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ASSORTATIVE MATCHING AND SEARCH'

By ROBERT SHIMER AND LONES SMITH’

In Becker’s (1973) neoclassical marriage market model. matching is positively assorta-
tive if types are complements: i.e., match output f(x,y) is supermodular in x and y. We
reprise this famous result assuming time-intensive partner search and transferable output.
We prove existence of a scarch cquilibrium with a continuum of types. and then
characterize matching. After showing that Becker's conditions on match output no longer
suffice for assortative matching, we find sufficient conditions valid for any search frictions
and type distribution: supermodularity not only of output f, but also of log f, and log f, ...
Symmetric submodularity conditions imply negatively assortative matching. Examples
show these conditions are necessary.

KEYwoRDs: Search frictions, matching, assignment.

l. INTRODUCTION

THIS PAPER REEXAMINES a classic insight of the assignment literature—when
matching is assortative—in an environment with search frictions. We assume a
continuum of heterogeneous agents who can produce only in pairs. If two agents
form a match, they generate a flow of divisible output. We depart from the
neoclassical assignment literature (e.g., Becker (1973)) in assuming that match
creation is time consuming: each unmatched agent faces a Poisson arrival of
potential mates (Diamond (1982), Mortensen (1982), Pissarides (1990)). As
matching precludes further search, agents must weigh the opportunity cost of
ceasing to search for better options, against the benefit of producing immedi-
ately.

Individuals’ behavior is described by their acceptance sets, which specify with
whom they are willing to match; only mutually acceptable matches are consum-
mated. When agents match, they evenly divide the match surplus, i.e., their
output flow in the match less their values while searching, as in the Nash
bargaining solution. Equilibrium requires that everyone’s acceptance set maxi-

"This paper answers questions stemming from a 1994 version of our mimeo “Matching, Search,
and Heterogeneity.” The current version of that paper solves a constrained social planner’s problem
and focuses on the relationship between equilibrium and socially optimal matching patterns.
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344 R. SHIMER AND L. SMITH

mizes her expected payoff, and the distribution of unmatched agents is in steady
state. We provide what we believe to be the first general existence theorem for
search models with ex ante heterogeneous agents. The proof is complicated by
the observation that agents’ acceptance sets affect the steady state unmatched
distribution, and thus the agents’ matching opportunities and their willingness to
accept matches.

We then turn to assortative matching. Becker’s (1973) sufficient condition in
the frictionless model is well-known. Assume that types x and y in [0, 1] produce
f(x.y) when matched and nothing otherwise. With complementarity (f, > 0),
the marginal product of a higher partner rises in one’s type; therefore, in a core
allocation, matching is positively assortative—matched partners are identical.
The easy derivation of this famous result offers hope that it naturally extends to
a model with search frictions: Agents match with an interval of types around
their own. Examples in Figure 3 disprove this. First, for the complementary
function f(x,y)=(x+y— 1)*, type + produces nothing in the core allocation.
With search frictions, nearby agents will match with 3. When type 1 agents meet
cach other, they then prefer to wait for a profitable match, as matching produces
nothing, but precludes further search. By continuity, this argument extends to
types near 1. These agents match with higher and lower types, but not among
themselves.

That (4, 5) minimizes f is inessential to this critique. Let f(x,y)=(x +y)*
and suppose ‘“high” types are willing to match with “middle” types. This
opportunity is wonderful for middle types, and so if two of them should meet,
they prefer to continue to search for high types. On the other hand, if they meet
a “low” type without such a valuable option, matching is mutually agreeable.

Despite these setbacks, we find restrictions on the production function alone
that ensure assortative matching for any search frictions or type distribution. By
this we formally mean that any two matches can be severed, and the greater two
and lesser two types agreeably rematched. Observe that our motivational fail-
ures of assortative matching in Figure 3 featured individuals with nonconvex
matching sets—some agents only willing to match with higher and lower types.
In fact, we show that matching set convexity is logically necessary for assortative
matching, and—along with simple conditions that orient matching sets—suffices
as well. Convexity, in turn, follows if all agents’ preferences over partners’ types
are single-peaked.

This suggests an indirect attack on assortative matching. We show that
single-peaked preferences, and hence assortative matching, ask that not only the
production function be supermodular,” but also its log first- and cross-partial
derivatives, log f, and log f... Supermodularity of f ensures that any high
enough type’s utility rises in her partner’s type; supermodularity of log f, yields
single-peaked preferences for low types; and supermodularity of log f,, provides
a single-crossing property which allows us to classify every type as either low or
high. Finally, we prove that negatively assortative matching—matching with
opposite types—obtains under symmetric submodularity conditions.

*We define supermodularity in Assumption Al-Sup. See Topkis (1998) for details.
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We are aware of two other papers that consider “transferable utility” (i.e.,
shared output) search models with ex ante heterogeneity.” Sattinger (1995) does
not explore the link with models in the frictionless assignment literature. Lu and
McAfee (1996) establishes assortative matching when f(x, v) =xy, a production
function that satisfies our suftficient conditions. However, they do not consider
other production functions, and so do not touch on the necessary and sufficient
conditions that are central to our paper. In addition, Lu and McAfee’s (1996)
existence proof sidesteps the endogeneity of the unmatched distribution. While
Sattinger (1995) endogenizes the unmatched distribution, he does not prove
existence of a search equilibrium.

By way of overview, Section 2 summarizes Becker’s two frictionless results,
and then introduces our search model. We define and characterize search
equilibria in Section 3, and establish their existence in Section 4. Section 5 first
defines assortative matching and shows that it requires convex matching sets.
We then prove that convex matching sets and Becker’s condition ensure assorta-
tive matching. Finally, we prove that our three supermodularity condition imply
convex matching sets, and address necessity with counterexamples. Less intuitive
proofs are appendicized.

2. THE MODEL

There is an atomless continuum of agents, each indexed by her exogenously
given and publicly observable productivity type x < [0, 1]. Normalize the mass of
agents to unity, and let L:[0, 1] — [0, 1] be the type distribution. Associated with
this is a type density function /. For the existence of an equilibrium, we require
that / be positive and boundedly finite: 0 </</Hx)<i<= for all x. Our
language in the paper, as well as the interpretation we lend to it, implicitly
assumes a continuum of every type of agent. Agents then belong to the graph
{(x,x€[0,1], 0 <i <I(x)} in R? with Lebesque measure, where / is an index
number of the type x agent.

Without loss of generality, normalize the flow output of an unmatched agent
to 0. When agents (types) x and y are matched together, their flow output
depends on their types, f:[0,1]* — R. We later refer to a basic set of assump-
tions:

A0 (REGULARITY CONDITIONS): The production function f(x, y) is nonnegative,
symmetric (f(x,y)=f(y, x)), continuous, and twice differentiable, with uniformly
bounded first partial derivatives on [0, 11X [0, 1].

2.1. The Frictionless Matching Benchmark

In the core allocation, prices allocate the scarce resource, high productivity
agents. When is there positively assortative matching (PAM), where each agent

JMorgan (1993), Burdett and Coles (1997), and Smith (1998) study heterogeneous-agent search
models with nontransferable utility (NTU), i.e., with exogenous output sharing rules.
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matches with another of the same type? A sufficient condition is that types be
complementary:

AT1-SUP (STRICT SUPERMODULARITY): The production function f is strictly super-
modular. That is, the own marginal product of any x > 0 is strictly increasing in her
partner’s type;, or if x >x' and y >y, then f(x,y) + f(x', ¥y > flx, y) + f{x", y).

It A1-Sup obtains, all agents have higher marginal products when they match
with high productivity agents. In the core allocation there must be PAM. The
proof of this well-known result of Becker is simple: Any allocation in which
some type x agents match with type x” #x agents admits a Pareto-improvement.
Output rises if all such agents rematch with another of their own type, since
Al-Sup implies f(x,x) +f(x",x") > 2f(x, x') whenever x #x’. Thus the unique
output-maximizing allocation entails PAM, and hence so must the core.

A1-SUB (STRICT SUBMODULARITY): The production function f is strictly submod-
wlar: if x > x and vy > V', then f(x, y) + f(x', y') < fQx, ¥) + f(x', ).

Under A1-Sub, the unique core allocation entails negatively assortative match-
ing (NAM): Each agent x matches with her “opposite” type y(x), where
L(x)+ L(y(x)) = 1. For A1-Sub implies that if there are four agents, z, <z, <
z, <z,, the allocation in which z, and z, are matched and z, and z; are
matched Pareto dominates the two other possible allocations in which these four
agents match in pairs.

Throughout, we maintain Al-Sup or Al-Sub. This excludes production func-
tions with nonmonotonic marginal products (like f(x,y)=max{x’y,xy*). in
Kremer and Maskin (1995)), for which matching patterns are not easily charac-
terized.

2.2. Matching with Search

We now develop a continuous time, infinite horizon matching model with
search frictions, in which meeting other agents is time-consuming and hap-
hazard.

Action Sets: At any instant in continuous time, an agent is either matched or
unmatched. Only the unmatched engage in (costless) search for a new partner.
When two unmatched agents meet, they immediately observe each other’s type.
Either may veto the proposed match; it is only consummated if both accept.
Since in a steady state environment, a match that is profitable to accept is
profitable to sustain, we simplify our notation by ignoring the possibility of quits.

To maintain a steady state population of unmatched agents, we assume
exogenous match dissolutions. Thus, nature randomly destroys any match with a
constant flow probability (Poisson rate) &> 0, i.e., it lasts an elapse time of ¢
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with chance ¢”°'. At the moment the match is destroyed, both agents re-enter
the pool of searchers.

Preferences: Each agent maximizes her expected present value of payoffs,
discounted at the interest rate » > 0. As in Becker, we assume that match output
f(x,y) is shared. Thus, x earns an endogenous flow payoff =(x|y) when
matched with y. Because payoffs exhaust match output, 7(x|y)+ w(y|x) =

flx,y).

Unmaiched Agents and Search: Let u <! denote the unmatched density func-
tion, i.e., [yu(x)dx is the mass of unmatched agents with types x € X [0, 1].

Search frictions capture the following story. Were it possible, an unmatched
individual would meet a random unmatched or matched agent at the flow rate
p> 0. However, it is infeasible to meet someone who is already matched—she is
engaged, and so misses any meeting. Thus, one simply meets any y € Y [0, 1] at
a rate proportional to the mass of those unmatched in Y: pf,u(y)dy. Our
conclusion underscores that our descriptive theory extends well beyond this
search technology, but we use this assumption in our equilibrium existence
proof.

Strategies: A steady state (pure) strategy for agent of type x is a time-in-
variant® Borel measurable set A(x) of agents with whom x is willing to match.
(That agents of the same type use the same strategy is not a restriction, as will
follow from §3.1.) The strategy depends only on the unmatched density function
u, the sole payoft-relevant state variable.

Next, agent x’s matching set .#(x)=A(x) N {ylx € A(y)} is the set of accept-
able types y who are willing to match with her. Call a match (x,y) mutually
agreeable if y €.#(x). By construction, matching sets are symmetric, y € .#(x) if
and only if x=.#(y). We shall sometimes consider the matching correspon-
dence, .#:[0,1]1 2 [0, 1]. Finally, for use in our existence result, Proposition 1, we
define a match indicator function a: a(x,y)=1if y €.#(x) and 0 otherwise.

Steady State: In steady state, the flow creation and flow destruction of matches
for every type of agent must exactly balance. The density of matched agents
xe[0,1] is /(x) —u(x); these agents’ matches exogenously dissolve with flow
probability 8. The flow of matches created by unmatched agents of type x is
pu(x)[ ,,u(y)dy. Putting this together, in steady state for all types x <[0,1]

(N 6(l(x)—u(x)):pu(x)f//( u(y)dy=pu(x)/]a(x,y)u(y)dy.
(5 0

*In a stationary world, assuming stationary acceptance sets is without loss of generality: As the
strategy of no single agent affccts the future state of the economy, it an acceptance sct is optimal at
time s, it remains so at time > s.
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3. SEARCH EQUILIBRIUM

In a steady state search equilibrium (SE), (i) everyone maximizes her expected
payoff, taking all other strategies as given; (ii) if matching weakly increases both
agents’ payoffs, then they both accept the match;® and (iii) all unmatched rates
are in steady-state. This section formalizes (i) and (i) in a compact, recursive
way.

3.1. Analytic Description of Search Equilibrium

The Two Bellman Equations: Let W(x) denote the expected value of an
unmatched agent x. Similarly, let W(x|y) be the present value for x while
matched with y, and thus S(x|y) = W(x|y) — W(x) is her “personal” surplus
when matched. We begin by providing the Bellman equations solved by these
values.

While unmatched, x earns nothing, but at flow rate pf,,u(y)dy, she meets

and matches with some y €.#(x), enjoying a capital gain S(x|y). Summarizing:

(2) rW(x) = pf% S(x[y)uly)dy.
#(x)

Similarly, x gets an endogenous flow payoff 7w(x|y) when matched with y. With
Poisson rate &, her match is destroyed, and she suffers a capital loss S(xly).
Hence,

(3) Wixly) = w(xly) — 8S(x|y).

Match Surplus Division: Search frictions create temporary bilateral rents,
since an agreeable match now is generically strictly preferred to waiting for a
better future match. This shifts the determination of the flow payoffs 7 into the
realm of bargaining theory. We follow a number of authors, e.g., Pissarides
(1990), closing the model with the Nash bargaining solution: namely, S{(x|y) =
S(ylx) for all (x,y). Using this, equation (3), and the resource constraint
7(xly) + w(ylx) = f(x, y), we have

flx,y) —rW(x) —rW(y)

@ Sy = 5

Personal surplus is half the excess of flow match output over both flow
unmatched values. Discounting accounts both for impatience and match imper-
manence.

Matching Sets: In a SE, an agent’s strategy is to accept any match that weakly
exceeds her expected present unmatched value: S(x|y) >0 if and only if

®In our 1996 working paper (available on request), we allow that agents may reject a match if they
are just indifferent. This generalization does not affect our conclusions. We omit it here, as it
complicates our analysis throughout the paper.
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vy € A(x). Since S(x|y) = S(y|x), this implies y € A(x) if and only if x € A(y),
and so .#(x) = A(x). Thus by (4), the mutual optimality condition is

&) Sx,y)=f(x,y) —w(x) —w(y)=z0eyc.#7(x)

where w(x) =rW(x) is the average present value of an unmatched agent, her
“reservation wage,” and S(x, y) is the (flow) match surplus.

The Value Equation: Substituting (4) into (2) yields an implicit value equation

6) w(x) =186 , (f(x,y)—w(x) —w(yDu(y)dy
A (x)

=0 sCx, Vuly)dy
A(x)
where 6= p/2(r + 8). An agent’s unmatched value is proportional to her share
of match surplus.

Summary: A SE is fully described by specifying: (i) who is matched with whom
(matching sets .#); (ii) the measure of types searching (unmatched density w);
and (iii) how much everyone’s time is worth (unmatched value w).

DEFINITION (SE CHARACTERIZATION): A SE can be represented as a triple
(w,.#,u) where: w solves the implicit system (6), given (.#,u); .# is optimal
given w, i.e., it obeys (5); and u solves the steady state equation (1) given .#.

Figure 1 graphically depicts the matching sets for the production function
f(x,y) = xy as well as a particular choice of search frictions, impatience, and type
distribution.” Since this production function satisfies A1-Sup, in the frictionless
benchmark agents are only willing to match with their own type. With search
frictions, agents match with an interval of types, including their frictionless
partner.

3.2. Properties of Value Functions and Matching Sets

We now summarize the critical properties of the value function.
LeEmMA 1: Given AQ, the value function w satisfies the value inequality
) w(x) > Hf (flx,y) —w(x) —wyNuly) dy
M

for arbitrary M C[0,1). In particular, w is nonnegative. Also, w is Lipschitz,

"Figures in this paper represent numerical approximations of the equilibrium matching sets. To
create them. we divided the type space into 500 discrete types. We posited a matching set, calculated
the associated steady state unmatched rates using (1), calculated the value function using (6), and
then calculated a new matching set using (5). This titonnement process converged, and thus by
definition, to a SE. The program is available upon request.
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FiGURE |.—Equilibrium Matching Scts: This depicts the matching sets for f(x,y) =y, with
8=r, p=100r, and a uniform distribution of agents, L(x)=x for x<[0.1]. If x&.2(y) (so
v €. #(x) also), then the points (x,y) and (y, x) are shaded in the graph. The graph is therefore
svmmetric in (x, v). This is the same production function that Lu and McAfee (1996) use; therefore,
this picture is similar to their Figure 1 (p. 129).

continuous, and a.e. differentiable in a SE. When differentiable, its derivative is

0f poonfolx, y)uly) dy
1+ 6f,uly)dy

(8) wi(x)=

Here is an intuitive overview of the proof (found in Appendix A). First, the
value inequality follows because matches are agreeable if and only if they
produce nonnegative match surplus. For Lipschitz and continuity, anyone can do
almost as well as nearby types simply by imitating their matching pattern, since
the production function is continuous. If they optimize, they will do better still,
so the value function cannot jump. Finally, when the matching set is suitably
differentiable in x, w'(x) is found by application of the Fundamental Theorem
of Calculus. Surplus vanishes along the boundary of the matching set; therefore,
we can ignore the effect of changes in the matching set, and simply differentiate
(6) under the integral sign.

Regularity Assumption A0 also imposes some restrictions on matching sets.

LEmMA 2: Posit AQ. All maiching sets .#(x) are nonempty and closed and the
matching correspondence .7 is upper hemicontinuous (u.h.c.).

These conclusions are established in the proof of Lemma 1 (Part 3, Step 1).
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4, EXISTENCE OF A SEARCH EQUILIBRIUM

ProrosITION 1 (SE EXISTENCE):. Given A0 and A1-Sup or A1-Sub, a SE exists.

Since values w play an analogous role to prices in Walrasian models, we look
for a fixed point in an appropriate map from the space of players’ value
functions into itself. Even though a SE is a triple, this program works because
values encode all the information needed to recover matching sets .# and
unmatched densities u.

The proof demonstrates the continuity of three maps: condition (5) maps
value functions w into matching sets .# (Lemma 3); equation (1) maps matching
sets . into steady state unmatched densities u (Lemma 4); and equation (6) is
the composite map of values and induced matching sets and unmatched densi-
ties into new values (Proposition 1). SE’s are fixed points of these mappings.

Previous existence theorems for heterogeneous agent search models exploit
an a priori known threshold structure of NTU matching sets to prove existence
by construction (Morgan (1995), Burdett and Coles (1997)). Some have also
assumed that the unmatched density © does not depend on agents’ matching
sets, an interaction that we believe is of significant economic interest.

We consider value functions w as elements of the space C[0, 1} of continuous
maps on [0, 1] with the sup norm: [[wll.. = sup, . /w(x)|. Instead of matching
sets .#, for Lemma 3, we work with the associated match indicator functions «,
and the norm |lall, = [} [ a(x, Y dxdy < =, for a €2'([0,11"). However, we
restrict focus to the convex set . of «’s with range in [0, 1]. Finally, to satisfy
Lemma 4, unmatched densities # must be given the norm |lull; = /i [u(x)] dx.

LEMMA 3: Posit A0 and A1-Sup or A1-Sub. Any Borel measurable map w — «,.
from value functions to match indicator functions in & solving (5) is continuous.

Al1-Sup or Al1-Sub rule out an atom of zero surplus matches, a possibility that
would invalidate Lemma 3 and considerably complicate the proof of Proposi-
tion 1.

LemMMmA 4: The map «—u, from match indicator functions in & fo the
unmatched density implied by the steady-state equation (1) is both well-defined and
continuous.

PROOF: Step 1: a = u,, is well defined, so there exists a unique solution u, to
(1). The critical idea is a log transformation of the unmatched density. Let us for
convenience define p=p/8. Let I' be the set of measurable maps ¢ of [0, 1]
into [log { — log(1 + pD,log1]. For all x€[0,1] and ¢ € I', define

I(x)
L+ plyalx, ye™ dy

@ (x) =log
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Here, u =e" solves the steady-state condition (1) if and only if &0 =¢. To
prove the steady state unmatched density is unique, we show that @, has a
unique fixed point.

As 0 < alx,y)<1and [ </(x) <, one can verify that @, maps I into itself.
In this step alone, and not the continuity proof, we will use the sup-norm:
el = sup, <o yle(x)l, so that ¢ belongs to the complete space Z“([0,1]) of
essentially bounded functions. By the Contraction Mapping Theorem, &, has a
unique fixed point if there is a y € (0, 1) with ||@,0! — @ 0% < x|lo! — 2]}, for
any 0,0 er.

Use the definition of @, for arbitrary x €[0,1] and ¢',0? € I

) L+ pflalx, y)e" ™ dy
@ (x)— @' (x) =log el Y -

1+ pjlalx,y)e ™ dy

1+ [)e“"[”z“ﬁf[,‘a(x,y)el‘z(«‘"‘a'y
<log

I+ [)fola(x, y)el.:(’v) dy

1+ ﬁjeuz*'-v:u.,,
<log| ————

1+ pl
The first inequality uses e' "> <e'" ~t-e* "™ for all y. Since '~ > 1, the

resulting fraction is increasing in the integral. That the integral is less than I
yields the second inequality. To bound this final expression, observe

log(1 + ﬁl-e”l'l“":”") —log(1 + pl)

et =2l

log(! + pI*(1+ pD)) —log(1(1 + pD))
< - -
log/—log !+ log(1+ pl)

=xye(0,1)

as the left hand side rises in || — %[l <log!—log !+ log(1 + pb), given ¢!, 2
erl.

Reversing the roles of ¢! and ¢ proves that |®,0%(x) — @, (X)) < ylle! —
1'?/].. Since this holds for all x, we have proven that |&,0% — @', < yile' —
2 |l.. Everywhere uniqueness of the solution to ¢ = @,¢ follows.

Step 2: a > u, Is continuous on the space &. Intuitively, (1) forms a system of
equations G(u,, a) =0, with G continuous. By some implicit function theorem,
at points 8 near a, the unique solution to this equation u; must lie near u,.
This logic requires that the derivative of G with respect to u be invertible and
continuous, which we address in Appendix B. Q.E.D.

_
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PRrROOF OF PROPOSITION 1: Given values w in C[0, 1], we follow the Schauder
Fixed Point Theorem program in §17.4 of Stokey and Lucas (1989).
e STEP 1: THE BEST RESPONSE VALUE: Consider the map T : C[0,1] — C[0, 1]

0fy max{ f(x,y) —w(y),w(x))u"(y)dy
1+ 6u*

9 Tw(x) =

| —

where u™ =u, is the unmatched density implied by the value function w (by
Lemmas 3 and 4), and @* = [ju"(z)dz is the implied mass of unmatched
agents. By definition, a fixed point of the mapping 7w =w is a SE.

e STeP 2: THE FAaMILY £: To establish the existence of a fixed point of the
operator T, we need a nonempty, closed, bounded, and convex domain space
£ cCl0,1] such that (i) T:% — %, (i) T(%) is an equicontinuous family; and
(iii) T is a continuous operator. Let & be the space of Lipschitz functions w on
[0, 1] satisfying 0 < w(x) < sup, f(x,y) for all x and Iw(x,) - w(x )l < klx, — x|
for all x, x,, where x =sup, ,|f,(x, y)l. as in the proof of Lemma 1. This subset
of C[0,1] is clearly nonempty, closed, bounded, and convex.

e STEP 3: T:%2 —> % 15 ConTINUOUS AND T(%) 1s EQuicoNTINUOUS: Quite
easily, if w € [0,sup, f(-, y)], then so is Tw. Next, |Tw(x,) — Tw(x,)| is at most

1lmﬁlx<f(x3,y) —w(y),w(x,))

1+ 6u™ j;]
—max{ f(x,,y) —w(y),w(x DNu"(y)dy

0fp lmax{ f(x,, y) = f(x;, y),w(xy) —wlx DIu*(y)dy
1+ 6u” )

Since f(x,y) and w(x) are each Lipschitz in x with modulus «, Tw is Lipschitz
with modulus «6z" /(1 + #u") < k. A family of Lipschitz functions of the same
modulus is equicontinuous. Finally, Appendix B proves continuity of 7 alge-

braically. Q.E.D.

5. DESCRIPTIVE THEORY
5.1. Assortative Matching

In the frictionless world, supermodularity (Al-Sup) ensures PAM—any type x
only matches with another type x. In a frictional setting, individuals are
generally willing to match with sets of agents, and so mismatch is the rule. Our
first step is to formulate a sensible generalization of assortative matching to this
environment.

DermiTiON: Take x, <x, and y, <y,. There is PAM if the matching sets
form a lattice in R*: y, €.#(x,) and y, e.#(x,) whenever y, €.#(x,) and
v, €.#(x)). There is NAM if y, €.#(x,) and y, €.#(x,;) whenever y, €.#(x,)
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and y, €.#(x,). This definition® generalizes Becker’s frictionless one in Section
2.1, xeM(x) for all x. The presumed contrary matches do not exist with
singleton matching sets, and so the implications are true. Moreover, with PAM
and symmetric matching sets, an agent who is willing to match with someone,
will match with her own type: y € #(x) implies x €.#(y) by symmetry, so
x&./(x)and y €.#(y) by PAM.

The definition also captures the intuition that PAM (NAM) describes a
preference for matching with similar (opposite) types. To understand why, we
must explore the links between assortative matching and matching set convexity.
First, we have the following proposition.

PROPOSITION 2 (ASSORTATIVE MATCHING = CONVEXITY): Given PAM or NAM,
if all matching sets are nonempty, then they are convex as well.

PROOF: Since the two cases are symmetric, assume PAM. Take any x, <x, <
x; and y,€[0,1], with x; and x, in .#(y,). By assumption, there exists
Y

" e.#(x,). If y' >y, like y, in Figure 2, then x, € #(y') and x, €.#(y.) imply
x>, €.#(y,), using PAM. If y' <y,, like y, in Figure 2, then x,e€.#()y") and
h
L] *
Yol =~ S 0-------- .

FIGURE 2.—Proposition 2 llustrated. If low and high types {(x, and x;) match with some agent
v, then so must middle types (x,), given PAM or NAM.

SAn equivalent formulation, valid in higher dimensions. is simply to say that the matching
indicator function « is affiliated: ol BA Ba( BV B = a( Bal B") for any two matches B=(x,v)
and B"=(x".¥). As usual. v and A denote componentwise vector maxima and minima. Matching
is negatively assortative if the reverse inequality obtains (negative affiliation). This also extends our
formulation to probabilistic acceptance decisions, as would be necessary if there were atoms in the
type distribution; the probability-of-matching function must be affiliated. Milgrom and Weber (1982)
is the classic (auction-theory) cconomic application of affiliation,

s
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x, €.#(y,) imply x,€.#(y,). Finally, if v =y,, then obviously x, €. #(y,).
Q.E.D.

Next, suppose matching sets are convex, closed, and nonempty; the last two
assumptions follow in particular from Assumption A0, by Lemma 2. Then they
are fully described by lower and upper bound functions: a(x) = min{y|y € .#(x)}
and b(x) = max{y|y €.#(x)}. These easily-visualized functions provide an intu-
itive characterization of assortative matching:

PROPOSITION 3 (MATCHING SET BOUND FUNCTIONS). Assumie that matching
sets are closed and nonempty. Then there is PAM (NAMY if and only if matching
sets are convex and the bound functions a and b are nondecreasing (nonincreasing ).

(The proof is in Appendix C.) This confirms higher types have higher (lower)
matching sets under PAM (NAM). For example, higher types have higher mean
and median partners under PAM.

Establishing PAM or NAM requires a comparison of a 4-tuple of values, a
complex task that prevents us from directly finding conditions that ensure
assortative matching. Instead, we assault the problem indirectly. We first show
that convex matching sets and conditions that orient matching sets are sufficient
for assortative matching, essentially the converse of Proposition 2. In Section
5.2, we complete the argument by finding primitive sufficient conditions for
convexity.

PROPOSITION 4 (SUFFICIENT CONDITIONS FOR ASSOCIATIVE MATCHING): As-
sume symmeltric, convex, and nonempty matching sets .#/(x) for all x, and an upper
hemicontinuous matching correspondence 4#. There is PAM if and only if 0 €.#(0)
and 1 €.7(1). There is NAM if and only if 0 €.#(1) and 1 €.#(0).

PROOF: As the two cases are identical, we concentrate on PAM. We have
already argued that PAM and symmetric, nonempty matching sets imply x €
#(x) for all x. Hence, 0 €.#(0) and 1 €.#(1).

To prove sufficiency of these conditions, take x; <x, and y, <y, with
x, €.#(y)) and x, €.#(y,). We first prove x; €.#(y,). Our ‘Intermediate Value
Theorem’ in Claim 1 of Appendix C then applies, since the matching correspon-
dence is nonempty- and convex-valued and u.h.c. Consequently, 0 €.#(0) and
y, €.#(x,) (by symmetry) imply that there is x, €[0, x,] with y, €.#(x,). and
thus x, €.#(y,), again by symmetry. If x,=x,, we arc done. Otherwise, with
x, <x, <x,, convexity of .#(y,), x,€.#(y)), and x, €.#(y,), ensure that x, &
#(y,). A parallel construction uses 1 €.#(1) to prove that x, € #(x,), establish-
ing PAM. Q.E.D.

5.2. Sufficient Conditions for Convexity

Since we have shown that convex matching sets are necessary and, with
conditions that orient matching patterns, sufficient for assortative matching, it is
logical to attack assortative matching indirectly by finding conditions under
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which matching sets are convex. As matches occur at points where the match
surplus function s is nonnegative valued, according to condition (5), we look for
conditions under which s is quasi-concave in each argument—i.e., each agent
has single-peaked preferences.

The logic of the frictionless model of Section 2.1 suggests that Assumption Al
might suffice. For assume PAM, so identical types match. Competition ensures
that output is evenly split: x earns w'(x)=f(x, x)/2, where w" is the ‘zero
search frictions’ value function, analogous to w. Define a frictionless surplus
function, s%(x,v)=f(x,y) —w'(x) —w’(y). If s°) <0 for all matches, then
the wages w? decentralize this allocation. For given x, an increase in her
partner’s type yields marginal surplus

syCo,y) = f (e, ) =y 9) /2 = [y p) /2= f(x, ) = [ (. y)

since f is symmetric. If A1-Sup obtains, then f,(x,y) 2 f(y,y)as x 2y. So for a
given x, the surplus function is increasing or decreasing in her partner’s type y
as x 2y. Thus, s%x,-) is quasiconcave and maximized at x, with s°(x, x) = 0.
Parallel results obtain given NAM and Al-Sub.

If frictions reduce everyone’s value equally, the surplus function would shift
up, but the set of points y with s(x, y) > 0 would remain convex, the result we
desire.

Examples disprove this conjecture. The production function f(x,y)=(x+y
—1)? in the top panel of Figure 3 obeys Al-Sup, and yet equilibrium matching
sets are not convex, given appropriate search frictions. For any x close enough
to 5 won’t match with another x, but will match with both higher and lower
types. The intuition for this example is clear—1 produces nothing when
matched with her own type.

The bottom panel of Figure 3 uses the function f(x,y) = (x +y)* to illustrate
that the nonconvexity is quite general, and does not require f nonmonotonic.
With enough search frictions, types near 1 are willing to match with intermedi-
ate types like 0.2. This opportunity otfers a windfall for 0.2: When two of them
meet, they prefer to continue to search for types near 1. On the other hand, if
0.2 meets a sufficiently low type, with no such valuable outside option, match
surplus is once again positive, and the match is mutually agreeable.

We now introduce additional conditions on the production function f that
ensure convex matching sets. We hope the serious interplay of three forms of
supermodularity makes for an interesting application of the ongoing research
program here.

A2-Sur: The first partial derivative of the production function is log-supermod-
ular:?® forall x, <x, andy, <y,, f{x, y)f(x2,v,) = flx, y)f (xs, y)).

A3-SUP: The cross partial derivative of the production function is log-supermod-
ular: for all x; <x,, y; <y, fo(x,, yfolea y) 2 folxg,y, Mo (g, yp).

°A positive function is log-supermodular if its log is supermodular. These definitions extend this
notion to possibly negative functions, in the way needed in this paper.

T
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FiGURE 3.—Non-Convex Matching. The top panel depicts matching sets for f(x, y) ={x+y — 1)°,
5=r. p=100r,and L(x)=x on [0, 1]. The bottom panel depicts matching sets for f(x,y) = (x +y)",
8=r, p=35r,and L(x)=x on [0, 1].

A2-SuB: The first partial derivative of the production function is log-submodular:
forall x, <x, and y, <y,. flx, y)f s, y)) <o,y ) filxg, yy).

A3-SUB: The cross partial derivative of the production function is log-submod-
wlar: for all x, <x, and y; <y,, £, G,y )f (0, ¥2) < fo (e y ) o (e, ).
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While Assumptions Al, A2, A3-Sup are independent, as are Al, A2, A3-Sub,
they jointly arc interrelated. For example, A3-Sup and A3-Sub simultaneously
hold for production functions of the form f(x,y)=c, +cx(glx)+g(y) +
c;h(x)N(y). Under the additional restriction g =/h. A2-Sup and A2-Sub obtain
as well. Thus, A2-Sup and A2-Sub jointly imply A3-Sup and A3-Sub, but not
conversely.

To better understand these assumptions, consider the constant elasticity of
substitution (CES) production function f(x,y)=(3(x" +y*)'/? with Cobb-
Douglas limit f(x,y)=(x)"/? when « =0. This satisfies Al-Sup when the
elasticity of substitution is negative, ¢ < 1. For @ < 0-—an elasticity of substitu-
tion between —1 and 0—A2-Sup and A3-Sup are satisfied as well. When inputs
are more easily substituted, ¢ > 0, A2-Sup is violated. Finally, A3-Sup obtains
when a < 1/2.

PROPOSITION 5 (CONVEX MATCHING): Posit AQ. Given A1-Sup, A2-Sup, and
A3-Sup, or A1-Sub, A2-Sub, and A3-Sub, all matching sets are convex.

This is proven in Section 5.3. The importance of Al is clear from the
trictionless benchmark. The production functions in Figure 3 satisfy Al-Sup,
A2-Sub, and both A3-Sup and A3-Sub, proving A2 necessary. We postpone the
subtle issue of the necessity of A3.

As an important robustness check, both the primary premises of Proposition 5
—Al, A2, A3—and the convexity conclusion in R, are scale- and order-indepen-
dent. Consider the cardinal specification of the type distribution. For instance,
relabel each agent x by her type’s percentile L(x), and let f(L(x), L(y))=
f(x, y). Then f satisfies the assumptions in Proposition 5 if and only if f does.
Likewise, we may reverse agents’ ordering by relabeling each x as 1 —x, and
letting f(1 —x,1—y)=f(x,y). This observation will play a key role in the proof
of Lemma 5.

Our main result follows from Propositions 4 and 5.

PROPOSITION 6 (ASSORTATIVE MATCHING CHARACTERIZATION): Posit AQ. Then
Al-Sup, A2-Sup, A3-Sup and f,(0,y) <0 <f (1,y) forall y imply PAM; A1-Sub,
A2-Sub. A3-Sub and f(0,y)=0 forally or 0=f.(1,y) forall y imply NAM.

We use Al, A2, and A3 to establish matching set convexity through Proposi-
tion 5. These assumptions do not guarantee assortative matching, as Figure 4
attests. The function f(x,y)=x+y+xy obeys all three supermodularity as-
sumptions, but matching sets violate the additional requirement from Proposi-
tion 4 that 0<.#(0). With search frictions, some agents v > 0 match with 0,
since such matches are productive. Therefore, w(0) > 0 by (6), and the match
surplus of (0,0) is negative. By (5), 0 &.#(0). We preempt such difficulties via
the boundary conditions on the marginal product of f.

PROOTF OF PROPOSITION 6: By construction, matching sets are symmetric. They
are convex by Proposition 5, and nonempty, with a u.h.c. correspondence by

S ——
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FIGURE 4.—A Failure of PAM. This depicts matching sets for f{x.y)=x+v+xv. p=750r,
d=r.and L(x)=x on [0, 1]. Although f satisfies Al-Sup. A2-Sup, and A3-Sup, PAM does not arisc.
Indeed, that f(0.0) =0 but f(0.y)> 0 forces 0 &.#10).

Lemma 2. As all the assumptions of Proposition 4 are satisfied, there is PAM if
0.#(0) and 1 €.#(1); and there is NAM if 0 € .#(1) and 1| €.#(0).

We first show that 0 €.#(0) under the supermodularity and associated bound-
ary assumptions. (That 1 €.#(1) is similar.) For y with w'(y) >0, f(0,y) <0
trivially implies s.(0, v) < 0. For all other y, by (8):

0 s [l ulx) de  f o fle, yulx) dx
L+ 6], ulx)de Jainut{x) dx

wi(y) = >1.(0,y)

where the first inequality follows from the negative numerator (as w'(y) <0),
and the second from Al-Sup. In either case, 5.0, y) <0, so that type 0 prefers
matching with lower types. Finally, 0 €.#(0), as matching sets are nonempty
(Lemma 2).

Next take the submodularity assumptions, with f.(1.y) <0. If w'(») = 0, then
we trivially have s (1, y) < 0. Otherwise, use Al-Sub in the above supermodular-
ity argument to prove w'(y)>f(1,y). Hence, 1 prefers to match with lower
types; thus, 0 €.#(1) by nonemptiness, and 1 €.#(0) by symmetry. The proof
with f.(0, y) = 0 is similar. Q.E.D.

5.3. Conuexity Argument: Proof of Proposition 5
We prove that match surplus is quasiconcave in each argument.

LEMMA 5 (QUASICONCAVITY): Posit AQ and fix z. Given A1, A2. A3-Sup or A1,
A2, A3-Sub, the match surplus function s(z, y) is quasiconcave in y.
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By condition (5), Proposition 5 follows immediately from Lemma 5.

Each of the three assumptions plays a distinct role in our proof. In the
frictionless model, Al-Sup ensures that the highest type has an increasing
surplus function, s(1,y)> 0. Search frictions depress and flatten all value
functions w. As a result, the highest type’s match surplus is strictly increasing in
her partner’s type. By continuity, this argument extends to other high types.

For the lowest type, Al-Sup implies that the frictionless surplus function is
decreasing. Flattening the value function changes this in complex ways. A2-Sup
imposes that the percentage decline in productivity from ‘mismatch’ is smaller
for high types than for low types. As a result, low types suffer a larger
percentage decline in value. This ensures that low types continue to prefer to
match with relatively cheap low types. Finally, A3-Sup provides a single crossing
property (SCP), Lemma 6 below, which allows us to treat everyone as either a
high type or a low type.

The formal proof of Lemma 5 rules out local minima in any z's surplus
function, showing that if s(z,-) is falling at y,, it is falling at y, >y,. Here let us
assume w'(y,) > 0. Let Z solve (%, y,) = w'(y,). By A1-Sup, f,(z,v,) > f.(Z, )

for z> 2, so that s(z,-) is increasing at ¥

Dealing with z <Z uses the other assumptions. By A2-Sup, f.(2,y,)f.(z,y,)
<f{z,y)f(Z.y,) for any y, >y . By the definition of %, the left-hand side is
equal to w'(y,)f.(z,y,). If we are in the interesting case where z’s surplus
function is decreasing at y,, the right-hand side is less than w'(y (2, y,).
Putting these together, f,(z,v,) <f.(Z, ¥,). Now if we can prove that f,(Z, Yy <
w'(y,), we will have shown that z’s surplus function is decreasing at ¥,
completing the proof.

For this last step, we use the SCP. Diamond and Stiglitz (1974) showed
(Theorem 3, equivalence of (ii) and (iii)) that a gambler has a higher coefficient
of absolute risk aversion if and only if he requires a higher risk premium for any
gamble. Formally, let utility /# depend on a prize x and preference parameter y.
Then the coefficient of absolute risk aversion —h,/h, is smoothly falling in y
if and only if the certainty equivalent of any gamble is smoothly rising in y. We
extend this result by assuming that utility is just once differentiable in
income—but that log marginal utility log &, is supermodular in (x, y). As such,
the Arrow-Pratt risk aversion measure need no longer exist, yet alone its
derivative in y. We can find no way of patching their proof, as it includes
repeated integration by parts of a third derivative. Our proot in Appendix C
explicitly exploits the supermodular structure, our main focus.

LEMMA 6 (A SCP FOR GAMBLES): Consider h:[0,1]° ~ R, differentiable, with
h. either positive and log-supermodular, or negative and log-submodular. For all
y1 €10.1] and probability densities with support M C[0,1], there is a unigue
certainty equivalent z: h(z,y)=E,_,hix,y). For all Y=y, hz,y)<
E o yhle,y) If b >0 is log-submodular or h, <0 is log-supermodular, then
WEZY)=E _ hx, y).
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In our case, w'(y,) is proportional to the certainty equivalent E_f (x,v,),
according to (8), and is also equal to f.(Z,y,) by definition. Similarly, w'(y,) is
proportional to the certainty equivalent E, f(x,y,). Thus A3-Sup. log-super-
modularity of f, , ensures w'(y,) > f.(Z,y,).

Our formal proof of Lemma 5 tightens this argument and uses a slightly
different characterization of quasiconcavity. A well-behaved non-quasiconcave
function o has a local minimum x. The characterization in the next lemma
(proof appendicized) focuses on a critical property of points y, and v, to the left
and right of x.

LEMMA 7: Assume a continuous and a.e. differentiable map o :[0.1] — B obeys:
o(y)<aly,) for 0<y, <y, implies a'(y,) =0 when defined. Then o is
quasiconcace.

Now we have the tools to prove that the match surplus function is quasicon-
cave.

PrROOF OF LEMMA 5: Since f is continuous and differentiable by A0, and w is
continuous and a.e. differentiable by Lemma 1, surplus s is continuous and a.e.
differentiable. We will use Lemma 7 to prove that an arbitrary s(z,y) is
quasiconcave in y under the supermodularity assumptions. We omit the sym-
metric submodularity proof.

Fix 0 <y, < 1. If w'(y,) is defined. we may assume without loss of gencrality
that w'(y,) is nonnegative. For if w'(y,) <0, we could instead work in the world
with a reversed type ordering, recalling the discussion after Proposition 3.
Letting f(x,y)=f(1 —x,1 —y) denote the production function and Lix)y=1-
L(1 —x) denote the type distribution in such a world, there would be a SE with
value function w(1 —y)=w(y), and in particular w'(l —y) = —w'(y,) > 0. We
could instead proceed with the analysis of type 1 —y,, proving that §(1 ~z,1 —y,)
is quasiconcave in its second argument. By construction, this would establish
quasiconcavity of s(z. y), as desired.

Next, fix y, € (y,,1) and z. We must prove that if s(z,y,) <s(z,y,). then
s.(z,y,) = 0 when defined. If w'(y) is undefined, then so is s (z, y,) and we are
done. Otherwise, implicitly define zZ so f.(z,v,) is the expected value of the
gamble f.(x,y): '

fjﬂmf\(xu"l)“()") dx
Lot (x) dx

(10) fz.y)=

o STEP 1: s (z,¥,) = 0 FOR ALL z >Z.

0y L yulxdde  f(2,9)8],, ulx)dx
0<w'(y)= — == —
L+ 6f, ,ulx)dx L+ 0/, ulx) dx

<f(z,y)
by (8) and (10), so s,(Z,y,) = 0. By Al-Sup, 5,(z, y,) >s,(2, y;) > 0 forall z> 2.
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o STEP 2: w(y) <w(y,) AND f(z.y,) <f(z,y,) WHENEVER s(z,y,)<s(z,y,)
AND z <Z. At y, with s(z,y,) = s(z, y,), there is nothing to verify. Otherwise:
(1) Flzovs) = flz oy Y > wlyy) —w(y)
N 0f i) (fx,y2) = FCx, v Nux) dx
- L+ 0/, u(x)dx

where the second inequality applies equation (6) and inequality (7).
By Al-Sup and A3-Sup, 2 = f, meets Lemma 6's conditions. So for all y' >y,

Lo folas yDulx) dx

Sy ulx) dx

>f(Z,y)

— 4y

by (10). For y, > v,, integrate this over y" €[y,.y-], and use A1-Sup with z > z:
T UG va) = flas y Dulx) de
Lo yu(x) dx
>fZ,v) = f(Zy ) > flz,v,) —flz,y)).
By transitivity, the last term in (11) is smaller than the first term in (12):
J o, (FCeys) = fCx, vy NuCx) dx
Sy yux) dx
§ 0f s e va) = [,y D) de
L+ 6/, ulx)dx

(12)

Hence, [, (f(x,y,) = f(x, y Dulx) de > 0. Using this, (11) implies w(y,)>
w(y,) and f(z,y,)}> f(z,y,). Note that (12) then implies f(Z,y.) > f(Z, y,).

Step 3: s.(z,y) =0 WHENEVER s(z,v,) <s(z,y,) AND z <Zz. Divide (8) by
(11), and then (10) by (12), verifying that the relevant terms are positive:

w'(y) Jooenfilx,yDulx) dx
(13) < - —
wly ) =wly) — [ (e yy) = fla, y Dulx) dx
f‘\‘(‘;'yl)

< = .
ey =f(zy)
Intcgrating A2-Sup implies that for v, <y, and z <z,
FGE vy = flzoy ) < [z y (2, 3,) = f(2.y)).

Divide by f(z,y-Y—f(z,y,)>0 and f(z,y,)—f(Zz,¥,) >0, and combine with
(13):
w'(y,) flz,y)
< :
w(y,) —w(y) — flz,y.) —flz,y))

——
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As 0 <wly,) —wly) <f(z,y,) — f(z. y,). multiplication yields w'(y,) <f (z.y,)
or 5,(z,y,) = 0, completing the proof. Q.E.D.

One can prove that A1-Sup and A2-Sup preclude all but holes in the center of
acceptance sets, a pattern we are unable to produce. Instead, we offer an
example showing that A3 is necessary for surplus quasiconcavity, and therefore
critical to any general proof of matching set convexity. Consider the production
function f(x, y) = 1000 — (xy)* + 9(xy)* + 3(x +y), obeying Al-Sup, A2-Sup.
and A3-Sub (but not A3-Sup). Let p=50000r, d=r, and L(x)=x on [0,1].
Since a partner’s type has a negligible effect on output, not surprisingly all
matches are acceptable. In Appendix C, we show that this model is analytically
solvable: w(x)=495.1144 + 2.9472(x + x*) — 0.2456x". Thus, the surplus func-
tion of x €[0.560,0.562] is not quasiconcave. For example, s(0.560, y) is mini-
mized at y =0.913.

6. CONCLUSION

This paper has pushed the assortative matching insights into a plausible
search setting. We have gencralized PAM and NAM for this frictional environ-
ment, and have identified the three supermodularity (submodularity) assump-
tions under which matching sets are convex and, with additional boundary
conditions, increasing (decreasing). We have also developed a general cxistence
theorem for search models with endogenous type distributions, and general
matching sets.

We have investigated this model becausc it can be fully solved. In proving
existence of a SE, we made assumptions on the search tcchnology to avoid
significant complications; however, our descriptive theory in Section 5 applies
for any anonymous search technology, where the rate that searchers meet is
independent of their types. This includes, for example, a linear search technol-
ogy, in which the meeting rate is independent of the measure of unmatched
agents.

Likewise, we have assumed that a steady-state is maintained through deaths
of existing agents. We could alternatively posit an inflow of entrants, and assume
that all matches are permanent. While our assortative matching and convexity
conclusions do not depend on this modeling choice, our existence proof does.

This model may be generalized in several important ways. For example, so as
not to double the notation, we have assumed one class of agents. All our results
extend to a model with workers and firms, or men and women. Our definition of
assortative matching gencralizes to multiple dimensions, while convex coordi-
nate slices (biconvexity) is the scale-independent extension of convexity in one
dimension.

Department of Economics, Princeton University, 204 Fisher Hall, Princeton, NJ
08544, U.S.A.; shimer(@princeton.edu; www.princeton.edu / ~ shimer /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



364 R. SHIMER AND L. SMITH

and
Department of Economics, University of Michigan, 611 Tappan Street, Ann
Arbor, MI 48109, U.S.A.; econ-theorist@earthling.net; www.umich.edu / ~ lones /.

Manuscript received December, 1996; final revision received February, 1999.

APPENDICES: OMITTED PROOFS
A. VALUE FUNCTION PROPERTIFS

PART 1 OF LEMMA 1 VALUE INEQUALITY. If (7) were violated, (6) would yield either y €.#(x),
veEM. and fla ) —w() —w(y¥) <0; or veM, v&.#(x), and f(x,y)—wlx)—w(y)> 0. Either
possibility contradicts (3). Q.E.D.

PART 2 OF LEMMA 1@ LIPSCHITZ AND THUS CONTINUITY. Since f, is continuous on [0, 1],
xk=max, i f(x.v)iis well-defined. Also, by (6) and (7), for all x| <ux,,

Hf/'(.\z’(j‘(.\‘:._x') — [l ) =wlxs) +wlx Duly) dy

>ulx.) —wix)) > ()//v (Flxs,y) —fCx, ) —w(xs) +wlx, Duly) dy.
LA (xy)

Solving each inequality for w(x,) —w(x,) and using | flx, y) = flx;, ) < k(xy —xp),

k(X5 =x) 0], uly)dy — k(X3 =) 8 () dy
- zwix,) —wly)) = .
L+ 01y uly) dy - L4 0]y yu(y) dy
So w is Lipschitz, [w(x,) —wix)l/(x, —x;) < «, and thus continuous. Q.E.D.

PART 3 OF LEMMA 1: DIFFERENTIABILITY. Let D(B,C) be the Hausdorff distance between sets B
and C: namely. D(B.C) = infldN(b,c) € (B.C), A, ') = (C. B). with |b —b'l <d and [c - ¢'| <d}.
Call a correspondence M continuous at x if for all &> 0, there is a neighborhood N, of x, such that
DIM(x), M(x' N <e if Y EN.

® STEP [ ./ 1S CONTINUOUS AT A.E. x. First, .# is nonempty-valued: if .#(x) = for some x,
then 1w(x) =0 by (6). Thus f(x, ) —2w(x) >0 by A0, and (5) implies x €. #(x), a contradiction.
Next. . # is u.h.c.: Take any sequence (x,. y,) — (x,y), with y, € #(x,) for all n. Then s(x,.y,} >0
for all 1, and so s(x. v} >0 as well, since s is continuous by A0 and Part 2 of this Lemma. Thus,
v €. #(x). establishing wh.c. Fixing x, =x for all n, .#(x) is closed too. Also, .#(x)<[0,1] is
bounded, whence . # is compact-valued.

We call x an e-continuity point of a correspondence M, and say x belongs to &,,(¢), if for all x’
sufficiently close to x, D(M(x). M(x'))<e. Since .# is wh.c. and compact valued, Theorem
I-B-111-4 in Hildenbrand (1974) implies that (given our nonatomic density «) for all £> 0, a.e. x is
an e-continuity point of .#. Then lor all n=12,..., ae. x€%y,l/n). and the countable
intersection N, <y,(1 /) contains a.e. x as well, That is, for a.e. x, for all a, if v' is sufficiently close
to x. DUA(),. Z/(X)) < 1/n. S0 .# is a.c. continuous.

e STEP 2: DECOMPOSITION OF THE VALUE FUNCTION's SLOPE. Take any sequence x, — x. Add and
subtract 6/, (f(x,.v) = w(x,) —wODu(y)dy from wlx,) —w(x) for cach n, and divide through
by x, —x:

wix,) —wx) - Flx,,y)y —wilx,) —w(y)
(14 —_— = j w(y) dy
X, =X A x) o H#(x) X, —X

(flx, . v) = flx,v)) = (wix,) —w(x))
+f flx, v) = flx,y wix, u(y) v
483 X, —X

th

_; )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




MATCHING AND SEARCH 365

where [4_p =/, — fy. The first term in brackets vanishes if .# is continuous at v, because
continuity of f and w and condition (§) imply surplus vanishes at changes in .#(x). The remaining
terms tend to the desired expression for w'(x) at a.e. x. Q.E.D.

B. EQUILIBRIUM EXISTENCE

CONTINUITY OF w — a{w): PROOF OF LEMMA 3.

® STEP 1: SURPLUS FUNCTION 1S RARFLY CONSTANT IN ONE VARIABLE. Define Z(x) = {y:s(x.y)
=0} and Z, ={(x,y):s(x,¥) =0}, and let pu be Lebesgue measure on (0, 1]. We claim that under
Al-Sup or Al-Sub, w{Z (x))=0fora.e. x. Let x #x" and y # ', with s(x,y) =s(x", v) =s(x.y"1=0.
Under Al-Sup or Al-Sub, f(x,y}+f(x" ") # fx',y)+f(x,y), from which s(x’,3y")# 0 follows.
Thus, Z (x) N Z(x') contains at most one point whenever x #x".

Assume uf{Z (x)) >0 for an uncountable number of x.'" Then for some k, there are infinitely
many {x,) with u(Z (x,))> 17k, whereupon £, _ | u(Z(x,) ==, Since x,; = Z(x;) N Z(x;) con-
tains at most one point, N= U7, | x; is countable, and so w(N)=0. Also. Z(x,\N and
Z (x;\ N are disjoint for all i #j. Thus

lz,u.( U Zb\(x,,)\N) = Z W Z AN NY= Yl Z () ==

n=1 n=1 n=1

Given this contradiction, therc are only countably many x with u{Z (x) > 0. So w(Z,(x)) =0 for
a.e. x, and by Fubini's theorem (X uXZ,) = 0.

e STEP 2: CLOSE SURPLUS FUNCTIONS RARELY DIFFER IN SIGN. As 11— 0, the set X (n)={(x.})
with {s(x,y)i [0, 7} shrinks monotonically to M;_, 3{1/k)=5s""'(0}=Z,. By the countable
intersection property of measures,

lim (p X )X ()= lim (/LX/.L)(ES(I//C))=(#X[J~)( N E\(l/k))
n-0

ko k=1
=(puxp)Z)=0.

Finally, let w, and w, be value functions, with |lw(x) —w.(x)l < /2, and «,, a; corresponding
match indicator functions. If s,(x,y) =f(x,y) —w (x) —w,(y)> 7, then s.(x, ¥) = fley) = walx)
—wy(y)> 0,and so a,(x, y) = as(x,y) = 1, while if 5,(x,y) < =, then s,(x,y) <0, and a(x.y)=
a5(x,y) = 0. Consequently, {(x, y)la (x,y) # a:(x, ¥}} € 3, (1), whose Lebesgue measure vanishes
as n— 0. This implies the desired continuity lim, _, . ole; —asll =1

CONTINUITY OF a — u( a): FINISHING THE PROOF OF LEMMA 4. Normalize &= 1.

For fixed g, let u, be the associated unique unmatched density: ie.. [(x)—uy(x)=
pup(x) fday(x, yduy(y)dy. Defining Gla,u) = ulxX1 + pfalx, yu(y)dy) — [(x). we see that u =u,
solves (1) given « iff G(a,u,) = 0. As proven, u, is unique.

® STEP 1: AN INVERTIBLE STEADY-STATE DERIVATIVE OPERATOR. The derivative G (a.u) is a
bounded linear operator on %[0, 1], defined as the following limit:

G,(a,uXg)=1lim (Gla,u +Ig)7G(a,u))/l=g(1 +p}']au) +puflag
=0 X 0 0

that is also clearly continuous in w. Write G,{(a,u)=1+ pH. Since « is symmetric (a(x.y) =
a(y,x)), the operator H is self-adjoint, and positive-definite on the space F=([0.1}.1/u} of

" Toby Gifford (Math Dept., Washington U. in St. Louis) tightened the logic of this paragraph.
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functions square-integrable with respect to density [ /u. because'!
1
2{g.Hg) = 2[ g Hg(x) /ulx) dx
0

= Zf[[[(g(x)lu(_\f)/u(.\') +g(og(y))alx, v)dedy
0 70

= {Ifl[g(.r)ju(_v)/u(.\‘) +2g(x)g(y) +g(y ):11(.\')/u(_\')]a(x.)')(ix'dy
0 0

:f]fl[g(.\')\/i)')/u(.\') +g(y)\/u(,\')/u(y)]ztx(.v.)')dx-(zﬁ\‘z 0.
0 -0

Since u is boundedly positive (given p < =, I = [> 0Yand finite (v <7 < %), #([0, 1.1 /) =#7[0.1].
So H is a self-adjoint and positive definite linear operator in #°[0,1], and its spectrum is thus real
and nonncgative: the spectrum of G, {«.u) is then contained in [1,2), and excludes 0. Hence,
G, (a.u) is invertible in #7[0,1].

® STEP 2: G 15 LIPSCHITZ IN «. First. we have the subtraction:

Gla. uXx)—G(B.a(x) = pu(,\‘)fl[a(x,y) = Blx, I uly)dy
0

ﬁj'[m aa(x) =GB (T dxg,fi*f‘(f‘[a(,r.y)— B(.r,_y)]dy) dx
0 070 /
<P [ Tatxo) = Blao)] dvdx

p jof“[a\) Blx. )] dye

since wu(x) <. Then |GCa. 1) — GO Bl < pl*li e — Bl. both norms in . )
e STEp 3: CONTINUITY OF @~ u,. Since G(a.u) has Lipschitz constant L =pl" >0 in a, we
have |G(a.u )il =ilG(a’ u, )~ Gla.u ) < Llla — «'il, and so

1GCa u )+ T, —u M =1Gla 1, + 1w, —u M =Gl u ) < Lja—a’ll

for some J, =G (a' e, + (1 =),y and 1 € [0.1] by the mean value theorem, given continuity of
G, in w. By Step 1. J, is an invertible linear operator in 2#~[0, 1] with spectrum contained in [1,%).
So its inverse K, exists. and {|K,[i < I for all ¢. Hence,

llee,, — e M=K, I e, = u MWK NS Gy ~w i < Llla = ol

since |K, il < |K ['fle’l<lell by the norm inequality and [|K, < 1. So when a is near o in
ZU0.1). u, is close to u,. in =7[0,1]. Finally, continuity holds for both norms in #': The
Cauchy-Schwarz inequality implies [, — Ml v <, —u llL 2 and fla— o'l 2 < yila—a'll -
holds in our restricted domain, as la —a'[ < 1.

CONTINUITY OF THE OPERATOR T FINISHING THE PROOF OF PROPOSITION 1.
For all w',w?& s and x[0.1], the triangle inequality implies |Tw (x)— Tw'(x0)| < D(x) +
D.(x). where

A1 max{ flx, y) —wily ),w"(.\")')u“"()') dy

D(x)= ‘
1+ 00"

i) max{ f(x.y) —wie)w O w2 (od e () dy

1+ 0"

"We thank Robert Isracl (UBC Math Dept.) for remarking on this fact.

I ———
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1

We will show that D and D, converge to zero when w'! converges to w?. First, sup, D(x) <
sup. Iw!'(z) — w3(2)]. since

8t imax{ f(x, y) — w3 (3w (x)) — max{ f(x, y) —wl(y) w'(x)i” 1(y) dy
Dx) <

-t !

1+ 0u

i imax{w' (1) — wi(y), w2 () —w D () dy
<

< suplw!(z) = wi(2)l

1+ o'

Second, we can bound D,(x) through a series of algebraic manipulations.

B (y) gu'(y)

L+ o 1+ e

Dy(x) < f}lmax<f(x.y) —wi (), wi(x))
(

AT G BT D)
< supf(x.y)f T - - | dy
v o1+ 0" 1+ 6u™
1o (y) Hu“"(y) Hu”’l(_\') du" 1(y)
< supf(z.y) - z - |
z.y (U I B )7 I+ 6u" 1+ 60" 1+ 60"

1

A

)

. - 2 s
According to Lemmas 3 and 4, [}t (v} —u” (y)| dy converges to zero when w? converges to w'.
. . . . N . s . — !
An immediate implication is that the difference between the mass of unmatched agents, [7% — 7" |.
must converge to zero as well.

< Hsupf(Z,_\‘)(fliu“:(y) —u* ()l + [ — 7"
v 0

C. DESCRIPTIVE THEGRY PROOFS

MATCHING SET BoUND FUNCTIONS: PROGF OF PROPOSITION 3.

® STEP 1: MONOTONIC BOUND FUNCTIONS = ASSORTATIVE MATCHING. As the two cases arc
analogous, we prove that nondecreasing bounds a, 5 imply PAM. Choose x; <x, and y, <y. with
y €.#(x5) and y, €. #(x,). Then b(x,) > b(x;}=y,, where the first inequality follows from b’s
monotonicity, and the second from the tact that y, € #(x,). Also, y. >y, > a(x,), where the second
inequality follows from y, €.#(x,). In summary, b(x,) 2y, >a(x,), and since matching sets are
closed and convex, vy, #(x,). Similarly, a nondecreasing lower bound function a ensures that
¥, € . #(x,), whence matching is positively assortative.

® STEP 2: ASSORTATIVE MATCHING = MONOTONIC BOUND FUNCTIONS. Proposition 2 proved that
assortative matching implies convex matching sets. To avoid tedious repetition among four similar
cases, we simply prove that b is nondecreasing with PAM. If not, b(x,) > b(x,) for some pair
X, <x,. Then since b(x;) €.#(x) and b(x,) € #(x,) (matching sets being closed), PAM implies
b(x,) €.#(x,), contradicting that b(x,) is the upper bound of x.’s matching set. Q.E.D.

AN INTERMEDIATE VALUE THEOREM

CLAIM 1: Let the correspondence .# :[0,1]1 3 [0, 1] be upper hemicontinuous (u.h.c.), and contex-
and nonempty-ralued. Take y, <y, zy €.#(y)), and z, €. #(y,). If zy <z, then for all z; €[ zy. 2.1,
there exists v| € [y, y-1 with z) €. #(y,).

Proor: Define y, = suply €[y, y. 1.#(y) N[0, z,] # Z}, the largest point whose image includes
points less than z,. Since .# is u.h.c., #(y)N[0,2,]# & as well. If ¥, =y., then convexity of
#(y-)implies z, €.#(y,). Otherwise, take a convergent sequence of points y" —y, with y, >v" >y,
for all n. Associate with this another sequence of points {z"} with z" €. #(y,) for all n. By the
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construction of y,, z" € (z, 1] for all a. Since .# is w.h.c, there is a convergent subsequence of {z"}
whose limit point z €[z, 1] is in .#(y,). We have shown that .#(y,) includes points weakly greater
than and weakly less than z;. Since it is convex, z; € #(y,). Q.E.D.

SINGLE CROSSING PROPERTY: PROOF OF LEMMA 6. We need a preliminary result:

CraiM 2 (DENSITY-FREE INTEGRAL COMPARISON): Take M C[0, 1] andu: M — R,. Let ¢, 4 :[0,1]
— R be increasing (decreasing) functions with a nondecreasing (nonincreasing) ratio ¢/w. If
b u(x)dx =0, then j d(x)u(x)de = 0.

PROOF: Assume without loss of generality that ¢ and  are increasing, as in Figure 5. If
M #[0,1], extend u to [0,1] by defining u(x)=0 for all x & M. Define I(x)= [3u(x Iu(x") dx'.
Clearly /(0) = 0, while /(1) =0 by assumption. Then [ is quasiconvex, as ¢ is increasing, and so
I(x)<0forall xe[0,1].

Substituting with I and the nondecreasing quotient g(x) = &(x)/¥(x) yields

/ a><x>u<x>dxEf'q<x)1'(x)dx=q(1)1m —q(o>1<o)—/‘1(,x-)dq(x)
M Q0 0

where we have integrated by parts. The first two terms in the last expression are zero, and the final
term nonnegative, as 1(-) < 0, dg(-) = 0. So [, &(x)u(x)dx > 0. Q.E.D.

PROOF OF LEMMA 6: We just establish the supermodular case. First, Z is uniquely defined, as
h(Z.y,) is strictly increasing in Z. Next, integrating /& (xy, y' Mo (xp, y) =k (xy, y DR (x,, ¥') over
x, €3, x,] and then x, € [x, Z], we discover that

A (x, v ) h(x,y)) =Ry D 2 h (x,y M h(x,y) —h(Z,y')
for all ¥ > v,, and for all x> Z and crucially also all x <Z. This is equivalent to
a h(x,y)=h(z,y)

_— >
ax hx,y))—h(z,y)

Let d(x)=hx,y")—h(Z,y) and ¢(x)=h(x,y,)—h(Z,y,), increasing. Since ¢/ is nondecreas-
ing and E, - y,&(x) =0 by construction, £, 5 &(x) = 0 by Claim 2. Q.E.D.

(&3

J Y

FiGURE 5.—Illustration of Claim 2. This illustrates the increasing case. As [y ¢(x)u(x)dx =0, a
= exists such that ¢(x) 2 0 for all x 2z. And since &/ is nondecreasing, ¢ must equal zero at the
same point. Then the ratio condition implies that, since the positive and negative areas of #
balance, the positive area of ¢ must outweigh the negative area.

i
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Proor OF LEmMma 7: We will prove the contrapositive: If o is not quasiconcave, there exist
0 <y, <y, such that ¢'(y,) <0 and o(y,) <o(y,). Since o is not quasiconcave, there are three
points y, < <y, with o(3) <min{a(y,), o(y,)).

First take the case where o(y) < o (y,) for all y €[y, #,]. Then as /;.‘]Ju;'(z)dz =o(§)—alyy)
< 0, there exists y, € (vg, §,) with ¢'(y,} < 0. By construction, o{(y ) < o(y,) as well, the desired
counterexample.

Alternatively, if max, o, ;,0(y} = o(y,), define y, =sup{y <§lo(y) = o(y,}}. Note 3, <,
because o is continuous and & ($,) < o(y,). Then we can proceed as before, with ¥, playing the
role of v,, to prove that there is vy, € (§,, §,) with ¢'(y,) <0 and, by construction, o(y,} < o(y,).

Q.E.D.

ANALYTICAL SOLUTION FOR THE VALUE FuncTion: If all matches are acceptable, it is possible to
solve analytically for the value function. First, cquation (1) implies the unmatched density function
satisfies w(x)=ul(x) for all x, where @ is the aggregate unemployment rate, the larger root of the
quadratic equation (1 — i) = pit*:

-8+ +48p
2p ’

Next, (8) vields an analytical solution for w'(x) for all x. Finally, to pin down the level of the value
function, use the implicit value equation (6} for type 0:

u=

w(0) = ef‘(f(o,,n —w(0) — w(D) — fyw’(z)dz)u(y)dy
0 0

where we use w{y)=w(0)+ j‘[’]"w'(z)dz. This can be solved explicitly for w(0).
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