
ξ∈t

e2πi`〈ΦΣ̃+η−`−1λ,ξ〉P gΣ(ξ, k).

Recall X = Φ−1(U), where U ⊆ G is a NG(T )-invariant tubular neighborhood of T , identified
with T × Br(g/t) via the identification g/t = t⊥ and the map

(t, ξ) ∈ T × Br(g/t) 7→ t exp(ξ) ∈ U.
As exp(β) /∈ Φ(Σ), it is possible to find an open neighborhood b′ of β ∈ t and r′ with 0 < r′ < r
such that

Φ(Σ) ∩ exp(b′) exp(Br′(g/t)) = ∅.
Choosing Ch(b) ∈ Ω(g/t) to have support contained in Br′(g/t), it follows that the pullback of

Ch(b) to U vanishes on Φ(Σ)∩π−1
T (exp(b′)). Pulling back to X and then to X̃, Ch(b) vanishes

on Φ−1
Σ̃

(b′).

By choosing ε sufficiently small, we may assume ε∆ ∈ b′. Let b be a relatively compact open
neighborhood of ε∆ such that b ⊆ b′. The distance between b and t \ b′ is bounded below by a
constant ε > 0.

Suppose λ ∈ ` · b, equivalently `−1λ ∈ b. Since P gΣ vanishes on Φ−1
Σ̃

(b′), the lower bound

|ΦΣ̃(x)− `−1λ| > ε,

holds for x in the support of P gΣ. As the set where P gΣ vanishes is invariant under Deck
transformations, the lower bound

(73) |ΦΣ̃(x) + η − `−1λ| > ε

holds on the support of P gΣ for any η ∈ Λ∆. For η ∈ Λ∆ outside of a closed ball D centred at
0 we will have a stronger lower bound, of the form

(74) |ΦΣ̃(x) + η − `−1λ| > 1
2 |η|,

where x ∈ Σ̃g
0; this holds because |ΦΣ̃| is bounded on Σ̃g

0.
The infinite sum over η in (72) can be split into two parts: a finite sum

(75) ND,Σ(λ, k) =
∑
g∈I

∑
η∈Λ∆∩D

g`η−λ
∫

Σ̃g0

∫
ξ∈t

e2πi`〈ΦΣ̃+η−`−1λ,ξ〉P gΣ(k, ξ),

and an infinite tail

(76) NDc,Σ(λ, k) =
∑
g∈I

∑
η∈Λ∆\D

g`η−λ
∫

Σ̃g0

∫
ξ∈t

e2πi`〈ΦΣ̃+η−`−1λ,ξ〉P gΣ(k, ξ).
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In equation (75) we use the weak lower bound (73). Since P gΣ is quasi-polynomial in
k (with polynomial degree at most dim(M)/2) and depends smoothly on ξ, at each point

x ∈ Σ̃g
0, the principle of stationary phase gives a bound for the integral over t of the form

Cj(x)(`ε)−j+dim(M)/2, where j ∈ Z>0 can be chosen, and Cj(x) is a constant depending on x

and j. As the support of the integrand is a compact subset of the fundamental domain Σ̃g
0, the

constant can be taken to be uniform in x, hence we obtain a bound of the form

|ND,Σ(λ, k)| < cj`
−j+dim(M)/2.

Taking j > dim(M)/2 shows that ND,Σ(λ, k) decays as `→∞.
In equation (76) we use the stronger bound (74). Applying the principle of stationary phase

as in the previous paragraph, we find a bound of the form

|NDc,Σ(λ, k)| < cj`
−j+dim(M)/2

∑
η∈Λ∆\D

|η|−j .

For j > dim(M)/2 sufficiently large, the sum converges, hence NDc,Σ(λ, k) decays as ` →
∞. �

7. Examples

In this section we describe two simple examples of the norm-square localization formula. We
use some basic calculations of 1-dimensional Verlinde sums from [20]. Further details can be
found in [16].

7.1. The 4-sphere. The 4-sphere S4 can be given the structure of a quasi-Hamiltonian SU(2)-
space (cf. [27] for details of its construction), and is prequantizable at any level k ∈ Z>0. The
fixed-point formula is discussed in detail in [27], where it is shown that

Q(S4)(t, k) =
1− t`

(1− t)(1− t−1)
, ` = k + h∨ = k + 2.

The finite subgroup T` = {t ∈ U(1)|t2` = 1} ⊆ T = U(1) is the group of (2`)th roots of unity.
The multiplicity function is

N = ∇αN, N(λ, k) = 1
2`V1,−1(λ, `)− 1

2`V (λ− `, `),
where λ ∈ Λ∗ = Z, α = −2 is the negative root of SU(2), and V1,−1 is the Verlinde sum

V1,−1(λ, `) =
∑′

t∈T`

t−λ

(1− t)(1− t−1)
.

The decomposition formula for V1,−1 with γ ∈ (0, 2) is

V1,−1(λ, `) =
(

1
3`

2 − `λ+ 1
2λ

2 − 1
12

)
− 2`

∑
m>0

x+(λ− 2m`)− 2`
∑
m≤0

x−(λ− 2m`),

where

x+(r) =

{
0, if r ≤ 0

r, if r > 0
, x−(r) = x+(−r).

See [16, 20] for similar computations. One uses a similar expression for V1,−1(λ − `, `), but
instead chooses γ ∈ (−2, 0), as explained in Section 5.5.
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Let θ± = −∇αx±, i.e. θ±(λ) = x±(λ + 2) − x±(λ). Then the norm-square localization
formula for S4 is

(77) N(λ, k) = 1 + (−1)j
∑
j>0

θ+

(
λ− j`

)
+ (−1)j

∑
j≤0

θ−

(
λ− j`

)
.

The contribution from ∆ = t is the constant polynomial 1, while the other terms are contribu-
tions from 0-dimensional affine subspaces.

Remark 7.1. The 4-sphere is a multiplicity-free q-Hamiltonian SU(2) space with surjective
moment map. There are only two other such examples [13]. A second example is the fusion
product C~C, where C is the conjugacy class corresponding to the midpoint of the alcove. The
norm-square localization formula for this example is given in [16]; in this case the contribution
from ∆ = t is the quasi-polynomial δ2Z(λ).

7.2. A multiplicity-free q-Hamiltonian SU(3)-space. A multiplicity-free q-Hamiltonian
(or Hamiltonian) G-space is uniquely determined by its generic stabilizer (up to conjugacy) and
moment map image (cf. [41, 13]). There is an example due to C. Woodward of a multiplicity-
free q-Hamiltonian SU(3)-space M with moment polytope an equilateral triangle inscribed in
the alcove, and trivial generic stabilizer (cf. [41] where a similar multiplicity-free Hamiltonian
SU(3)-space is discussed). This example was constructed and studied in [16], where it was
shown that M is prequantizable at level k if and only if k is even.

Identify su(3) = su(3)∗ using the basic inner product. Let $1, $2 denote the fundamental
weights of SU(3). The alcove has vertices 0, $1, $2. The moment polytope is the triangle
with vertices 1

2$1, 1
2$2, 1

2($1 + $2) inscribed in the alcove. There are 3 fixed-point sets
corresponding to the 3 edges of the moment polytope; each is topologically a 2-torus fixed by
a 1-dimensional subtorus of T . (An interesting feature of this example is that there are no
T -fixed points, which would be impossible for a compact Hamiltonian G-space.) Let F be the
fixed-point set with infinitesimal stabilizer tF equal to the linear span of ρ = $1 +$2 in t. The
other two fixed-point sets are conjugates of F under the NG(T )-action; thus it suffices to give
a formula for the contribution NF of F to the multiplicity function, since then the other two
contributions NF1 , NF2 will be determined by the (shifted) Weyl group anti-symmetry:

(78) NFi(λ, `) = (−1)|wi|NF (wi(λ+ ρ)− ρ, `), i = 1, 2

where wi denotes the reflection corresponding to the simple root αi of SU(3).
The edge of the moment polytope orthogonal to tF is the line segment

S =
[

1
2$1,

1
2$2

]
.

For ΦF̃0
one can choose

ΦF̃0
= prt∗F

(
1
2$1

)
= prt∗F

(
1
2$2

)
.

Identifying tF = t∗F with the basic inner product, ΦF̃0
= ρ

4 . The torus

TF = exp(tF ) = tF /(Λ ∩ tF ) = Rρ/Zρ.

Since 〈ρ, ρ〉 = 2 for the basic inner product, the weight lattice of TF is identified with Z · ρ2 .
This already implies M is not prequantizable when k is odd, since k ρ4 ∈ Z · ρ2 iff k is even.

The normal bundle νF is trivial of complex rank 4, and the weights of the TF action are
the projection to t∗F of the positive roots α1, α2, α1 + α2, as well as −$1 (or equivalently
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1

Figure 2. The left image shows a single contribution to the norm-square lo-
calization formula for a multiplicity-free q-Hamiltonian SU(3)-space (at level
k = 2). The right image shows the sum of the first 6 contributions.

−$2). (One knows the positive roots appear since S intersects the interior of the alcove; the
last weight and the fact that νF is trivial can be deduced from the construction [16].)

The evaluation of the fixed-point contribution for F involves an integral over F of the
differential form ekωec1(Z)/2 (the A-hat class of a torus is 1). The latter integral is 3` = 3(k+h∨)
(the factor 3 can be read off from the moment polytope of F , see [16] for further details). On
the other hand, #T` = 3`2. Altogether, the fixed-point formula for NF reduces to the following
(translated) Verlinde sum,

(79) NF (λ, k) =
1

`

∑′

t∈T`∩TF

t
k
4
$1−λ

1− t$1
.

The group T` ∩ TF ' Z`, hence (79) is the pullback of a 1-dimensional Verlinde sum under the
quotient map t∗ → t∗F . The latter was evaluated in [20]. One finds

NF (λ, k) = −`−1〈λ+ ρ, ρ〉+
∑
j≥0

h+

(
〈λ, ρ〉 − k

2 − j`
)
−
∑
j<0

h−

(
〈λ, ρ〉 − k

2 − j`+ 1
)
,

where h± are Heaviside functions

h+(r) =

{
1 if r ≥ 0

0 if r < 0,
h−(r) = h+(−r).

One obtains the multiplicity function by adding NF together with NF1 , NF2 from (78). The
part of the sum which is polynomial in λ is

`−1〈−(λ+ ρ) + w1(λ+ ρ) + w2(λ+ ρ), ρ〉 ≡ 0.
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This is an example of the ‘cancellations’ observed in Section 6.4. Therefore, the norm-square
localization formula is

N(λ, k) =
∑

i=0,1,2

(−1)|wi|f
(
〈wi(λ+ρ), ρ〉

)
, f(r) =

∑
j≥0

h+

(
r−k

2−2−j`
)
−
∑
j<0

h−

(
r−k

2−1−j`
)
,

where w0 = 1 ∈W . The sum of the first 6 non-trivial contributions is shown in Figure 2.

8. The quasi-polynomial multiplicity function

In this section we study the support of the non-trivial terms Nqpol
∆ in the norm-square

localization formula (46) leading to a proof that N(0, k) is a quasi-polynomial function of
k ≥ 1.

Recall from Proposition 5.7 that if ∆ 6= t∗ then Nqpol
∆,Σ (−, k) is supported in a half-space such

that the in-pointing normal to boundary is τ∆. We now make this more precise.

Definition 8.1. For Σ ⊆ X∆ a connected component, let 2h∨Ψ∆,Σ be the moment map for
the action of T∆ on the anti-canonical line bundle ZΣ̃ = HomCl(p∗TM)(S

∗,S)|Σ̃; note that

Ψ∆,Σ ∈ t∗∆ is constant, because Σ ⊆ XT∆ is connected, and the components of the covering

space Σ̃ = ∆×T Σ are related by Deck transformations lying in Λ ∩ t⊥∆, which are annihilated
by prt∗∆ .

Definition 8.2. For Σ ⊆ X∆ a connected component, let Θ∆,Σ ∈ t∗∆ denote the sum of the
complex weights for the action of T∆ on the normal bundle νΣ to Σ in X, where νΣ is equipped
with the τ∆-polarized complex structure.

Definition 8.3. Let Φ∆ = prt∗∆(ΦX̃∆
), a constant in t∗∆; equivalently {Φ∆} = prt∗∆(∆). Note

that kΦ∆ is the weight for the action of T∆ on the line bundle LX̃∆
. (Unlike Ψ∆,Σ, Θ∆,Σ, this

does not depend on the connected component of X∆.)

Proposition 8.4. Let ∆ 6= t∗ and let Σ ⊆ X∆ be a connected component. Then Nqpol
∆,Σ (−, k)

has support contained in the half-space described by the inequality 〈−, τ∆〉 ≥ d∆,Σ where

(80) d∆,Σ = k〈Φ∆, τ∆〉+ h∨〈Ψ∆,Σ, τ∆〉+
1

2
〈Θ∆,Σ, τ∆〉 −

∑
{α∈R+|〈α,τ∆〉>0}

〈α, τ∆〉.

Proof. We already did the requisite calculations in Section 6.2. The formula for d∆,Σ follows

from the analogue of equation (51) for Q∆,Σ, the function Nqpol
∆,Σ being related to Q∆,Σ by taking

the Fourier transform, followed by replacing Verlinde sums with Verlinde quasi-polynomials (see
equation (47)). Thus d∆,Σ equals the minimum of the function 〈τ∆, µ〉 as µ ranges over the
weights for action of T∆ on the vector bundle

LF̃∆
⊗ SνF̃ ,∆ ⊗ Symτ∆(ν⊥

F̃ ,∆
)⊗ ∧n−

over F̃∆, for any F̃∆ ⊆ Σ̃ (the result is independent of the choice of F̃∆, by the moment map
property, and because Σ ⊆ XT∆ is connected). The line bundle LF̃∆

contributes kΦ∆, while

the factor ∧n− contributes the (partial) sum over positive roots in (80). Since T∆ fixes νF̃ ,∆,

Schur’s lemma implies T∆ acts on SνF̃ ,∆ by some fixed weight. The weight for the action of
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T∆ on SνF̃ ,∆ is one half the weight for the action of T∆ on its anti-canonical line bundle. By

equation (50), the latter is

(81) det−τ∆(ν⊥
F̃ ,∆

)−1 ⊗ZνF̃∆

where ZνF̃∆
is the canonical line bundle for SνF̃ |F̃∆

. The weight for the action of T∆ on (81) is

2h∨Ψ∆,Σ + Θ∆,Σ, hence the result. �

Theorem 8.5. Let k ≥ 1. Assume 0 /∈ ∆, and Nqpol
∆,Σ 6= 0. Then d∆,Σ > 0.

Proof. Let β ∈ t∗∆ be the nearest point in ∆ to the origin with respect to the inner product. As
we are assuming that the perturbation ε is sufficiently small, β ≈ τ∆. Since 0 /∈ ∆, it suffices
to prove c∆,Σ > 0 where

(82) c∆,Σ := k〈Φ∆, β〉+ h∨〈Ψ∆,Σ, β〉+
1

2
〈Θ∆,Σ, β〉 −

∑
{α∈R+|〈α,β〉>0}

〈α, β〉.

Each term in (82) other than the last is invariant under the Weyl group (with β replaced by
wβ, ∆ by w∆ and Σ by n · Σ, with n ∈ NG(T ) being any choice of lift). On the other hand
the last term is largest for β ∈ t∗+. Thus, without loss of generality, we restrict to the ‘worst’
case when β ∈ t∗+. The last term then becomes 2〈ρ, β〉. Note also that prt∗∆(β) = Φ∆, so that

the first term is k‖β‖2. Hence

c∆,Σ = k‖β‖2 + h∨〈Ψ∆,Σ, β〉+
1

2
〈Θ∆,Σ, β〉 − 2〈ρ, β〉.

Choose w = (w̄, η) ∈Waff such that

β ∈ wσ
for a unique face σ ⊆ a. Let g = (ḡ, η) ∈ NG(T ) n Λ be a lift of w.

As Nqpol
∆,Σ 6= 0, Theorem 6.12 implies exp(β) ∈ Φ(Σ). Hence we may choose x ∈ Σ ⊆ Xβ

with Φ(x) = exp(β). Let x̂ ∈ Σ̃ be any lift of x. Let 2h∨Ψ be a moment map for the action of
T on Z, the anti-canonical line bundle of S. Then Ψ transforms at level 1 with respect to the
Λ-action, and thus

Ψ∆,Σ = prt∗∆(Ψ(x̂)) = prt∗∆(w̄Ψ(g−1x̂) + η).

By construction g−1x̂ ∈ Yw̄
−1β

σ , the (w̄−1β)-fixed-point subset of the cross-section Yσ associated
to the face σ ⊆ a of the alcove.

At this stage we need a fact about the anti-canonical line bundle Z that emerges from its
construction: Z may be constructed by patching together the flow-outs, under the loop group
action, of LGσ-equivariant line bundles Kσ defined on the cross-sections Yσ, σ ⊆ a by

Zσ = detC(T ∗Yσ)−1 ⊗ C2(ρ−ρ′σ)

where one uses any compatible almost complex structure on the cross-section to define the
complex determinant, and ρ′σ is as in Section 2.2; see [31] for details. Moment maps depend on
choices of connections, except along fixed-point subsets, where the corresponding components
of the moment map are determined by the group action alone. It follows that

h∨〈Ψ(g−1x̂), w̄−1β〉 =
1

2
〈Θσ, w̄

−1β〉+ 〈ρ− ρ′σ, w̄−1β〉
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or, equivalently,

h∨〈w̄Ψ(g−1x̂), β〉 =
1

2
〈w̄Θσ, β〉+ 〈w̄(ρ− ρ′σ), β〉

with Θσ ∈ w̄−1t∗∆ the sum of the complex weights for the action of ḡ−1T∆ḡ on Tg−1x̂Yσ (for
any compatible almost complex structure).

By definition Θ∆,Σ is the sum of the weights for the action of T∆ on νΣ, where the latter is
equipped with the τ∆-polarized complex structure. The tangent space is a direct sum

TxX = TxYw̄σ ⊕ g/gw̄σ

where Yw̄σ = Φ−1(Uw̄σ) is the quasi-Hamiltonian cross-section and g/gw̄σ is identified with
G-orbit directions. Thus

1

2
〈Θ∆,Σ, β〉 =

1

2
〈Θ+

w̄σ, β〉+ 〈ρ− ρwσ, β〉

where Θ+
w̄σ is the sum of the τ∆-polarized weights for the subspace TxYw̄σ (we have used the

assumption β ∈ t∗+, and also ρw̄σ = ρwσ).
The combination

1

2
〈w̄Θσ, β〉+

1

2
〈Θ+

w̄σ, β〉 ≥ 0,

since any weight appearing in w̄Θσ having negative pairing with β ≈ τ∆ will cancel with the
corresponding weight appearing in Θ+

w̄σ. Dropping this term and the term k‖β‖2 > 0, we
obtain the lower bound

(83) c∆,Σ > 〈w̄(ρ− ρ′σ) + h∨η, β〉 − 〈ρ+ ρwσ, β〉.
The closure of wσ is a compact, convex set. The right-hand-side of (83) is a linear function

of β, and thus its minimum value on this set must occur at some vertex ξ of the face wσ. Hence

(84) c∆,Σ > 〈w̄(ρ− ρ′σ) + h∨η, ξ〉 − 〈ρ+ ρwσ, ξ〉.
Then w−1ξ is some vertex ν of a. Consider the sum

w̄ρ′σ + ρwσ.

ρwσ is the half-sum of the positive roots Rw̄σ,+ ⊆ R+ for the subalgebra gw̄σ, while w̄ρ′σ is
the half-sum of the (possibly different) set w̄ ·R′σ,+ of positive roots for the same subalgebra.
Those roots in the intersection Rw̄σ,+ ∩ w̄ · R′σ,+ add, while the others cancel. Therefore the
sum w̄ρ′σ + ρwσ is a sum of a set of roots in R+.

By a similar argument
w̄ρ′{ν} + ρ{ξ}

is a sum of a set of roots in R+ (here {ν}, {ξ} are faces of the Stiefel diagram containing a
single point). Since Rw̄σ,+ ⊆ R{ξ},+ and R′σ,+ ⊆ R′{ν},+, the same positive roots will appear

as in the sum w̄ρ′σ + ρwσ, and possibly some additional ones. Since ξ ∈ t∗+ it follows that

〈w̄ρ′{ν} + ρ{ξ}, ξ〉 ≥ 〈w̄ρ′σ + ρwσ, ξ〉.

Using this in (84) yields

(85) c∆,Σ > 〈w̄(ρ− ρ′{ν}) + h∨η, ξ〉 − 〈ρ+ ρ{ξ}, ξ〉.
By a special case of Lemma 2.5

ρ− ρ′{ν} = h∨ν
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thus
w̄(ρ− ρ′{ν}) + h∨η = h∨wν = h∨ξ,

and (85) becomes

c∆,Σ > h∨‖ξ‖2 − 〈ρ+ ρξ, ξ〉.
The result now follows from the Key Inequality (7). �

As a corollary, Nqpol
∆,Σ does not contribute to the multiplicity N(0, k), and we obtain our main

result:

Corollary 8.6. N(0, k) is a quasi-polynomial function of k.

Proof. Theorem 8.5 implies

N(0, k) =
∑

{∆|0∈∆}

∑
Σ⊆X∆

Nqpol
∆,Σ (0, k), ∀k ≥ 1.

But if 0 ∈ ∆, then Nqpol
∆,Σ (0, k) is a quasi-polynomial function of k by Proposition 5.7. �

As explained in the introduction, Corollary 8.6 is closely related to the [Q,R] = 0 Theorem
[3] for quasi-Hamiltonian G-spaces or Hamiltonian LG-spaces. The last step in a proof of the
[Q,R] = 0 Theorem would be to apply the Kirillov-Berline-Vergne index formula of Section 6.3
and a stationary phase argument to deduce that N(0, k) equals the quantization of the reduced
space for large k, similar to [24, 18].

Appendix A. The Atiyah-Singer integrand for the Spinc Dirac operator

Let M be a closed oriented Riemannian manifold of even dimension n. Let G be a compact
Lie group with a given action on M by orientation-preserving isometries. Suppose that M
is equipped with a G-equivariant Spinc-structure: a G-equivariant principal Spinc(n)-bundle
Q, together with a G× Spinc(n)-equivariant bundle map Q→ P to the oriented orthonormal
frame bundle of M . Equivalently, in terms of the unique irreducible representation ∆ of the
Clifford algebra Cl(n), M is equipped with a Hermitian vector bundle

S = P ×Spinc(n) ∆

and an isomorphism Cl(TM) ' End(S). As a representation of Spinc(n), ∆ splits into a direct
sum ∆+ ⊕∆−, and accordingly S = S+ ⊕ S− acquires a Z2-grading.

Fix g ∈ G, and let F be a connected component of Mg. The action of g defines sections gν , gS
of the group bundles SO(ν), Spinc(ν) respectively. Since the G-action preserves the orientation,
n0 = dim(F ) is even. Since the G-action preserves the Spinc-structure, F is orientable (the
proof is similar to [5, Proposition 6.14], combined with the observation that the variant of

ζ(g)1/2 (see Definition A.4 below) defined on the oriented double cover of F is locally constant
and reverses sign under the non-trivial deck transformation). Let ν = TF⊥ be the normal
bundle to F , and let n1 be its rank. Since TM |F , TF are orientable, so is ν.

Let x ∈ F . A frame of νx is adapted to g if, relative to the frame, the matrix of gx is
block diagonal diag(−1nπ , B1, ..., Br) where Bj is counterclockwise rotation by θj in R2, and
0 < θ1 ≤ θ2 ≤ · · · ≤ θr < π. It is convenient to fix an orientation of ν, once and for all,
such that any adapted frame is oriented (the latter condition only determines an orientation
uniquely if nπ = 0). The orientations of TM |F , ν determine an orientation of TF . An oriented
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frame of TxM is adapted to g if its first n0 elements form an oriented frame of TxF and its
remaining n1 elements form an adapted frame of νx. Thus along F the action of g determines
a reduction of structure group PF ⊆ P |F , from SO(n) to SO(n0) × SO(n1)g, where SO(n1)g

is the subgroup of SO(n1) commuting with diag(−1nπ , B1, ..., Br). The inverse image of PF is
a reduction of structure group QF ⊆ Q|F from Spinc(n) to Spinc(n0)×U(1) Spinc(n1)g. There
is a unique element of Spinc(n1) determined by g (any choice of point in QF yields the same
element), which we also denote by g when there is no risk of confusion. The Lie algebra

Lie(Spinc(n0)×U(1) Spinc(n1)g) = so(n0)⊕ spinc(n1)g = so(n0)⊕ so(n1)g ⊕ u(1)

splits into a direct sum, and we write elements of the Lie algebra as triples (A0, A1, a). For j =
0, 1, let ∆j denote the irreducible Cl(nj)-module. The map Lie(Spinc(n0)×U(1) Spinc(n1)) →
spinc(n1) makes ∆1 into a representation of Lie(Spinc(n0)×U(1) Spinc(n1)).

Definition A.1. The relative Chern character ChgF (S) ∈ H•(F ) is the characteristic class of
QF associated to the Ad-invariant analytic function

(86) (A0, A1, a) 7→ sTr∆1(gei(A1+a)/2π)

on the Lie algebra of Spinc(n0)×U(1) Spinc(n1)g.

The definition applies to any G-equivariant Spinc-structure, and in particular ChgF (S∗) is
defined, where S∗ = Hom(S,C) is the dual spinor module. Since g acts without fixed vectors
on ν, the class ChgF (S∗) is invertible.

Definition A.2. The Atiyah-Singer integrand is the characteristic class of QF given by

(87) ASg(ν) =
Â(F )

ChgF (S∗)
.

The fixed point contribution to the index of the Spinc Dirac operator for S is the pairing of
ASg(ν) with the fundamental class of F . Equation (87) for the fixed-point contribution may be
derived from the general formula for the fixed-point contributions given by Atiyah and Singer.
One of several other equivalent expressions is

(88) ASg(ν) =
Eul(F )

Chg(S∗)
,

where Eul(F ) is the Euler class of TF , and Chg(S∗) is the ordinary Chern character of the Z2-
graded complex vector bundle S∗; however note that in (88), the class Chg(S∗) is not invertible,
so the quotient only makes sense when interpreted in a suitable ring of characteristic classes.

This is an appropriate place to remark that, the definition of ChgF (S∗), and hence ASg(ν),
does not depend on the ambient manifold M except through the g-equivariant Spinc-structure
on the Euclidean vector bundle TF ⊕ ν. This becomes relevant in our setting, in order to
define ASg(ν) in a context where F is not canonically embedded into an ambient closed Spinc
manifold.

Since the Lie group Spinc(n0)×U(1)Spinc(n1) does not split into a product, the spinor module
S does not necessarily split into a graded tensor product along F . However one has

sTr∆1(c) = (−2i)−n0/2sTr∆(e1 · · · en0c),
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for c ∈ Cl(n1), where e1, · · · , en0 is an oriented orthonormal frame of Rn0 . This yields an
alternative formula for (86) suited to the Chern-Weil construction. Let V0 ∈ Γ(det(TF )) be the
Riemannian volume form; it may be regarded as an element Cl(TM |F ) via the isomorphism
∧TM |F ' Cl(TM |F ). As F is totally geodesic, the Levi-Civita connection preserves the
splitting TM |F = TF ⊕ ν. Let R = RF ⊕ Rν ∈ Ω2(F, so(TF )⊕ so(ν)) be the pullback of the
Riemann curvature to F . Fix a connection on S compatible with the Levi-Civita connection,
and let RS ∈ Ω2(F, spinc(TM |F )) be the pullback of its curvature to F . The image of RS under
the map spinc(TM |F )→ so(TM |F ) is R.

Proposition A.3. The differential form

(−2i)−dim(F )/2sTrS(V0g
−1
S e−i(RS−RF )/2π) ∈ Ω•(F )

represents ChgF (S∗).

We will use the same symbols ChgF (S∗), ASg(ν) to denote these Chern-Weil representatives; in
particular we use this interpretation in more general contexts where F may be non-compact.

Let Z = HomCl(S
∗, S) be the anti-canonical line bundle of the Spinc structure. The element

g acts on Z|F by a phase factor ζ(g) ∈ U(1). The chosen orientation of ν determines a lift of
gν ∈ SO(ν) to Spin(ν), that we also denote gν , defined by the condition that the top-degree
part of the image of gν under the isomorphism Cl(ν) ' ∧ν is positive relative to the orientation
of ν.

Definition A.4. The product gSg
−1
ν ∈ U(1) is a square-root of ζ(g) that we denote by ζ(g)1/2.

Remark A.5. Let x ∈ F and fix a g-equivariant orthogonal complex structure Jx on TxM com-
patible with the orientation. There is an isomorphism of Cl(TxM)-modules Sx ' ∧JxTxM⊗Dx

for a complex line Dx. Let κDx(g) ∈ U(1) be the phase factor for the induced action of g on

Dx. Let gJx ∈ U(TxM,Jx) be the unitary transformation induced by g, and g
1/2
Jx
∈ U(TxM,Jx)

the square root having eigenvalues eiθ/2 with θ ∈ [0, 2π). Then ζ(g)1/2 = κDx(g) detC(g
1/2
Jx

).

By [5, Proposition 3.24] the function

A1 ∈ so(n1) 7→ det(1− geiA1/2π)

has an analytic square root det1/2(1 − geiA1/2π), where we fix the sign by demanding that

det1/2(1− g) > 0.

Definition A.6. Let DgR(ν) ∈ Ω•(F ) be the differential form

DgR(ν) = irank(ν)/2det1/2(1− gνeiRν/2π).

Note that DgR(ν) is invertible since its component in Ω0(F ) is in1/2det1/2(1− gν) 6= 0. We use
the same symbol DgR(ν) to denote its class in H•(F ).

Proposition A.7. The Atiyah-Singer fixed-point contribution is

(89) ASg(ν) =
Â(F )ζ(g)1/2ec1(Z)/2

DgR(ν)
.
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This can be deduced from the formula (cf. [5, Proposition 3.23])

det1/2(1− geiA1/2π) = i−n1/2sTr∆1(geiA1/2π),

for the square-root. Note also that det(1− u) = det(1− u−1) for any u ∈ SO(n1,C). A similar
calculation shows that

ChgF (S∗)2 = (−1)n1/2 det(1− gνeiRν/2π)Chg(Z−1),

hence ChgF (S∗) is a square-root of the right-hand-side.
Under various assumptions on F , the Atiyah-Singer fixed-point contribution admits further

simplification.

Proposition A.8. If F admits an almost complex structure JF , and Sν = HomCl(∧JF TF,S)
is the induced Cl(ν)-module, then

(90) ASg(ν) =
Td(F )

Chg(S∗ν)
.

If furthermore Sν ' ∧Jνν ⊗ D for a g-equivariant orthogonal complex structure Jν on ν and
line bundle D, then

(91) ASg(ν) =
Td(F )Chg(D)

DgC(ν)
, DgC(ν) = detC(1− g−1

ν e−iRν/2π),

where gν , Rν are regarded as endomorphisms of ν1,0 in the determinant.

The differential form ASg(ν) admits an equivariant extension ASg(ν, ξ), obtained by re-
placing curvatures with equivariant curvatures (cf. [5]) in the formulas, defined for ξ ∈ gg
sufficiently small that the denominator ChgF (S∗, ξ) remains invertible:

(92) ASg(ν, ξ) =
Â(F )

ChgF (S∗, ξ)
.

Our convention for the equivariant curvature is such that ASg(ν, ξ) is closed for the differential
dξ = d + 2πiι(ξF ). There are obvious analogues of (88), (89), (90).

Finally we briefly outline the proof of the Berline-Vergne-Kirillov index formula (cf. [5]). Let
ξ ∈ gg, let ι : F ′ = F ξ ↪→ F be the fixed-point set. Let νF,F ′ be the normal bundle to F ′ in F
and ν ′ = ν|F ′⊕νF,F ′ . The action of ξ determines an orientation of νF,F ′ . Let g′ = g exp(ξ). For

ξ sufficiently small, νg
′

= F ξ = F ′. Using the equivariant analogue of (88) and multiplicativity
of the Euler class,

(93)
ι∗ASg(ν, ξ)
Eul(νF,F ′ , ξ)

=
Eul(F ′)

ι∗Chg(S∗, ξ)
=

Eul(F ′)

Chg
′
(S∗|F ′)

= ASg′(ν ′).

The Berline-Vergne-Kirillov index formula follows from this expression and the abelian local-
ization formula in equivariant cohomology.
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Appendix B. The Bott element and its Chern character.

Let V be a complex vector space with an effective T -action, and let g ∈ T . Viewing ∧V
as a Z2-graded complex vector bundle over a point, its equivariant twisted Chern character is
simply its ordinary character as a representation of T :

Chg(∧V, ξ) = detVC (1− g exp(ξ)).

Let g ∈ T and let V g denote the subspace fixed by g. The T -equivariant Euler class of V g

(viewed as a vector bundle over a point) is the polynomial

ξ 7→ detV
g

C (ξ).

Let τV g be a Thom form for V g, i.e. a compactly supported closed differential form on V g

with integral 1. It has a T -equivariant extension τV g(ξ) whose pullback to the origin in V g is
detV

g

C (ξ).
Let b ∈ K0

T (V ) denote the Bott element associated to the complex structure: the unique
element of K0

T (V ) whose pullback to the origin is ∧V ∈ K0
T (pt) ' R(T ). The T -equivariant

differential form

(94) Chg(b, ξ) := det
V/V g

C (1− g exp(ξ))detV
g

C

(
1− exp(ξ)

ξ

)
τV g(ξ).

on V g represents its equivariant twisted Chern character. Indeed since pullback to the origin
is injective for equivariant cohomology, this can be checked by pulling back (94) to the origin,
where it becomes

detVC (1− g exp(ξ)) = Chg(∧V, ξ).
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