Trading linearity for ellipticity: a nonsmooth approach to Einstein's theory of gravity and Lorentzian splitting theorems

Robert J McCann

University of Toronto

with T Beran, M Braun, M Calisti, N Gigli, A Ohanyan, F Rott, C Sämann (8 and 5)

www.math.toronto.edu/mccann/Talk3.pdf

7 May 2025

Example (convex functions, not necessarily smooth)

If the graph of a convex function $u : \mathbb{R}^n \longrightarrow \mathbb{R}$ contains a full line, say u(t, 0, ..., 0) = 0 for all $t \in \mathbb{R}$, then $u(x) = U(x_2, ..., x_n)$ for all $x \in \mathbb{R}^n$

Example (convex functions, not necessarily smooth)

If the graph of a convex function $u : \mathbb{R}^n \longrightarrow \mathbb{R}$ contains a full line, say u(t, 0, ..., 0) = 0 for all $t \in \mathbb{R}$, then $u(x) = U(x_2, ..., x_n)$ for all $x \in \mathbb{R}^n$

Example (smooth Riemannian manifolds; Cheeger-Gromoll '71)

If a connected complete Ricci nonnegative Riemannian manifold (M^n, g_{ij}) contains a length minimizing line, then M is a geometric product of (\mathbf{R}, dr^2) with a submanifold $(\Sigma^{n-1}, h_{ij} = g_{ij}|_{\Sigma})$: i.e.

Example (convex functions, not necessarily smooth)

If the graph of a convex function $u : \mathbb{R}^n \longrightarrow \mathbb{R}$ contains a full line, say u(t, 0, ..., 0) = 0 for all $t \in \mathbb{R}$, then $u(x) = U(x_2, ..., x_n)$ for all $x \in \mathbb{R}^n$

Example (smooth Riemannian manifolds; Cheeger-Gromoll '71)

If a connected complete Ricci nonnegative Riemannian manifold (M^n, g_{ij}) contains a length minimizing line, then M is a geometric product of (\mathbf{R}, dr^2) with a submanifold $(\Sigma^{n-1}, h_{ij} = g_{ij}|_{\Sigma})$: i.e. there is an isometry $(r, y) \in \mathbf{R} \times \Sigma \mapsto x(r, y) \in M$ with $g_{ij}dx^i dx^j = dr^2 + h_{kl}dy^k dy^l$.

Toponogov '64: proved earlier assuming nonnegative sectional curvature

Example (convex functions, not necessarily smooth)

If the graph of a convex function $u : \mathbb{R}^n \longrightarrow \mathbb{R}$ contains a full line, say u(t, 0, ..., 0) = 0 for all $t \in \mathbb{R}$, then $u(x) = U(x_2, ..., x_n)$ for all $x \in \mathbb{R}^n$

Example (smooth Riemannian manifolds; Cheeger-Gromoll '71)

If a connected complete Ricci nonnegative Riemannian manifold (M^n, g_{ij}) contains a length minimizing line, then M is a geometric product of (\mathbf{R}, dr^2) with a submanifold $(\Sigma^{n-1}, h_{ij} = g_{ij}|_{\Sigma})$: i.e. there is an isometry $(r, y) \in \mathbf{R} \times \Sigma \mapsto x(r, y) \in M$ with $g_{ij}dx^i dx^j = dr^2 + h_{kl}dy^k dy^l$.

Toponogov '64: proved earlier assuming nonnegative sectional curvature Gigli '13+: nonsmooth version for infinitesimally Hilbertian metric-measure spaces (M, d, m) satisfying curvature-dimension condition RCD(0, N) à la Sturm '06, Lott & Villani '09, (... M. '94)

This talk: Lorentzian analogs relevant to Einstein's theory of gravity

Let $\gamma : \mathbf{R} \longrightarrow M^n$ be the doubly-infinite minimizing geodesic line. Busemann '32: $b_r(x) := d(x, \gamma(r)) - d(\gamma(0), \gamma(r))$ and $\pm b^{\pm} := \lim_{r \to \pm \infty} b_r$

- note b_r is 1-Lipschitz and $|\nabla b_r| = 1 = |\nabla b^{\pm}|$ a.e.; for r > 0,
- triangle inequality gives $b_r \ge b^+ \ge b^- \ge -b_{-r}$; all vanish at $x = \gamma(0)$

Let $\gamma : \mathbf{R} \longrightarrow M^n$ be the doubly-infinite minimizing geodesic line. Busemann '32: $b_r(x) := d(x, \gamma(r)) - d(\gamma(0), \gamma(r))$ and $\pm b^{\pm} := \lim_{r \to \pm \infty} b_r$

- note b_r is 1-Lipschitz and $|
 abla b_r| = 1 = |
 abla b^{\pm}|$ a.e.; for r > 0,
- triangle inequality gives $b_r \ge b^+ \ge b^- \ge -b_{-r}$; all vanish at $x = \gamma(0)$

Calabi '58: 'Laplacian comparison theorem' $\operatorname{Ric} \ge 0$ implies $\Delta b_r = \nabla \cdot (\nabla b_r) \le \frac{n-1}{d(\cdot,\gamma(r))}$ in

Let $\gamma : \mathbf{R} \longrightarrow M^n$ be the doubly-infinite minimizing geodesic line.

Busemann '32: $b_r(x) := d(x, \gamma(r)) - d(\gamma(0), \gamma(r))$ and $\pm b^{\pm} := \lim_{r \to \pm \infty} b_r$

- note b_r is 1-Lipschitz and $|\nabla b_r| = 1 = |\nabla b^{\pm}|$ a.e.; for r > 0,
- triangle inequality gives $b_r \ge b^+ \ge b^- \ge -b_{-r}$; all vanish at $x = \gamma(0)$

Calabi '58: 'Laplacian comparison theorem' Ric > 0 implies $\Delta b_r = \nabla \cdot (\nabla b_r) \leq \frac{n-1}{d(\cdot,\gamma(r))}$ in viscosity (= support) sense across cut locus;

• hence $\pm b^{\pm}$ are both superharmonic: $\Delta b^+ \leq 0 \leq \Delta b^-$

Let $\gamma : \mathbf{R} \longrightarrow M^n$ be the doubly-infinite minimizing geodesic line.

Busemann '32: $b_r(x) := d(x, \gamma(r)) - d(\gamma(0), \gamma(r))$ and $\pm b^{\pm} := \lim_{r \to \pm \infty} b_r$

- note b_r is 1-Lipschitz and $|
 abla b_r| = 1 = |
 abla b^{\pm}|$ a.e.; for r > 0,
- triangle inequality gives $b_r \ge b^+ \ge b^- \ge -b_{-r}$; all vanish at $x = \gamma(0)$

Calabi '58: 'Laplacian comparison theorem' $\operatorname{Ric} \geq 0$ implies $\Delta b_r = \nabla \cdot (\nabla b_r) \leq \frac{n-1}{d(\cdot,\gamma(r))}$ in viscosity (= support) sense across cut locus;

- hence $\pm b^{\pm}$ are both superharmonic: $\Delta b^+ \leq 0 \leq \Delta b^-$
- strong maximum principle gives $b^+ = b^-$ hence harmonic & smooth Bochner '46: $\operatorname{Tr}[(\operatorname{Hess} b)^2] + \operatorname{Ric}(\nabla b, \nabla b) = \Delta \frac{|\nabla b|^2}{2} - g(\nabla b, \nabla \Delta b)$

Let $\gamma : \mathbf{R} \longrightarrow M^n$ be the doubly-infinite minimizing geodesic line.

Busemann '32: $b_r(x) := d(x, \gamma(r)) - d(\gamma(0), \gamma(r))$ and $\pm b^{\pm} := \lim_{r \to \pm \infty} b_r$

- note b_r is 1-Lipschitz and $|
 abla b_r| = 1 = |
 abla b^{\pm}|$ a.e.; for r > 0,
- triangle inequality gives $b_r \ge b^+ \ge b^- \ge -b_{-r}$; all vanish at $x = \gamma(0)$

Calabi '58: 'Laplacian comparison theorem' $\operatorname{Ric} \ge 0$ implies $\Delta b_r = \nabla \cdot (\nabla b_r) \le \frac{n-1}{d(\cdot,\gamma(r))}$ in viscosity (= support) sense across cut locus;

- hence $\pm b^{\pm}$ are both superharmonic: $\Delta b^+ \leq 0 \leq \Delta b^-$
- strong maximum principle gives $b^+ = b^-$ hence harmonic & smooth Bochner '46: $\operatorname{Tr}[(\operatorname{Hess} b)^2] + \operatorname{Ric}(\nabla b, \nabla b) = \Delta \frac{|\nabla b|^2}{2} - g(\nabla b, \nabla \Delta b) = 0$
- $\operatorname{Ric} \geq 0$ gives $\operatorname{Hess} b = 0$ for $b := b^{\pm}$

Let $\gamma : \mathbf{R} \longrightarrow M^n$ be the doubly-infinite minimizing geodesic line.

Busemann '32: $b_r(x) := d(x, \gamma(r)) - d(\gamma(0), \gamma(r))$ and $\pm b^{\pm} := \lim_{r \to \pm \infty} b_r$

- note b_r is 1-Lipschitz and $|
 abla b_r| = 1 = |
 abla b^{\pm}|$ a.e.; for r > 0,
- triangle inequality gives $b_r \ge b^+ \ge b^- \ge -b_{-r}$; all vanish at $x = \gamma(0)$

Calabi '58: 'Laplacian comparison theorem' $\operatorname{Ric} \geq 0$ implies $\Delta b_r = \nabla \cdot (\nabla b_r) \leq \frac{n-1}{d(\cdot,\gamma(r))}$ in viscosity (= support) sense across cut locus;

- hence $\pm b^{\pm}$ are both superharmonic: $\Delta b^+ \leq 0 \leq \Delta b^-$
- strong maximum principle gives $b^+ = b^-$ hence harmonic & smooth Bochner '46: $\operatorname{Tr}[(\operatorname{Hess} b)^2] + \operatorname{Ric}(\nabla b, \nabla b) = \Delta \frac{|\nabla b|^2}{2} - g(\nabla b, \nabla \Delta b) = 0$
- Ric \geq 0 gives Hess b = 0 for $b := b^{\pm}$
- hence ∇b is a 'Killing' vector field (its flow gives a local isometry)
- $\Sigma := \{x \in M^n \mid b(x) = 0\}$ is totally geodesic (its normal ∇b is parallel)
- along Σ , metric splits into tangent $g_{ij}dy^i dy^j$ and normal components dr^2
- $(r, y) \in \mathbf{R} \times \Sigma \mapsto \exp_y r \nabla b(y)$ is surjective hence a global isometry

General relativity: Einstein's gravity and field equation

• Einstein's gravity is formulated on smooth Lorentzian manifolds, but often predicts such manifolds are geodesically incomplete (nonsmooth) Gravity not a force, but rather a manifestation of curvature of spacetime "Spacetime tells matter how to move" (along timelike/null geodesics...)

Field equation "Matter tells spacetime how to bend"

geometry = physics
curvature = flux of energy and momentum

General relativity: Einstein's gravity and field equation

• Einstein's gravity is formulated on smooth Lorentzian manifolds, but often predicts such manifolds are geodesically incomplete (nonsmooth) Gravity not a force, but rather a manifestation of curvature of spacetime "Spacetime tells matter how to move" (along timelike/null geodesics...)

Field equation "Matter tells spacetime how to bend"

• understanding Ricci and Einstein (à la Kip Thorne) $i, j \in \{0, 1, 2, 3\}$

General relativity: Einstein's gravity and field equation

• Einstein's gravity is formulated on smooth Lorentzian manifolds, but often predicts such manifolds are geodesically incomplete (nonsmooth) Gravity not a force, but rather a manifestation of curvature of spacetime "Spacetime tells matter how to move" (along timelike/null geodesics...)

Field equation "Matter tells spacetime how to bend"

- understanding Ricci and Einstein (à la Kip Thorne) $i,j \in \{0,1,2,3\}$
- just integrate this local conservation law for $T_{ij}(x)$ to find g_{ij} ...

What if matter distribution is unknown?

Can look at initial value problem (nonlinear wave equation); linearization produces gravity waves; no smoothing; singularities propagate...

Elliptic vs hyperbolic geometry

ELLIPTIC: \mathbb{R}^n equipped with Euclidean norm $|v|_E := (\sum v_i^2)^{1/2}$ • $|v + w|_E \le |v|_E + |w|_E$

HYPERBOLIC: Minkowski space \mathbf{R}^n equipped with the hyperbolic 'norm'

$$v|_{F} := \begin{cases} (v_{1}^{2} - \sum_{i \ge 2} v_{i}^{2})^{1/2} & v \in F := \begin{cases} v \in \mathbf{R}^{n} \mid v_{1} \ge (\sum_{i \ge 2} v_{i}^{2})^{1/2} \\ -\infty & else \end{cases}$$

• $|v + w|_F \ge |v|_F + |w|_F$, but terribly asymmetric the future $F \subset \mathbb{R}^n$ is a convex cone; $v \in F$ called *causal* or *future-directed*

Elliptic vs hyperbolic geometry

ELLIPTIC: \mathbb{R}^n equipped with Euclidean norm $|v|_E := (\sum v_i^2)^{1/2}$ • $|v + w|_E \le |v|_E + |w|_E$

HYPERBOLIC: Minkowski space \mathbf{R}^n equipped with the hyperbolic 'norm'

$$v|_{F} := \begin{cases} (v_{1}^{2} - \sum_{i \ge 2} v_{i}^{2})^{1/2} & v \in F := \begin{cases} v \in \mathbf{R}^{n} \mid v_{1} \ge (\sum_{i \ge 2} v_{i}^{2})^{1/2} \\ -\infty & else \end{cases}$$

• $|v + w|_F \ge |v|_F + |w|_F$, but terribly asymmetric

the future $F \subset \mathbf{R}^n$ is a convex cone; $v \in F$ called *causal* or *future-directed*

- *v* is *timelike* if $v \in F \setminus \partial F$
- v is lightlike (or null) if $v \in \partial F \setminus \{0\}$
- (• v is spacelike iff $\pm v \notin F$ and past-directed if $-v \in F$)
- smooth curves are called *timelike (etc.)* if all tangents are timelike (etc.)

A crash course in differential geometry: action principles

Manifold M^n with symmetric nondegenerate C^m -smooth tensor $g_{ij} = g_{ji}$ RIEMANNIAN: $(g_{ij}) > 0$ defines Euclidean norm on each tangent space • its geometry is also encoded in the (symmetric) distance function

$$d(x,y) := \inf_{\sigma(0)=x,\sigma(1)=y} \left(\int_0^1 |\dot{\sigma}_t|_{E_g}^q dt \right)^{1/q} \qquad q>1$$

LORENTZIAN: $g \sim (+1, -1, ..., -1)$ defines hyperbolic norm on $T_X M$ • its asymmetric geometry is also encoded in the time-separation function

$$\ell(x,y) := \sup_{\sigma(0)=x,\sigma(1)=y} \left(\int_0^1 |\dot{\sigma}_t|_{F_g}^q dt \right)^{1/q} \qquad 0 \neq q < 1$$

A crash course in differential geometry: action principles

Manifold M^n with symmetric nondegenerate C^m -smooth tensor $g_{ij} = g_{ji}$ RIEMANNIAN: $(g_{ij}) > 0$ defines Euclidean norm on each tangent space • its geometry is also encoded in the (symmetric) distance function

$$d(x,y) := \inf_{\sigma(0)=x,\sigma(1)=y} \left(\int_0^1 |\dot{\sigma}_t|_{E_g}^q dt \right)^{1/q} \qquad q>1$$

LORENTZIAN: $g \sim (+1, -1, ..., -1)$ defines hyperbolic norm on $T_x M$ • its asymmetric geometry is also encoded in the time-separation function

$$\ell(x,y) := \sup_{\sigma(0)=x,\sigma(1)=y} \left(\int_0^1 |\dot{\sigma}_t|_{F_g}^q dt \right)^{1/q} \qquad 0 \neq q < 1$$

• $(-\infty)^q := -\infty$ so $\ell(x, y) = -\infty$ unless a causal curve links x to y

- extremizers are independent of q; they are called geodesics
- $\ell(x, z) \ge \ell(x, y) + \ell(y, z)$ (analog of the triangle inequality *d* satisfies) Robert J McCann (Toronto) Nonsmooth gravity/elliptic Lorentzian splittin 7 May 2025 6/17

The Riemann curvature tensor

Given (timelike) geodesics $(\sigma_s)_{s \in [0,1]}$ and $(\tau_t)_{t \in [0,1]}$ with $\sigma_0 = \tau_0$ and $\dot{\tau}_0, \dot{\sigma}_0, \dot{\tau}_0 - \dot{\sigma}_0 \in F \setminus \partial F$, if $g_{ij} \in C^3$

$$\ell(\sigma_s,\tau_t)^2 = |t\dot{\tau}_0 - s\dot{\sigma}_0|_{F_g}^2 - \frac{Sec}{6}s^2t^2 + O((|s| + |t|)^5)$$

where sectional curvature $Sec = R(\dot{\sigma}_0, \dot{\tau}_0, \dot{\sigma}_0, \dot{\tau}_0)$ is quadratic in $\dot{\sigma}_0 \wedge \dot{\tau}_0$ and measures the leading order correction to Pythagoras

• polarization of this quadratic form gives the *Riemann* tensor $R(\cdot, \cdot, \cdot, \cdot)$

The Riemann curvature tensor

Given (timelike) geodesics $(\sigma_s)_{s \in [0,1]}$ and $(\tau_t)_{t \in [0,1]}$ with $\sigma_0 = \tau_0$ and $\dot{\tau}_0, \dot{\sigma}_0, \dot{\tau}_0 - \dot{\sigma}_0 \in F \setminus \partial F$, if $g_{ij} \in C^3$

$$\ell(\sigma_s,\tau_t)^2 = |t\dot{\tau}_0 - s\dot{\sigma}_0|_{F_g}^2 - \frac{Sec}{6}s^2t^2 + O((|s| + |t|)^5)$$

where sectional curvature $Sec = R(\dot{\sigma}_0, \dot{\tau}_0, \dot{\sigma}_0, \dot{\tau}_0)$ is quadratic in $\dot{\sigma}_0 \wedge \dot{\tau}_0$ and measures the leading order correction to Pythagoras

- polarization of this quadratic form gives the Riemann tensor $R(\cdot,\cdot,\cdot,\cdot)$
- its trace $\operatorname{Ric}_{ik} = g^{jl} R_{ijkl}$ yields the *Ricci* tensor; $\operatorname{Ric}(v, v)$ measures the correction to Pythagoras averaged over all triangles including side v
- second trace $R = g^{ik} \operatorname{Ric}_{ik}$ yields the *scalar curvature*; in the elliptic case it gives leading order correction to the area of a sphere of radius r (and to the volume of a ball of radius r)
- $dvol_g(x) = \sqrt{|\det(g)|} d^n x$ in coordinates; (in the Riemannian case it coincides with the *n*-dimensional Hausdorff measure associated to *d*)

Energy conditions and singularity theorems

WEC (weak energy condition): $T(v, v) \ge 0$ for all future $v \in F$ (physical) SEC (strong energy condition): $\operatorname{Ric}(v, v) \ge 0$ for all future $v \in F$ (less ") NEC (null energy condition): " ≥ 0 for all lightlike $v \in \partial F$

Energy conditions and singularity theorems

WEC (weak energy condition): $T(v, v) \ge 0$ for all future $v \in F$ (physical) SEC (strong energy condition): $\operatorname{Ric}(v, v) \ge 0$ for all future $v \in F$ (less ") NEC (null energy condition): $" \ge 0$ for all lightlike $v \in \partial F$

[Cosmological constant (dark matter): $\geq (n-1)Kg(v,v)$]

THM: Hawking '66 (big bang) singularities are generic: SEC + mean curvature bound $H_{\Sigma} \ge h > 0$ on a suitable hypersurface Σ implies finite-time singularities along all timelike geodesics through Σ Cavalletti-Mondino '20+: also in TCD(0, N) metric-measure spacetimes

THM: Penrose '65 (stellar collapse) singularities are generic NEC + trapped codimension-2 compact surface S + suitable noncompact hypersurface Σ imply finite-time singularity along some null geodesic

Graf '20 holds for $g_{ij} \in C^1$;

Open: version for TCD(0, N) metric-measure spacetimes?

Smooth Lorentzian splitting theorems

- *'spacetime'*: a connected Lorentzian manifold (M^n, g_{ij}) which admits a continuous choice of F_g (distinguishing future from past).
- 'strong energy condition' SEC: g(v, v) > 0 implies $\operatorname{Ric}(v, v) \ge 0$
- *'timelike geodesically complete'*: all (unit speed) timelike geodesics admit doubly-infinite extensions (maximizing locally but not necessarily globally)

Theorem (conjectured by Yau '82; proved by Newman '90)

Let (M^n, g_{ij}) be a SEC spacetime containing a maximizing timelike line. If M is (a) timelike geodesically complete, then M is a geometric product of \mathbf{R} with a (Ric ≥ 0 , complete) Riemannian submanifold Σ^{n-1}

Smooth Lorentzian splitting theorems

Robert J McCann (Toronto)

• *'spacetime'*: a connected Lorentzian manifold (M^n, g_{ij}) which admits a continuous choice of F_g (distinguishing future from past).

- 'strong energy condition' SEC: g(v, v) > 0 implies $\operatorname{Ric}(v, v) \ge 0$
- *'timelike geodesically complete'*: all (unit speed) timelike geodesics admit doubly-infinite extensions (maximizing locally but not necessarily globally)

Theorem (conjectured by Yau '82; proved by Newman '90)

Let (M^n, g_{ij}) be a SEC spacetime containing a maximizing timelike line. If M is (a) timelike geodesically complete, then M is a geometric product of \mathbf{R} with a (Ric ≥ 0 , complete) Riemannian submanifold Σ^{n-1}

Galloway '84: proved assuming compact Cauchy surfaces exist Beem, Ehrlich, Galloway, Markvorsen '85: proved under timelike sectional curvature nonnegativity assuming (b) global hyperbolicity; Beran-Ohanyan-Rott-Solis '23: extension to g.h. Lorentzian length spaces Eschenburg '88: proved under (a) + (b) Galloway '89: proved under (b) without (a) using Bartnik '88

Nonsmooth gravity/elliptic Lorentzian splittin

7 May 2025

9/17

Recall proof of Cheeger-Gromoll splitting theorem:

Let $\gamma: \mathbf{R} \longrightarrow M^n$ be the isometrically embedded line.

Busemann '32: $b_r(x) := d(x, \gamma(r)) - d(\gamma(0), \gamma(r))$ and $\pm b^{\pm} := \lim_{r \to \pm \infty} b_r$

- note b_r is 1-Lipschitz and $|\nabla b_r|_E = 1 = |\nabla b^{\pm}|_E$ a.e.; for r > 0,
- triangle inequality gives $b_r \ge b^+ \ge b^- \ge -b_{-r}$ with equality at $x = \gamma(0)$

Calabi '58: 'Laplacian comparison theorem' $\Delta b_r = \nabla \cdot (\nabla b_r) \leq \frac{n-1}{d(\cdot,\gamma(r))} \text{ in viscosity } (= \text{ support}) \text{ sense across cut locus;}$

- hence $\pm b^{\pm}$ are both superharmonic: $\Delta b^+ \leq 0 \leq \Delta b^-$
- strong maximum principle gives $b^+ = b^-$ hence harmonic & smooth

Bochner '46: Tr[(Hess b)²] + Ric(∇b , ∇b) = $\Delta \frac{|\nabla b|_E^2}{2} - g(\nabla b, \nabla \Delta b) = 0$

- Ric \geq 0 gives Hess b = 0 for $b := b^{\pm}$
- hence ∇b is a Killing vector field (its flow gives a local isometry)
- $\Sigma := \{x \in M^n \mid b(x) = 0\}$ is totally geodesic (its normal ∇b is parallel)
- along Σ , metric splits into tangent $g_{ij}dy^i dy^j$ and normal components dr^2
- $(r, y) \in \mathbf{R} \times \Sigma \mapsto \exp_y r \nabla b(y)$ is surjective hence a global isometry

Low regularity Eschenburg-Newman-Galloway theorem

• BGMOS quintet 24+ relax $g_{ij} \in C^{\infty}(M^n)$ to $g_{ij} \in C^1(M^n)$, weights 25+ Let $\gamma : \mathbf{R} \longrightarrow M^n$ be the isometrically embedded line and follow Busemann et al: $b_r^+(x) := -\ell(x, \gamma(r)) + \ell(\gamma(0), \gamma(r))$ and $b^{\pm} := \lim_{r \to \pm \infty} b_r^{\pm}$ where $b_r^-(x) := \ell(\gamma(r), x) - \ell(\gamma(r), \gamma(0))$

- reverse Lipschitz $b_r^{\pm}(y) b_r^{\pm}(x) \ge \ell(x, y)$ and $|\nabla b_r^{\pm}|_F = 1$ a.e.; $\forall r > 0$,
- triangle inequality gives $b_r \ge b^+ \ge b^- \ge b_{-r}$, all vanishing at $\gamma(0)$

Low regularity Eschenburg-Newman-Galloway theorem

• BGMOS quintet 24+ relax $g_{ij} \in C^{\infty}(M^n)$ to $g_{ij} \in C^1(M^n)$, weights 25+ Let $\gamma : \mathbf{R} \longrightarrow M^n$ be the isometrically embedded line and follow Busemann et al: $b_r^+(x) := -\ell(x, \gamma(r)) + \ell(\gamma(0), \gamma(r))$ and $b^{\pm} := \lim_{r \to \pm \infty} b_r^{\pm}$ where $b_r^-(x) := \ell(\gamma(r), x) - \ell(\gamma(r), \gamma(0))$

- reverse Lipschitz $b_r^{\pm}(y) b_r^{\pm}(x) \ge \ell(x, y)$ and $|\nabla b_r^{\pm}|_F = 1$ a.e.; $\forall r > 0$,
- triangle inequality gives $b_r \ge b^+ \ge b^- \ge b_{-r}$, all vanishing at $\gamma(0)$

Theorem (BBCGMORS 24+ 'nonsmooth *p*-d'Alembert comparison')

For p < 1, the operator $\Box_p u := -\nabla \cdot (|\nabla u|_F^{p-2} \nabla u)$ is nonuniformly elliptic and (SEC) implies $\Box_p b_r^+ \leq \frac{n-1}{\ell(\cdot,\gamma(r))}$ distributionally, i.e. $\forall \ 0 \leq \phi \in C_c^1(M)$

Low regularity Eschenburg-Newman-Galloway theorem

• BGMOS quintet 24+ relax $g_{ij} \in C^{\infty}(M^n)$ to $g_{ij} \in C^1(M^n)$, weights 25+ Let $\gamma : \mathbf{R} \longrightarrow M^n$ be the isometrically embedded line and follow Busemann et al: $b_r^+(x) := -\ell(x, \gamma(r)) + \ell(\gamma(0), \gamma(r))$ and $b^{\pm} := \lim_{r \to \pm \infty} b_r^{\pm}$ where $b_r^-(x) := \ell(\gamma(r), x) - \ell(\gamma(r), \gamma(0))$

- reverse Lipschitz $b_r^{\pm}(y) b_r^{\pm}(x) \ge \ell(x, y)$ and $|\nabla b_r^{\pm}|_F = 1$ a.e.; $\forall r > 0$,
- triangle inequality gives $b_r \ge b^+ \ge b^- \ge b_{-r}$, all vanishing at $\gamma(0)$

Theorem (BBCGMORS 24+ 'nonsmooth *p*-d'Alembert comparison')

For p < 1, the operator $\Box_p u := -\nabla \cdot (|\nabla u|_F^{p-2} \nabla u)$ is nonuniformly elliptic and (SEC) implies $\Box_p b_r^+ \le \frac{n-1}{\ell(\cdot,\gamma(r))}$ distributionally, i.e. $\forall \ 0 \le \phi \in C_c^1(M)$

$$\int_{M} g\left(\nabla\phi, \frac{\nabla b_{r}}{|\nabla b_{r}^{+}|_{F}^{2-p}}\right) d\operatorname{vol}_{g} \leq (n-1) \int_{M} \frac{\phi(\nabla u \operatorname{vol}_{g}(\cdot))}{\ell(\cdot, \gamma(r))}.$$

- for the distributional limit $r \to \infty$, need $\nabla b_r^+ \longrightarrow \nabla b^+$ strongly
- need uniform ellipticity; must bound $\{\nabla b_r^+\}_{r\geq R}$ away from lightcone

Convex *p*-energy: trading linearity for ellipticity

Additional conditions may ensure $\ell \neq +\infty$ and extremizers exist

- complete or *proper* (boundedly compact) in the Riemannian case
- (b) *globally hyperbolic* in the Lorentzian case (i.e. compact diamonds, future *F* varies continuously over *M*, no closed future-directed curves)

Additional conditions may ensure $\ell \neq +\infty$ and extremizers exist

- complete or proper (boundedly compact) in the Riemannian case
- (b) *globally hyperbolic* in the Lorentzian case (i.e. compact diamonds, future *F* varies continuously over *M*, no closed future-directed curves)

Convex Hamiltonian $H(w) = -\frac{1}{p}|w|_{F^*}^p$ (and Lagrangian $L(v) = -\frac{1}{q}|v|_F^q$) satisfy $DH = (DL)^{-1}$ if $p^{-1} + q^{-1} = 1$ (here p < 0 iff 0 < q < 1)

- note L = H^{*} jumps from 0 to +∞ across future cone boundary ∂F (but H diverges continuously at the boundary of the dual cone F^{*})
- nonsmooth already on smooth Lorentzian manifolds

Additional conditions may ensure $\ell \neq +\infty$ and extremizers exist

- complete or proper (boundedly compact) in the Riemannian case
- (b) *globally hyperbolic* in the Lorentzian case (i.e. compact diamonds, future *F* varies continuously over *M*, no closed future-directed curves)

Convex Hamiltonian $H(w) = -\frac{1}{p}|w|_{F^*}^p$ (and Lagrangian $L(v) = -\frac{1}{q}|v|_F^q$) satisfy $DH = (DL)^{-1}$ if $p^{-1} + q^{-1} = 1$ (here p < 0 iff 0 < q < 1)

- note L = H^{*} jumps from 0 to +∞ across future cone boundary ∂F (but H diverges continuously at the boundary of the dual cone F^{*})
- nonsmooth already on smooth Lorentzian manifolds

Beran Braun Calisti Gigli M. Ohanyan Rott Sämann (octet):

extremizers of *p*-Dirichlet energy $u \mapsto \int_M H(du) d \operatorname{vol}_g$ rel. to compactly supported perturbations satisfy a new nonuniformly elliptic nonlinear PDE

• trade linearity of d'Alembertian for ellipticity of p-d'Alembertian!

Nondivergence expression of (nonuniform) ellipticity

$$\Box_{p}b = \nabla_{i}\left(\frac{\partial H}{\partial w_{i}}\right|_{db} = H^{ij}\nabla_{i}\nabla_{j}b$$

$$H(w) = -\frac{1}{p} |w|_{F^*}^p$$

$$H^i := \frac{\partial H}{\partial w_i} = -|w|^{p-2} g^{ik} w_k$$

$$H^{ij} := \frac{\partial^2 H}{\partial w_i \partial w_j} = |w|^{p-2} \left[(2-p) g^{ik} g^{jl} \frac{w_k w_l}{|w|^2} - g^{ij} \right]$$

$$\sim |w|^{p-2} \left[\begin{array}{ccc} 2-p-1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 \end{array} \right] > 0 \quad \text{if } p < 1$$

choosing normal coordinates around $\gamma(0)$ in which w = db is the time axis

Nomizu-Ozeki '61 give a complete Riemannian metric \tilde{g} on (M, g).

Theorem (Eschenburg '88 . . . Galloway-Horta '96)

Under (a) and/or (b), $\gamma(0)$ admits a neighbourhood X and constants R, C such that if $r \ge R$ then (i) a maximizing geodesic σ connects each $x \in X$ to $\gamma(r)$; (ii) each such geodesic satisfies $\tilde{g}(\sigma'(0), \sigma'(0)) \le Cg(\sigma'(0), \sigma'(0))$ hence $\{b_r^+\}$ is timelike and uniformly equiLipschitz on X.

• intersecting ellipsoid and hyperboloid uniformize ellipticity on X

Lemma (BGMOS: equi-semiconcavity '24/-superdifferentiability '25+)

Nomizu-Ozeki '61 give a complete Riemannian metric \tilde{g} on (M, g).

Theorem (Eschenburg '88 ... Galloway-Horta '96)

Under (a) and/or (b), $\gamma(0)$ admits a neighbourhood X and constants R, C such that if $r \ge R$ then (i) a maximizing geodesic σ connects each $x \in X$ to $\gamma(r)$; (ii) each such geodesic satisfies $\tilde{g}(\sigma'(0), \sigma'(0)) \le Cg(\sigma'(0), \sigma'(0))$ hence $\{b_r^+\}$ is timelike and uniformly equiLipschitz on X.

• intersecting ellipsoid and hyperboloid uniformize ellipticity on X

Lemma (BGMOS: equi-semiconcavity '24/-superdifferentiability '25+) $g \in C^{1,1}$ yields \tilde{C} so all $u \in \{b_r^+\}_{r \ge R}$ and $(v, x) \in TX$ satisfy $\lim_{t \to 0} \frac{u(\exp_x^{\tilde{g}} tv) + u(\exp_x^{\tilde{g}} - tv) - 2u(x)}{\tilde{g}(v, v)} \le \tilde{C}$

- (• *p*-d'Alembert comparison then follows from smooth calculations)
- \bullet gives $db^+_r \to db^+$ pointwise a.e., hence $|db^\pm|_{{\sf F}^*}=1$ a.e. and
- $\pm b^{\pm}$ are distributionally *p*-superharmonic $\Box_p b^+ \leq 0 \leq \Box_p b^-$

Robert J McCann (Toronto)

Homogeneity 2p - 2 < 0 variant on Bochner Ohta '14, Mondino-Suhr '23: $|du|_{F^*} = 1$ and $\Box_p u = 0$ imply (by elliptic regularity $b \in W^{2,2}_{loc}(X)$ if $g \in C^1(M)$), and

Homogeneity 2p - 2 < 0 variant on Bochner Ohta '14, Mondino-Suhr '23: $|du|_{F^*} = 1$ and $\Box_p u = 0$ imply (by elliptic regularity $b \in W^{2,2}_{loc}(X)$ if $g \in C^1(M)$), and

$$0 = \nabla_i (H^{ij}|_{du} \nabla_j (H|_{du})) - H^i \nabla_i (\nabla_j (H^j|_{du}))$$

= $H^{ij} u_{jk} H^{kl} u_{li} + R_{ij} H^i H^j$
= $\operatorname{Tr} \left[\left(\sqrt{D^2 H} \nabla^2 u \sqrt{D^2 H} \right)^2 \right] + \operatorname{Ric}(DH, DH)$

• timelike Ricci nonnegative (i.e. SEC) gives Lorentzian $\frac{\text{Hess } b = 0}{\text{ In } X}$

Homogeneity 2p - 2 < 0 variant on Bochner Ohta '14, Mondino-Suhr '23: $|du|_{F^*} = 1$ and $\Box_p u = 0$ imply (by elliptic regularity $b \in W^{2,2}_{loc}(X)$ if $g \in C^1(M)$), and

$$0 = \nabla_i (H^{ij}|_{du} \nabla_j (H|_{du})) - H^i \nabla_i (\nabla_j (H^j|_{du}))$$

= $H^{ij} u_{jk} H^{kl} u_{li} + R_{ij} H^i H^j$
= $\operatorname{Tr} \left[\left(\sqrt{D^2 H} \nabla^2 u \sqrt{D^2 H} \right)^2 \right] + \operatorname{Ric}(DH, DH)$

- timelike Ricci nonnegative (i.e. SEC) gives Lorentzian Hess b = 0 in X
- hence ∇b is a Killing vector field (its flow gives a local isometry on X)

• $\Sigma := \{x \in X \mid b(x) = 0\}$ is totally geodesic (its normal ∇b is parallel)

- on Σ , metric splits into tangent $g_{ij}dy^i dy^j < 0$ & normal component dr^2
- simplify Eschenburg '88, Galloway '89, Newman '90, to get from X to M

Homogeneity 2p - 2 < 0 variant on Bochner Ohta '14, Mondino-Suhr '23: $|du|_{F^*} = 1$ and $\Box_p u = 0$ imply (by elliptic regularity $b \in W^{2,2}_{loc}(X)$ if $g \in C^1(M)$), and

$$0 = \nabla_i (H^{ij}|_{du} \nabla_j (H|_{du})) - H^i \nabla_i (\nabla_j (H^j|_{du}))$$

= $H^{ij} u_{jk} H^{kl} u_{li} + R_{ij} H^i H^j$
= $\operatorname{Tr} \left[\left(\sqrt{D^2 H} \nabla^2 u \sqrt{D^2 H} \right)^2 \right] + \operatorname{Ric}(DH, DH)$

- timelike Ricci nonnegative (i.e. SEC) gives Lorentzian Hess b = 0 in X
- hence ∇b is a Killing vector field (its flow gives a local isometry on X)

• $\Sigma := \{x \in X \mid b(x) = 0\}$ is totally geodesic (its normal ∇b is parallel)

- on Σ , metric splits into tangent $g_{ij}dy^i dy^j < 0$ & normal component dr^2
- simplify Eschenburg '88, Galloway '89, Newman '90, to get from X to M
- allow Bakry-Émery '85 weights, à la Case '10 and Woolgar-Wylie '18
 Robert J McCann (Toronto)
 Nonsmooth gravity/elliptic Lorentzian splittin
 7 May 2025
 15/17

Theorem (BGMOS 25+: C^1 Eschenburg splitting with weight V)

Let (M^n, g_{ij}) with $V, g_{ij} \in C^1$ be an (a) timelike geodesically complete, (b) globally hyperbolic spacetime and (c) timelike nonbranching, containing a maximizing timelike line. If $N \in (n, \infty]$ and

$$\operatorname{Ric}^{(N,V)} := \operatorname{Ric} + \operatorname{Hess} V - \frac{1}{N-n} dV \otimes dV \ge 0$$

timelike distributionally^{*} then M^n is (C^2 -isometric to) a geometric product of (\mathbf{R} , dr^2) with a (complete, $\operatorname{Ric}^{(N-1,V)} \ge 0$ distributionally) Riemannian submanifold Σ^{n-1} . Also V(x(r, y)) is independent of $r \in \mathbf{R}$.

* integrated by parts against $(X \otimes X)e^{-V} d \operatorname{vol}_g$ for all smooth, compactly supported, future-directed vector fields $X \in F$, per Geroch-Traschen '87.

Theorem (BGMOS 25+: C^1 Eschenburg splitting with weight V)

Let (M^n, g_{ij}) with $V, g_{ij} \in C^1$ be an (a) timelike geodesically complete, (b) globally hyperbolic spacetime and (c) timelike nonbranching, containing a maximizing timelike line. If $N \in (n, \infty]$ and

$$\operatorname{Ric}^{(N,V)} := \operatorname{Ric} + \operatorname{Hess} V - \frac{1}{N-n} dV \otimes dV \ge 0$$

timelike distributionally^{*} then M^n is (C^2 -isometric to) a geometric product of (\mathbf{R} , dr^2) with a (complete, $\operatorname{Ric}^{(N-1,V)} \ge 0$ distributionally) Riemannian submanifold Σ^{n-1} . Also V(x(r, y)) is independent of $r \in \mathbf{R}$.

* integrated by parts against $(X \otimes X)e^{-V} dvol_g$ for all smooth, compactly supported, future-directed vector fields $X \in F$, per Geroch-Traschen '87. Proof: Set $\nabla^{(g,V)} := (\nabla - dV)$ and $\Box_p^{(g,V)} u := -\nabla^{(g,V)} \cdot (|\nabla u|^{p-2}\nabla u)$, and show Busemann functions satisfy $\pm \Box_p^{(g,V)}b^{\pm} \leq 0$ hence agree and are weighted *p*-harmonic. Use weighted Bochner-Ohta identity to deduce Hess $b^+ = 0$ and argue as before. \Box

THANK YOU VERY MUCH!