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ﬂ Monopolist’s problem

Q Examples and History

e Hypotheses

e Results

e A free boundary problem hidden in Rochet-Choné’s square example
e When is our free boundary Lipschitz? Smooth?

o Explicit solutions: transitions to targeted and blunt bunching
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Monopolist’s problem

Given X c R" compact convex, Y c R”, and ‘direct utility’

b(x, y) = value of product y € Y to buyer x € X

c(y) = monopolist’s cost to produce y € Y

du(x) = relative frequency of buyer x € X (as compared to x” € X)

Monopolist’s problem: choose price menu v : ¥ — R to maximize profits
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Monopolist’s problem

Given X c R™ compact convex, Y C R”, and ‘direct utility’

b(x, y) = value of product y € Y to buyer x € X

c(y) = monopolist’s cost to produce y € Y

du(x) = relative frequency of buyer x € X (as compared to x” € X)

Monopolist’s problem: choose price menu v : ¥ — R to maximize profits
f10) = [ [00) = o, 0Nt where
X
Agent x’s problem: choose y, (x) to maximize

yv(x) € argmaxb(x, y) - v(y)
yey

Constraints: v lower semicontinuous, 0 € Y and v(0) = ¢(0) = 0.
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Examples of asymmetric information

e airline ticket pricing
e insurance
e educational signaling

e optimal taxation: replace profit maximization with a budget constraint for
providing services
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Two landmarks (very abridged):

6‘12(;’}, > 0 implies ‘g(v >0
Rochet-Choné *98 (n = m > 1): b(x,y) = x - y bilinear implies y,(x) = Dv*(x)

convex gradient; bunching

Mirrlees *71, Spence *73 (n =1 = m):
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Two landmarks (very abridged):

Mirrlees *71, Spence *73 (n =1 = m): a‘ify > 0 implies ‘i_j};v >0
Rochet-Choné *98 (n = m > 1): b(x,y) = x - y bilinear implies y,(x) = Dv*(x)

convex gradient; bunching and unique for c(y) = %l y|2

'X: '[a, 0\;\—11 dr\\k\" 1;(}\\ UL"\

Robert J McCann (Toronto)
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Mathematical developments

Carlier-Lachand-Robert *03: b bilinear gives v* € C'(X) where X = spt u;
Caffarelli-Lions *06+: b bilinear gives v* € cH(int(X))

loc

M.-Rankin—Zhang *24+: b bilinear gives v* € C"'(X,) on convex polyhedra X
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Noldeke-Samuelson *18, M.—Zhang *19: for non-quasilinear preferences
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M.-Rankin—Zhang *24+: b bilinear gives v* € C"'(X,) on convex polyhedra X
Carlier "01: existence of optimizer v = VPP for quasilinear preferences b;
Noldeke-Samuelson *18, M.—Zhang *19: for non-quasilinear preferences
Figalli-Kim-M. *11, M.—Zhang "19: uniqueness, stability and

Chen *13, M.—Rankin—Zhang ’23+, Wang—Zhou ’24+: regularity

under strengthening of Ma—Trudinger—Wang’s *05 fourth order (curvature)

conditions on b (and more generally, non-quasilinear preferences), where

u(x) = vP(x):= maxb(x, y) — v(y)
yey
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Mathematical developments

Carlier-Lachand-Robert *03: b bilinear gives v* € C'(X) where X = spt u;
Caffarelli-Lions *06+: b bilinear gives v* € C,1O’c1 (int(X))

M.-Rankin—Zhang *24+: b bilinear gives v* € C"'(X,) on convex polyhedra X
Carlier "01: existence of optimizer v = VPP for quasilinear preferences b;
Noldeke-Samuelson *18, M.—Zhang *19: for non-quasilinear preferences
Figalli-Kim-M. *11, M.—Zhang "19: uniqueness, stability and

Chen *13, M.—Rankin—Zhang ’23+, Wang—Zhou ’24+: regularity

under strengthening of Ma—Trudinger—Wang’s *05 fourth order (curvature)
conditions on b (and more generally, non-quasilinear preferences), where

u(x) = vP(x):= maxb(x, y) — v(y)
yey

is called the ‘indirect utility” to shopper x
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Rochet—Choné in terms of buyers’ utilities u

u(x) ;= v*(x) ;== max|x -y — v(y)] (1)
yey

is attained where the f.o.c.
Du(x) = y,(x)

and s.o.c.
D?u(x) > 0

hold. Therefore maximize
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Rochet—Choné in terms of buyers’ utilities u

u(x) ;= v*(x) ;== max|x -y — v(y)] (1)
yey

is attained where the f.o.c.
Du(x) = y,(x)

and s.o.c.
D?u(x) > 0

hold. Therefore maximize

f(v)

fx (v = ) OUG)du(x)

/X [6(x, ) = u(X) — €]y pun dH(X) =: L)

among u of form (1) (i.e. among convex u(-) > 0 with Du € Y)
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Following Rochet—Choné ’98 choose b(x, y) = x - y so profit

L) = / [ - Du = u(x) — c(Du(x))]du(x)
X
with
u(x) = v*(x) ;== supx -y — v(y)
yey

€U :={u:X —[0,00] convex | Du(X) C Y}

e henceforth specialize to c(y) = |y|?/2 and X C Y := [0, c0)"

e makes constraint Du € Y redundant (by unconditional symmetry)
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Following Rochet—Choné ’98 choose b(x, y) = x - y so profit

L) = / [ - Du = u(x) — c(Du(x))]du(x)
X
with
u(x) = v*(x) ;== supx -y — v(y)
yey

€U :={u:X —[0,00] convex | Du(X) C Y}

e henceforth specialize to c(y) = |y|?/2 and X C Y := [0, c0)"
e makes constraint Du € Y redundant (by unconditional symmetry)

o take du(x) = dH"|x uniform; X convex; minimize (convex, quadratic) losses

L(u) := ./x (%|Du(x) -x2+u- %|X|2) dH"(x)

e among u : X —> [0, co] convex;

Robert J McCann (Toronto) On the Monopolist’s Problem 15 July 2025 8/41



Following Rochet—Choné ’98 choose b(x, y) = x - y so profit

L) = / [ - Du = u(x) — c(Du(x))]du(x)
X
with
u(x) = v*(x) ;== supx -y — v(y)
yey

€U :={u:X —[0,00] convex | Du(X) C Y}

e henceforth specialize to c(y) = |y|?/2 and X C Y := [0, c0)"
e makes constraint Du € Y redundant (by unconditional symmetry)

o take du(x) = dH"|x uniform; X convex; minimize (convex, quadratic) losses

L(u) := ./x (%|Du(x) -x2+u- %|X|2) dH"(x)

e among u : X — [0, co] convex; (without convexity, have obstacle problem!)
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Explicit solutions? % = 1x uniform on cube X = [a,a + 1]

c.f. Mussa-Rosen "78
BUYER’S MARKET on INTERVAL: a < 1 = n optimized by

1 . 1
u(x) = {0( - ) ifxz g

0 else.

e buyers x € (0, %) opt out; remaining x get customized products u’(x)

SELLER’S MARKET: a > 1 = n optimized by
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Explicit solutions? % = 1x uniform on cube X = [a,a + 1]

c.f. Mussa-Rosen "78
BUYER’S MARKET on INTERVAL: a < 1 = n optimized by

1 . 1
u(x) = {0( - ) ifxz g

0 else.

e buyers x € (0, %) opt out; remaining x get customized products u’(x)
SELLER’S MARKET: a > 1 = n optimized by u(x) = (x — 21)2 — (3;1)?
e no distortion at top type: v'(a+ 1) =a+1

e downward distortion elsewhere x —u’(x) =a+1-x > 0

e distortion increases with a but decreases with x in X = [a,a + 1]

e cach type x of buyer gets a customized product u’(x)

THIS TALK: WHAT HAPPENS IN HIGHER DIMENSIONS n > 2?
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n > 2: partition X into convex leafs of varied dimension

ue argmin L(u)
convex U’ >0

1 1
minimizes net loss L(u”) := / (ElDu’(x) —x2+u - §|x|2 dH"(x)
X
(Closed convex) isoproduct bunch (= equivalence class = contact set = leaf)
X = (Du) ' (Du(x)) = {x" € X | Du(x") = Du(x)} c X

foliate interior of Q,_; := {x € X | dim(X) = i}.

Theorem (Leaves reach ; any normal distortion is
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n > 2: partition X into convex leafs of varied dimension

ue argmin L(u)
convex U’ >0

1 1
minimizes net loss L(u”) := / (ElDu’(x) —x2+u - §|x|2 dH"(x)
X
(Closed convex) isoproduct bunch (= equivalence class = contact set = leaf)
X = (Du) ' (Du(x)) = {x" € X | Du(x") = Du(x)} c X

foliate interior of Q,_; := {x € X | dim(X) = i}.

Theorem (Leaves reach ; any normal distortion is

(i) Qo = {x € X | u = 0} foliated by a single leaf (unless Qo = 0.”)
(ii) if x € Q1 U - - Qp_4 there exists x’ € x N X and n(x") - (Du(x”) — x") > 0.
(iii) Qp, is relatively open in X, foliated by points, i.e. u is strictly convex.

Offers possibility to describe u throughout X using behaviour on 9X(!)
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Rochet-Choné’s square example revisited; c(y) = %| ik

A oty \
Al = AE.-_:\.r\ v
Dy

&o«\nk 0o <\

o (W\&T\: A g,y o0 Y
‘101”1-&
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Proof (ii): ; maximum principle

For u + ew > 0 convex,

d oL
0o<L(w):=— L(u+ew):/w—
u d6 E=0+ X 6U
:/[n+1—Au]wd7-{"+ (Du—x)-AwdH"
X ax
where Au gxf 4.4 2 o 2 ; (neglecting convexity get 11 Au =150y on X)

Robert J McCann (Toronto) On the Monopolist’s Problem 15 July 2025 12/41



Proof (ii): ; maximum principle

For u + ew > 0 convex,

d oL
0o<L(w):=— L(u+ew):/w—
u d6 E=0+ X (5U
:/[n+1—Au]wd7-{"+ (Du—x)-AwdH"
X ax
where Au gxf 4.4 2 o 2 ; (neglecting convexity get 11 Au =150y on X)

e boundary perturbation w > 0 implies (Du — x) -7 > 0

Robert J McCann (Toronto) On the Monopolist’s Problem 15 July 2025 12/41



Proof (ii): ; maximum principle

For u + ew > 0 convex,

d oL

— L(u+ew) = / w—
€=0" x ou

de
:/[n+1—Au]wd7-{"+ (Du—x)-AwdH"
X X

0<L)(w):=

where Au gxf 4.4 2 o 2 ; (neglecting convexity get 11Au = 1{u>0} on X)
e boundary perturbation w > 0 implies (Du — x) -7 > 0
e purely interior perturbation w < 0 implies Au > n+ 1 on X C int(X)

ew > 0onanbhd U c int(X) of X implies Au =n + 1 a.e. on U
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Proof (ii): ; maximum principle

For u + ew > 0 convex,

d oL
0o<L(w):=— L(u+ew):/w—
u d6 E=0+ X (SU
:/[n+1—Au]wd7-{"+ (Du—x)-AwdH"
X ax
where Au gxf 4.4 2 o 2 ; (neglecting convexity get 11Au = 1{u>0} on X)

e boundary perturbation w > 0 implies (Du — x) -7 > 0

e purely interior perturbation w < 0 implies Au > n+ 1 on X C int(X)

ew > 0onanbhd U c int(X) of X implies Au =n + 1 a.e. on U

e then u € C*(V); from A(ﬁ?‘f u) = 0 strong maximum principle yields either
- 9%.u > 0 throughout U forcing X = {x} or

- 6§ U = 0 throughout U forcing ¥ N X non-empty.
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Characterizing Q1 C R2: obstacle problem plus convexity

Setting u; ;= von Q; := {x € X | Dim(X) = n — i} (now n = 2) gives

e on Qg exclusion: ug = 0 (c.f. Armstrong *94)
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Characterizing Q1 C R2: obstacle problem plus convexity

Setting u; ;= von Q; := {x € X | Dim(X) = n — i} (now n = 2) gives
e on Qg exclusion: ug = 0 (c.f. Armstrong *94)

e on Q4, Euler-Lagrange ODE: *if* uq(xq, X2) = %k(x1 + X») then
k(s) = 3s? —as — log |s — 2a| + const
subject to boundary conditions vy = ug and Duy = Dug at lower boundary.
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Characterizing Q1 C R2: obstacle problem plus convexity

Setting u; ;= von Q; := {x € X | Dim(X) = n — i} (now n = 2) gives
e on Qg exclusion: ug = 0 (c.f. Armstrong *94)

e on Q4, Euler-Lagrange ODE: *if* uq(xq, X2) = %k(x1 + X») then
k(s) = 3s? —as — log |s — 2a| + const
subject to boundary conditions vy = ug and Duy = Dug at lower boundary.

e on (), Euler-Lagrange PDE: Au, = 3 subject to boundary conditions

(Dua(x) —x) - Ag,(x) =0 on X Ny
(Dup — Duy) - hg,(x) =0 on 0Q; N AdQy (Neumann)
up =u; on 0Q>NAQ (Dirichlet)

OVERDETERMINED!
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Fig. 1 Numerical approximation U of the solution of the classical Monopolist’s problem ('I), C
on a 50 x 50 grid. Left level sets of U, with U = 0 in white. Center left level sets of det(V2U) (with
U = 0 in white); note the degenerate region 21 where det(V>U/) = 0. Center right distribution of pro
sold by the monopolist. Right profit margin of the monopolist for each type of product (margins are
on the one dimensional part of the product line, at the bottom left). Color scales on Fig. 10 (col

onling)

U.-M. Mirebeau (2016)

’s Problem



c.f. M-Z ’24; Boerma-Tsyvinski-Zimin 22+ blunt Q? vs targeted QO bunching
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Free boundary problem

u = u;j on £; where

e on Qg exclusion: ug =0

e BLUNT: on Q?, Rochet-Choné’s ODE: uy(x1, X2) = 1k(X1 + x2) where
k(s) = 3s? — as — log |s — 2a| + const

subject to boundary conditions k = 0 and k” = 0 at lower boundary.

e TARGETED: on Q, uy = uy given by a NEW system of ODE (for height

h(-) and length R(-) of isochoice segments together with profile of u(-) along
them), with boundary conditions
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Free boundary problem

u = u;j on £; where
e on Qg exclusion: ug =0
e BLUNT: on Q?, Rochet-Choné’s ODE: uy(x1, X2) = 1k(X1 + x2) where

k(s) = 3s? — as — log |s — 2a| + const
subject to boundary conditions k = 0 and k” = 0 at lower boundary.

e TARGETED: on Q, uy = uy given by a NEW system of ODE (for height
h(-) and length R(-) of isochoice segments together with profile of u(-) along
them), with boundary conditions v (x1, x2) = k(x1 + x2) and Duy = (k’,k’) on
002 N oQ;

e on Q,, PDE: Au, = 3 with Rochet-Choné’s overdetermined conditions
(Dua(x) = x) - Ag,(x) =0 on X NQpandon {x; = xo}

(Dup — Duy) - fig,(x) =0 on QN AQ; (Neumann)
up =uf on dQ NIQ; (Dirichlet)
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. . . . < . . ) . +
Precise Euler-Lagrange equation in the ‘missing’ region (2

Index each isochoice segment in Q7 by its angle 6 > 6y € [~%, 0) to horizontal.
Let (a, h(9)) denote its left-hand endpoint and parameterize the segment by
distance r € [0, R(8)] to (a, h(#)). Along this segment of length R(6),

ut ((a, h(8)) + r(cos 6, sin 0)) = m(O)r + b(6).
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. . . . < . . ) . +
Precise Euler-Lagrange equation in the ‘missing’ region (2

Index each isochoice segment in Q7 by its angle 6 > 6y € [~%, 0) to horizontal.
Let (a, h(9)) denote its left-hand endpoint and parameterize the segment by
distance r € [0, R(8)] to (a, h(#)). Along this segment of length R(6),

ut ((a, h(8)) + r(cos 6, sin 0)) = m(O)r + b(6).
Forh € [a,a+ 1], R : [0, g] — [0, 1) with R(6p) < é(ﬁ —a), solve

§R2(9) cos = [m"(0) + m(0) — 2R(0)](m’(0) sin & — m(H) cos 6 + a) (%)

m(0o) =0, m'(6o) = J5k'(@+ h)1_x/a(60).
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. . . < . . ) . +
Precise Euler-Lagrange equation in the ‘missing’ region (2

Index each isochoice segment in Q7 by its angle 6 > 6y € [~%, 0) to horizontal.
Let (a, h(9)) denote its left-hand endpoint and parameterize the segment by
distance r € [0, R(8)] to (a, h(#)). Along this segment of length R(6),

ut ((a, h(8)) + r(cos 6, sin 0)) = m(O)r + b(6).
Forh € [a,a+ 1], R : [0, g] — [0, 1) with R(6p) < é(ﬁ —a), solve

§R2(9) cos = [m"(0) + m(0) — 2R(0)](m’(0) sin & — m(H) cos 6 + a) (%)

m(6g) = 0, m’(6p) = %k’(a +h)1_z/a(69).  Then set ()

t
wey = g [ e mo) - 2801 T G

cos 6

b(t) = %k(a+g)1_n/4(00)+ /0 t(m’(@) cos 0 + m(6) sin O)N'(0)do. (4)
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eforh € [aa+1], 0y €[-7,0),R:[6o, 5] — [0,1) Lipschitz (say, and
R(6y) = %(ﬁ —a) if 6y = —m/4) we can solve (*)—(4) to find Q7 and ul.

e we can then solve the resulting Neumann problem for Auy = 3 on Q5

e M.—Rankin—Zhang 24+ shows some choice of h and R(-) (not known to be
Lipschitz) also yields us — uy = const on 0€2; \ 0X,
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eforh € [aa+1], 0y €[-7,0),R:[6o, 5] — [0,1) Lipschitz (say, and
R(6p) = \1—@(& —a) if 6y = —m/4) we can solve (*)—(4) to find Q7 and ul.
e we can then solve the resulting Neumann problem for Auy = 3 on Q5

e M.—Rankin—Zhang 24+ shows some choice of h and R(-) (not known to be
Lipschitz) also yields us — uy = const on 0€2; \ 0X,

o If this interface happens to be finite perimeter, then absorbing the constant
into up, the resulting u given by ufi) on QI(.i) fori € {0,1,2} is in U, a duality
proved in M.—Zhang °24 can be used to certify that u is the unique optimizer

WHY IS IT NATURAL FOR SUCH A CHOICE TO EXIST?
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eforh € [aa+1], 0y €[-7,0),R:[6o, 5] — [0,1) Lipschitz (say, and
R(6y) = \1—@(& —a) if 6y = —m/4) we can solve (*)—(4) to find Q7 and ul.

e we can then solve the resulting Neumann problem for Auy = 3 on Q5

e M.—Rankin—Zhang 24+ shows some choice of h and R(-) (not known to be
Lipschitz) also yields us — uy = const on 0€2; \ 0X,

o If this interface happens to be finite perimeter, then absorbing the constant
into up, the resulting u given by ufi) on QI(.i) fori € {0,1,2} is in U, a duality
proved in M.—Zhang °24 can be used to certify that u is the unique optimizer

WHY IS IT NATURAL FOR SUCH A CHOICE TO EXIST?

e a unique optimizer u € U is known to exist (Rochet-Choné) and U € C,l;; (X%)
(Caftarelli-Lions); if the sets {); where its Hessian is rank i are smooth enough,
and Q¢ has the expected 3 components, then (*)—(4) and the overdetermined
Poisson problem Auo = 3 must be satisfied

e but maybe ); are not finite perimeter, or €24 is not (simply) connected and/or
has more than three components (some too small for the numerics to resolve);
these possibilities excluded by M.—Rankin—Zhang *24+ (and M.—O’Brien *26+).
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The obstacle problem (without convexity constraint)

Blowing-up at the edge of the contact region in the obstacle problem led to

Theorem (Caffarelli’s alternative; circa 1980)
Ifw e C;o’;(R” ) satisfies

Aw(x) = 1(y>0}(x) a.e.onR’

then w is either a non-negative quadratic polynomial on R" or
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The obstacle problem (without convexity constraint)

Blowing-up at the edge of the contact region in the obstacle problem led to

Theorem (Caffarelli’s alternative; circa 1980)
Ifw e C,L’;(R” ) satisfies

Aw(x) = 1(y>0}(x) a.e.onR’

then w is either a non-negative quadratic polynomial on R" or a rotated
translate of the ‘half-parabola solution’

1x12 if x; >0

z
0 else.

W(X1,...,Xp) = {

Corollary

| A\

At each point in R, the density of the contact region {w = 0} is either
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The obstacle problem (without convexity constraint)

Blowing-up at the edge of the contact region in the obstacle problem led to

Theorem (Caffarelli’s alternative; circa 1980)
Ifw e C,L’;(R” ) satisfies

Aw(x) = 1(y>0}(x) a.e.onR’

then w is either a non-negative quadratic polynomial on R" or a rotated
translate of the ‘half-parabola solution’

1x12 if x; >0

z
0 else.

W(X1,...,Xp) = {

Corollary

| A\

At each point in R", the density of the contact region {w = 0} is either 0, % or 1.

On the free boundary, only 0 (called ‘singular’) and % (called ‘regular’) occur.
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When is our free boundary Lipschitz? Smooth?

Our problem reduces to an obstacle problem for customization u»; obstacle is
minimal convex extension of vy from bunching Q; to R% 0 < A(up — uy) € L™
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When is our free boundary Lipschitz? Smooth?

Our problem reduces to an obstacle problem for customization u»; obstacle is
minimal convex extension of vy from bunching Q; to R% 0 < A(up — uy) € L™

Lemma (Normal distortion controls presence and absence of bunching)

for some C > 0, 0 < (Du - x) - h < C diam(x);
Conversely, diam(x) = 0 if (Du — x) - i = 0 on a neighbourhood of X N X
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When is our free boundary Lipschitz? Smooth?

Our problem reduces to an obstacle problem for customization u»; obstacle is
minimal convex extension of vy from bunching Q; to R% 0 < A(up — uy) € L™

Lemma (Normal distortion controls presence and absence of bunching)

for some C > 0, 0 < (Du —x) - h < C diam(X);
Conversely, diam(x) = 0 if (Du — x) - i = 0 on a neighbourhood of X N X

e call X a ray if diam(x) > 0, and stray if also (Du — x) - i = 0 for x € X N dX

Theorem ( Free boundary regularity)

For X c R? convex (smooth or polyhedral), apart from stray rays
(i) (Hausdorff-)dim 0Qp < 2
(ii) diam(X) is continuous on 0X \ 9(Qq U Q?)
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When is our free boundary Lipschitz? Smooth?

Our problem reduces to an obstacle problem for customization u»; obstacle is
minimal convex extension of vy from bunching Q; to R% 0 < A(up — uy) € L™

Lemma (Normal distortion controls presence and absence of bunching)

for some C > 0, 0 < (Du —x) - h < C diam(X);
Conversely, diam(x) = 0 if (Du — x) - i = 0 on a neighbourhood of X N X

e call X a ray if diam(x) > 0, and stray if also (Du — x) - i = 0 for x € X N dX

Theorem ( Free boundary regularity)

For X c R? convex (smooth or polyhedral), apart from stray rays

(i) (Hausdorff-)dim 0Qp < 2

(ii) diam(X) is continuous on 0X \ 9(Qq U Q?)

(iii) 02 N 0y is locally Lipschitz < each (accumulation point of) local
maxima of diam(X) is regular (not singular) in the Caffarelli alternative
(iv) diam(X) is smooth wherever it is locally Lipschitz in {(Du — x) - i > 0}
(v) if X = [a,a + 1]? then diam(X) is unimodal, hence there are no stray rays. )
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Transition first to and then to blunt bunching

e No bunching (apart from exclusion): if a = 0 then Qy = 0

Qo
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Targeted bunching: if 0 < a < 1 then Qf = 0 # O (and small)
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e Blunt bunching: if a > 7/2 — V2 then Q% #0+QF
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Ingredients of proof

Recall: Caffarelli-Lion’s 06+ assert u € C-!(X0).

loc

e we extend this estimate to the edges of square (and corners of Q7)
e shows on tame rays, the coordinates x(r, ) are biLipschitz

e on customization region (2, have Au = 3.

e on Q4 return to variational analysis of min{L(uv) | 0 < u convex} where

1 2 Ix|? 2
L(u) = =|Du - x| + u— — | dH"(x)
[a,a+1]? 2 2

Rochet-Choné: u minimizes < L/ (w — u)=L/(w) > 0 for all convex w > 0
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Ingredients of proof

Recall: Caffarelli-Lion’s *06+ assert u € C,10’; (X9).

e we extend this estimate to the edges of square (and corners of Q7)
e shows on tame rays, the coordinates x(r, ) are biLipschitz

e on customization region (2, have Au = 3.

e on Q4 return to variational analysis of min{L(uv) | 0 < u convex} where

Ix[?

L(u) :/ (1|Du—x|2+u— —) dH?(x)
[a,a+1]? 2 2

Rochet-Choné: u minimizes < L/ (w — u)=L/(w) > 0 for all convex w > 0

recalling

d
L (w):= Je L(u+ew) = / Loy
€le=0+ X
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i.e. w > 0 convex implies f wdo > 0 for

oL "
do == = (3 = A)dH?|x + (Du — x) - hdH | x.
Thus positive and negative parts of o are in convex order: o~ (w) < o (w);
(in other words, o~ second-order stochastically dominates o).
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i.e. w > 0 convex implies f wdo > 0 for

oL "
do == = (3 = A)dH?|x + (Du — x) - hdH | x.
Thus positive and negative parts of o are in convex order: o~ (w) < o (w);
(in other words, o~ second-order stochastically dominates o).

Use the equivalence relation x ~ x” & Du(x) = Du(x’) given by product
selected to disintegrate o, so & = (Du)x(o") and V¢ € C([a,a + 1]?),

Bayes’ rule : / d(x)do*(x) = / do(X) Pp(x)do(x)
[a,a+1]? [a,a+1]2/~

Xcla,a+1]2
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i.e. w > 0 convex implies deO'Z 0 for

oL "
do == = (3 = A)dH?|x + (Du — x) - hdH | x.
Thus positive and negative parts of o are in convex order: o~ (w) < o (w);
(in other words, o~ second-order stochastically dominates o).

Use the equivalence relation x ~ x” & Du(x) = Du(x’) given by product
selected to disintegrate o, so & = (Du)x(o") and V¢ € C([a,a + 1]?),

Bayes’ rule : / d(x)do*(x) = / do(X) Pp(x)do(x)
[a,a+1]? [a,a+1]2/~ xcla,a+1]?

Rochet-Choné "98: convex order inherited by 6-a.e. conditional measure:

oy (w) < 0'; (w)Yw convex. Thus (r; have the same mass & center of mass; get
oy from o by sweeping / balayage / mean-preserving spreads / Martingales if
0 ¢ X (Cartier-Fell-Meyer ’56).

o In the blunt region x € QY this tells uniform negativity of dog(r) ~ —dr over
the segment interior is balanced by positive Dirac masses at the endpoints.

e In the targeted region x € Q7 , it tells doy(r) ~ (3r — 2R)dr increases affinely
in 0 < r < R(#), balancing a positive Dirac mass at r = 0.
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Fig. 1 Numerical approximation U of the solution of the classical Monopolist’s problem ('I), C
on a 50 x 50 grid. Left level sets of U, with U = 0 in white. Center left level sets of det(V2U) (with
U = 0 in white); note the degenerate region 21 where det(V>U/) = 0. Center right distribution of pro
sold by the monopolist. Right profit margin of the monopolist for each type of product (margins are
on the one dimensional part of the product line, at the bottom left). Color scales on Fig. 10 (col

onling)

U.-M. Mirebeau (2016)

’s Problem



Away from corners, (r, 6) are coordinates.

Now x(r, 8) = (a, h(6)) + r(cos 6, sin §) and u; (x) = m(0)r + b(#) yield

Jacobians dH?|x = |’ cos b + r|drd@
dH'lax = |h'(6)|d6
m’+m

Laplacian AU= ———
P h’cos@ +r
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Away from corners, (r, 6) are coordinates.

Now x(r, 8) = (a, h(6)) + r(cos 6, sin §) and u; (x) = m(0)r + b(#) yield

Jacobians dH?|x = |’ cos b + r|drd@
dH ' |ox = |h'(6)]d6

) m’ +m
Laplacian Au= ————
h’cos@ +r
oL 2 A 1
SO —do = ~5n = (Au—-3)dH*"|x —h- (Du— x)dH"|sx.

factors into conditional measures (on X with slope tan ) given by
Fdoyz =[m” + m—3(h" cos@ +r) — i(x) - (Du — x)h'(0)60(r)]dr

o the last term represents a point mass where the segment X intersects 0.X
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_doy
F
ar

=m"” +m—3(h"cos@ +r)—n(x) - (Du — x)h'(8)50(r)

Since oy < o in convex order, fOR wdoy = 0 for £w(r) € {1,r} yields

[m” +m—3h" cosB]R - ZRZ = hAx)-(Du—x)h'(0) 5)
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d -
¢% = m" +m—3(h cosf +r)— Ax) - (Du — x)h'(0)So(r)

Since oy < o in convex order, fOR wdoy = 0 for £w(r) € {1,r} yields

A(x) - (Du —x)h'(6) &)
2R (6)

3
[m"” + m—3h"cosO]R — ERZ

[m” + m — 3h’ cos 6]
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_doy
¥
ar

=m" +m~3(h" cos 6 +r) — fi(x) - (Du — x)h’(6)Jo(r)

Since oy < o in convex order, fOR wdoy = 0 for £w(r) € {1,r} yields

[m” +m —3h’ cos0]R — gRZ A(x) - (Du — x)h’(6) 3)

[m"” + m—3h"cosf] = 2R (6)
Choosing w(r) strictly convex shows o must be obtained from o, by
mean-preserving spread; hence the point mass is in 0'; not o . From (5)-(6),

0< %R(G)Z = A(x) - (Du — x)h’(8). (7)

Rays spread as they leave the boundary! Hence % = |h'(0)| = +h’(0) = 0.
Also R > 0 implies point mass (7)# 0 hence 0 # Au — 3 = 233"

h cos@+r*
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Fig. 1 Numerical approximation U of the solution of the classical Monopolist’s problem ('I), C
on a 50 x 50 grid. Left level sets of U, with U = 0 in white. Center left level sets of det(V2U) (with
U = 0 in white); note the degenerate region §21 where det(V>U/) = 0. Center right distribution of p
sold by the monopolist. Right profit margin of the monopolist for each type of product (marging
on the one dimensional part of the product line, at the bottom left). Color scales on Fig. 10 (co

onling)

U.-M. Mirebeau (2016)
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Also x(r, 6) = (a, h(0)) + r(cos 6, sin §) and u; (x) = m(6)r + b(6) yield

Yi\Zpy= a,q 5 (X(r,0)) cosf —sind \ [ m(6)
(}’2 ) -PYE axg(x(r 0)) ( sinf cos6 )( m’(0) )

hence

0
e@) =y, = 8_:; =m’cosf +msin6

f(@):=a—y;=n-(Du—x)=(m"sin —mcos6 + a).

Substituting h’ = g—f from (7) in (6) yield our ODE for m in terms of R:

3R?(0)
21()

m”(0) + m(8) — 2R(0) = cosf. (%)
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Also x(r, 6) = (a, h(0)) + r(cos 6, sin §) and u; (x) = m(6)r + b(6) yield
i) Zpy= a,(] £ (x(r, 0)) cosf —sinf m(6)
yo | u= axQ L(x(r, 6)) sinf cosf m'@) |-

0
e@) =y, = 8_:; =m’cosf +msin6

f(@):=a—y;=n-(Du—x)=(m"sin —mcos6 + a).
Substituting h’ = g—f from (7) in (6) yield our ODE for m in terms of R:
3R?(0)

2f(6)
_dy; _df _ 1'(6)
dy, de  e(0)
which shows —ﬁ gives the slope of the boundary of the products consumed.
This boundary is convex since
Py dPf 1 dtanf 1
dy2 T de? _e’(H) a0 _(m” + m)cos® 6

hence

m”(0) + m(8) — 2R(0) = cosf. (%)

Also =tan8 <0

< 0.
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Shows QT must be connected:
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(@a,a) € Qo (a,a+1); top and right boundaries C Q,
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rays intersecting top or right boundaries ruled out by

0

IA

Ax - Ay
(x1 =x) - 1 = y0)
s X A - (Du(x1) — Du(xg))

(as are rays of positive slope)
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rays intersecting top or right boundaries ruled out by

0

IA

Ax - Ay
(x1 =x) - 1 = y0)
s X A - (Du(x1) — Du(xg))

(as are rays of positive slope)

- (a,a) € Qg since Y = [0, 0)? implies dju > 0 on X.

- a uniform perturbation w := 1 increases profits by

1 > B3Area(Qp) + a x Length(Qy N dX)
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rays intersecting top or right boundaries ruled out by

0 < Ax-Ay
(x1 =x) - 1 = y0)
s X A - (Du(x1) — Du(xg))

(as are rays of positive slope)

- (a,a) € Qg since Y = [0, 0)? implies dju > 0 on X.

- a uniform perturbation w := 1 increases profits by

1 > B3Area(Qp) + a x Length(Qy N dX)

3
> —{?+2al
2

so the length of intersection of € with the bottom of the square is ¢ < \/g <1
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Beyond this stylized example

- other (convex) domains X ¢ R?

- nonuniform agent densities du(x) = f(x)dH"(x) on X;
(some leaves may no longer reach the boundary)
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Beyond this stylized example

- other (convex) domains X ¢ R?

- nonuniform agent densities du(x) = f(x)dH"(x) on X;
(some leaves may no longer reach the boundary)

- other (convex) principal’s costs of production, e.g. c(y) = %Iylp # %Iylz;
(the PDE will still be elliptic but need no longer be linear)
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Beyond this stylized example

- other (convex) domains X ¢ R?

- nonuniform agent densities du(x) = f(x)dH"(x) on X;
(some leaves may no longer reach the boundary)

- other (convex) principal’s costs of production, e.g. c(y) = I17|y|’O # %Iylz;
(the PDE will still be elliptic but need no longer be linear)

- other quasilinear and nonquasilinear agent preferences b(x, y) # x - y
(assuming fourth-order Ma-Trudinger-Wang type conditions)

- higher dimensions X C Y = [0, o) (starting with X = [a,a + 1]®)
(n free boundaries separating n + 1 regions Qy, . . ., ), with complicated
Euler-Lagrange PDEs)
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Thanks to the audience. . .

36/41



Thanks to the audience. .. and the organizers!
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A regularity result: Lipschitz product selection

Theorem (M.-Rankin-Zhang ’23+)

If b and b(y, x) = b(x, y) both satisfy (B0-B3), ¢ satisfies (CO-C2) and
du(x) = fax with logf € C®' then u € C-'(XO).

loc

o extends Caffarelli-Lions 06+ to b & ¢ non-quadratic

e improves Chen *13 from C/ _ to C,L’;
e sharp: examples forn =1 = m show u ¢ C,":DC(XO)

e idea: use energetic comparison to pinch u between parabolas
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Lemma (A geometric lemma)

Given d > 0, there exists Co, Cy, Co > 0 such that if u = ubb s optimal and
d(xo, dX) > d and yy = yp(Du(xop), Xo) then if r < Co and

h= sup u(x) - [u(xo) + b(x, yo) — b(xo, yo)] > 0

X€B;(xo)

then some A(-) = b(-, y’") + @’ makes S := {x € X | u < A} a neighourhood of xq
with
supAx) —u(x) < h

X€S

and
y=y(Du(x),x) 2

h
f(x)dx = —C1h + 02—2
r

é /3 [c(y)—b(x,w

y=y’
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Proof:




A duality for bilinear preferences

Following Rochet-Choné 98 choose b(x,y) = x -y and X, Y c R” convex so
profit

L) = /X [x - Du - 0(x) - c(Du(x))dp(x)
with

u(x) = v*(x) :==supx -y —v(y)
yey
€U :={u:X— [0,00] convex | Du(X) C Y}
THM (M.-Zhang, to appear in M3AS) Y a convex cone; c.f.
Kolesnikov-Sandomirskiy-Tsyvinski-Zimin 22+ on Beckmann auctions):

max —L(u) =
max —L(w)
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A duality for bilinear preferences

Following Rochet-Choné 98 choose b(x,y) = x -y and X, Y c R” convex so
profit

L) = /X [x - Du - 0(x) - c(Du(x))dp(x)
with

u(x) = v*(x) :==supx -y —v(y)
yey
€U :={u:X— [0,00] convex | Du(X) C Y}
THM (M.-Zhang, to appear in M3AS) Y a convex cone; c.f.
Kolesnikov-Sandomirskiy-Tsyvinski-Zimin 22+ on Beckmann auctions):
—L(u) = mi c*(S(x))d
max-L(w) = min [ ¢*(S0)dutx)
where

S = ﬂ {S : X — R"| /X[(x —S(x)) - Du — u(x)]du(x) < 0}

ueld
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THM:
max —L(u) = gnig/c*(S(X))d,u(X)

U

where

8= () {8:X — R"| (x- Du(x) - u(x))y < (Sx) - Du(x)), }
uel
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THM:
max L) = i [ ¢'(S6)u00)
where
8= () {8:X — R"| (x- Du(x) - u(x))y < (Sx) - Du(x)), }
ueld

Proof: Rockafellar-Fenchel duality; (<): S € S, u € U and definition of ¢*

—L(u) = (x - Du(x) —u —c(Du(x)))y < --- < {(c" o S),

e gives new necessary and sufficient criterion for optima
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