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This thesis is devoted to the mathematics of volatility harvesting, the idea that extra portfolio

growth may be created by systematic rebalancing. First developed by E. R. Fernholz in

the late 90s and the early 2000s, stochastic portfolio theory provides a novel mathematical

framework to analyze this phenomenon. A major result of the theory is the construction of

portfolio strategies that outperform the market portfolio under realistic conditions. These

portfolios are called relative arbitrage opportunities.

In this thesis we adopt a discrete time, pathwise approach which reveals deep connections

with optimal transport, nonparametric statistics and information geometry. Our main ob-

ject of study is functionally generated portfolio, a family of volatility harvesting investment

strategies with remarkable properties.

This thesis consists of three parts. Part I gives a convex-analytic treatment of functionally

generated portfolio and relates it with optimal transport theory. The optimal transport point

of view provides the geometric structure required in order that a portfolio map is volatility

harvesting.

Part II turns to optimization of functionally generated portfolio. We introduce an opti-

mization problem analogous to shape-constrained maximum likelihood density estimation.

The Bayesian version of this problem leads naturally to an extension of T. M. Cover’s uni-

versal portfolio and large deviations.



Finally, in Part III we introduce and study the information geometry of exponentially

concave functions, a deep and elegant geometric framework underlying the ideas of Part I.

It extends the dually flat geometry of Bregman divergence studied by S. Amari and others,

leading to plenty of problems for further study.
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Chapter 1

INTRODUCTION

The mathematics of this thesis is motivated by some real world financial problems. In

this chapter we explain the financial background and survey some relevant financial and

mathematical literature. We also summarize the main results of the thesis.

1.1 Portfolio management

Consider investing in financial markets. The portfolio of an investor is the collection of all

financial assets (including stocks, bonds, currencies, derivatives, etc.) the investor currently

holds.1 The problem of portfolio selection is to decide, based on available information and

the investor’s beliefs, the composition of the portfolio in order to maximize future wealth.

Portfolio selection is by nature dynamic. As market conditions change the desired portfolio

also changes, and the investor needs to adjust her holdings by trading in the market. We

use the term portfolio management to refer to the comprehensive process of designing and

maintaining the portfolio through time.

As one can imagine, managing a large portfolio is not an easy task. For various reasons

many investors, both private and institutional, hire professional investment managers to

manage their investments. The size of the asset management industry is enormous. Accord-

ing to a study by Boston Consulting Group [93], the global value of asset under management

(AUM) rose to 62.4 trillion USD in 2012. Understanding the behaviors of financial markets

and implementing successful investment strategies present great intellectual and technolog-

ical challenges. Indeed, the growth of the investment industry goes hand in hand with the

development of financial economics, mathematics, computer science and psychology, among

1In this thesis we focus on equity portfolios, i.e., portfolios consisting only of stocks.
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other areas. A fascinating history can be found in the books [11], [12] and [88].

1.1.1 Modern portfolio theory

The modern approach to quantitative portfolio selection originated with Markowitz’s seminal

paper [75]. Also known as mean-variance analysis, this approach finds the optimal portfolio

by maximizing the expected return of the portfolio for a given level of risk, where risk is

measured by variance.

Mathematically, let R1, . . . , Rn be the simple (arithmetic) returns of the assets (over

some investment horizon) modeled as random variables. Let π1, . . . , πn be the proportions of

capital invested in the assets. These are called portfolio weights and satisfy
∑n

i=1 πi = 1. The

portfolio return is Rπ =
∑n

i=1 πiRi. Treating the first and second moments of (R1, . . . , Rn)

as parameters, the prototype mean-variance optimization problem is

max
π1,...,πn

n∑
i=1

πiERi︸ ︷︷ ︸
ERπ

, subject to
n∑

i,j=1

πiπjCov(Ri, Rj)︸ ︷︷ ︸
Var(Rπ)

≤ σ2
0, (1.1.1)

where σ2
0 > 0 is a fixed level of risk depending on the investor’s preference. Needless to say,

estimation of the expected returns and the covariance matrix is highly nontrivial and is the

major challenge of the approach. We refer the reader to the treatise [24] and the book [78]

for mathematical details as well as practical considerations.2

1.2 The market portfolio

Let us focus on equity portfolios. The collection of all stocks available in the market can

be viewed as a portfolio, called the market portfolio. By definition, the market portfolio is

the aggregate portfolio held by all investors. The most important property of the market

portfolio is that it is capitalization-weighted. For each stock, let Xi(t) > 0 be its market

2The above discussion does not cover high frequency and algorithmic trading which has become significant
in recent years. A modern mathematical treatment of this topic is [20].
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capitalization defined as the multiple of the stock price and the number of outstanding shares.

The portfolio weight of stock i in the market portfolio is then given by

µi(t) =
Xi(t)

X1(t) + · · ·+Xn(t)
. (1.2.1)

We call µi(t) the market weight of stock i. Since the market portfolio plays an extremely

important role in this thesis, in this section we provide some historical motivations.

1.2.1 Capital asset pricing model (CAPM)

From an equilibrium perspective, Sharpe [91] asked what happens if all investors are mean-

variance optimizers in the sense of (1.1.1).3 Under certain strong assumptions (including

homogeneity of expectations and the presence of a risk-free asset), he showed that the market

portfolio is mean-variance efficient, i.e., it has the highest expected return given its variance.

Moreover, he showed that the expected return of each asset satisfies the relation

ERi = Rf + βi (ERm −Rf ) , (1.2.2)

where Rf is the risk-free return, Rm is the market return, and βi = Cov (Ri, Rm) /Var(Rm) is

called the beta of stock i. The capital asset pricing model advocates the idea that aggregate

market risk cannot be eliminated by diversification (i.e., holding multiple assets) and thus

must be rewarded (i.e., yields higher expected return) in equilibrium.

The relation (1.2.2) may also be regarded as a regression equation (in this context it is

called the single index model). This simplifies tremendously the structure of the covariance

matrix needed in mean-variance optimization. Extensions of (1.2.2) gave rise to various

asset pricing models which attempt to explain and predict the cross-sectional variations of

stock returns in terms of economic and statistical factors. Such models are heavily applied

3The intellectual history of financial economics is convoluted. For example, the CAPM was developed
independently by Treynor (1961, 1962), Sharpe (1964), Lintner (1965) and Mossin (1966). However,
Sharpe’s work was the one that became well-known. (In fact, as Markowitz himself noted, mean-variance
analysis was developed independently by Arthur D. Roy (1952).) Since our main purpose is to explain the
financial ideas relevant to our study, we do not attempt to cite all original papers. For a more accurate
history of the subject to refer the reader to [88].
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in portfolio theory and management (see for example [38], [6] and [24]). An important

example is the BARRA risk model which is used to estimate the covariance matrix and

factor exposures.

1.2.2 Efficient market hypothesis (EMH)

The capital asset pricing model suggests that the market portfolio is in some sense a desirable

portfolio. This gives a theoretical justification of index funds whose purpose is to track the

performance of some market index (such as S&P500). Since forecasting and stock picking

are not attempted, this form of investment is known as passive management.

A further boost to passive management is given by the efficient market hypothesis which

was first developed in the mid-60s and early 70s. This is a huge topic (see for example the

surveys [73] and [72] and the references therein) and we only discuss it briefly.4 The main idea

is the following. Since a financial market incorporates information efficiently, it is difficult, if

not impossible, for investors to obtain abnormal profits by acting on historical patterns and

publicly available information. For example, if everyone anticipates that a stock will rise, the

price would have risen already. Moreover, there have been empirical studies (such as [71])

which found that the majority of mutual fund managers failed to outperform the passive

market portfolio consistently. These findings casted serious doubts on the effectiveness of

active management. In 2013 the Nobel price in economics was awarded to Eugune Fama and

Robert J. Shiller for their work on the efficient market hypothesis.

1.2.3 The market portfolio as a benchmark

For the purposes of this thesis, the main importance of the market portfolio is that it is a

standard benchmark of portfolio performance. Thus, it makes sense to measure portfolio

values relative to that of the market portfolio (see (2.2.2) below). Indeed, the objective

of many investment funds is to outperform the corresponding market index. An industry

4Also see the popular and influential account [74].
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standard measure of relative performance (see [24]) is the information ratio defined by

information ratio =
E[active return]√
Var(active return)

,

where

active return = portfolio return−market return.

A high information ratio means consistent outperformance (and, obviously, more compensa-

tion for the portfolio manager).

Before going to the next section, let us remark that the efficient market hypothesis is

no longer the dominant paradigm in financial economics (not to mention the investment

industry). To say the least, there is now a huge literature on market anomalies, i.e., empirical

facts that seem to contradict the efficient market hypothesis. Moreover, investors are not as

rational as the classical theory assumes. A discussion can be found in [24, Section 2.4].

1.3 Volatility harvesting

From the perspective of mean-variance analysis, investors are risk adverse and therefore

volatility should be minimized. On the the hand, volatility harvesting shows that volatility

can sometimes be a source of portfolio profit. Indeed, the development of volatility harvesting

is closer in spirit to optimal gambling and information theory, and is in some sense orthogonal

to mainstream financial economics.5

1.3.1 Examples

We begin with a classic example (see [69, Example 15.2] and [33]). Consider two assets

whose prices fluctuate as follows (see Figure 1.1 (left)). Asset 1 earns −50% return for all

odd periods and 100% return for all even periods. On the other hand, asset 2 is a risk-free

asset whose return is always 0%.

If one buys and holds any of the two assets, clearly no long term growth will be created.

Nevertheless, if the investor rebalances the portfolio so that equal amount of capital is

5See [85] for an interesting popular science account of information theory applied to gambling and finance.



6

time

price

$1

$0.5

asset 2

asset 1

0 2 4 6
time

price

$1

$0.5

$0.25
$0.125

asset 2

asset 1

0 2 4 6

Figure 1.1: Illustration of volatility harvesting. Asset 2 is cash and asset 1 either goes up by

a factor of 2 or goes down by a factor of 0.5. Six periods are shown in the figures. Left: The

price pattern is −+−+−+. Right: The price pattern is −−−+ ++.

invested in the two assets at the beginning of each period, the resulting equal-weighted

portfolio outperforms any buy-and-hold portfolio exponentially in time.

To see why, note that the return of the equal-weighted portfolio in the first period is

1

2
× (−50%) +

1

2
× 0% = −25%,

and the return for the second period is

1

2
× 100% +

1

2
× 0% = 50%.

Over two periods the value of the portfolio grows by a factor of

(1− 0.25)× (1 + 0.5) = 0.75× 1.5 = 1.125.

Since this is strictly larger than 1, compounding gives exponential outperformance. The

extra profit apparently comes from the volatility of asset 1 which is ‘harvested’ by buying

low and selling high via maintaining the portfolio weights at
(

1
2
, 1

2

)
.

Let us give a more realistic example, taken from [13], of the same phenomenon. In

Figure 1.2 (left) we plot the monthly stock prices of Starbucks and Apple from 1994 to

2012 (normalized so that they begin at $1). Consider two portfolios: (i) the buy-and-

hold portfolio which initially invests $0.5 in each of the stocks and (ii) the equal-weighted
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1995 2000 2005 2010

0
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60
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0

Growth of $1

Starbucks
Apple

1995 2000 2005 2010

0
20

60
10

0

Growth of $1

rebalanced
buy−and−hold

Figure 1.2: Apple-Starbucks example.

portfolio rebalanced monthly. Figure 1.2 (right) plots the time series of the values of the

two portfolios. In this period, the equal-weighted portfolio outperforms significantly the

buy-and-hold portfolio and the two constituent stocks.

Further empirical examples can be found, for example, in [13], [84] and [14]. Note that a

buy-and-hold portfolio is capitalization-weighted: if Xi(t) are the (normalized) prices of the

underlying assets, the value of a buy-and-hold portfolio has the form

Z(t) = c1X1(t) + · · ·+ cnXn(t).

Thus ci is proportional to the number of shares of stock i held in the portfolio (which is

constant for a buy-and-hold portfolio). The corresponding portfolio weights are

πi(t) =
ciXi(t)

c1X1(t) + · · ·+ cnXn(t)
, (1.3.1)

which have the same form as the market weights (1.2.1). Indeed, the market portfolio (and

more generally, a market index such as S&P500) can be viewed as an approximate buy-and-

hold portfolio.6 This gives rise to the following fundamental question:

6While a market index represents the overall performance of the market, it does not contain all the
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When and why does a rebalanced portfolio outperform a buy-and-hold portfolio?

1.3.2 Rebalanced portfolio in gambling and information theory

Rebalanced portfolios also arise in the study of optimal gambling in information theory (see

[63], [17], [1], [27] and [70]). Suppose X1(t), . . . , Xn(t) are the stock prices in discrete time.

At each time t the investor chooses a vector π(t) of non-negative portfolio weights summing

to 1. The value of her portfolio satisfies

Z(t+ 1) = Z(t)
n∑
i=1

πi(t)
Xi(t+ 1)

Xi(t)
.

Suppose X(t) = (X1(t), . . . , Xn(t)) is a stochastic process, and let {Ft} be the natural

filtration. Under mild conditions, it can be shown that the portfolio

π(t) = arg max
π(t)

E[logZ(t+ 1)|Ft] (1.3.2)

beats any other portfolio asymptotically. The criterion (1.3.2) is known as the Kelly crite-

rion. In particular, if the gross returns Xi(t+1)
Xi(t)

are i.i.d., the Kelly portfolio (also called the

log-optimal portfolio) π(t) ≡ π is constant over time and is thus a rebalanced portfolio. Com-

putation of the Kelly portfolio assumes that the distribution of the price process is known.

Learning the optimal portfolio when the underlying distribution is unknown (or even when

there are no distributional assumptions) leads to the concept of universal portfolio [28].

Since the Kelly criterion does not involve the investor’s preference, this idea is not wel-

comed by economists who are accustomed to utility maximization. See [90] for Samuelson’s

famous critique of log-optimal investing.

stocks in the market. It usually contains only the largest stocks in the market, and its members may
change during periodic reconstitutions. Moreover, market capitalizations may change due to corporate
actions such as IPO, split and merger. These complications cause the market index to deviate from a pure
buy-and-hold portfolio.
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1.3.3 Explaining the rebalancing premium

The extra profit that a rebalanced portfolio earns over a buy-and-hold portfolio is sometimes

called the ‘rebalancing premium’. It is both interesting and important to understand the

source of this ‘premium’. From an asset pricing perspective, [84] analyzed the factor expo-

sures of the equal-weighted portfolio in US equity market. A disadvantage of this approach

is that the analysis is subject to statistical errors and depends on the sample used.

It was observed by many researchers that the following consequence of Jensen’s inequality

plays an important role in rebalancing. If Ri is the simple return of stock i, we have

log

(
1 +

n∑
i=1

πiRi

)
≥

n∑
i=1

πi log(1 +Ri). (1.3.3)

In words, we have

log return of portfolio ≥ weighted average log return of underlying assets.

The difference between the two quantities in (1.3.3) has been studied under many names. It

is called the diversification return in [50], [37], [102] and [22], the excess growth rate in [42]

and [41], the rebalancing premium in [13], the volatility return in [51], among others.

In spite of the large volume of literature on the theory and practice of rebalancing, there

are some confusions among academics and practitioners. This, we believe, is due to the fact

that in most theoretical analyses of rebalancing very specific assumptions (such as geometric

Brownian motion) are imposed on the dynamics of asset prices, giving a false impression

that volatility harvesting only works in those situations. An important case in point is the

(wrong) assertion that rebalancing is profitable only when the underlying price changes are

negatively correlated like in the first example in Section 1.3.1 (see [22]). There is thus a

strong need to study the precise conditions under which rebalancing or volatility harvesting

beats a capitalization-weighted portfolio.
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1.4 Stochastic portfolio theory

While mainstream portfolio theory depends heavily on utility maximization, distributional

assumptions and asset pricing models, stochastic portfolio theory offers a novel mathematical

framework for portfolio management. This mathematical framework was first developed by

E. R. Fernholz. Some ideas are implicit in his early paper [42] with Shay, and his work

eventually led to the 2002 monograph [41]. More recent results are surveyed in [48] (also see

[98]).

A major idea of stochastic portfolio theory is to investigate properties of portfolios that

are independent of distributional assumptions on stock returns. Moreover, under certain

realistic structural conditions on market behaviors, some rebalancing portfolio can be shown

to outperform the market portfolio. In Fernholz’s formulation, the vector process X(t) =

(X1(t), . . . , Xn(t)) of market capitalizations is modeled as a general Itô process in continuous

time. A (self-financing) portfolio is given by a vector-valued progressively measurable process

{π(t) = (π1(t), . . . , πn(t))}. Let Zπ(t) and Zµ(t) be the growths of $1 of the portfolio π and

the market portfolio µ respectively. We are interested in the ratio

Vπ(t) =
Zπ(t)

Zµ(t)
(1.4.1)

called the relative value of the portfolio π.

Given a portfolio process π, it can be shown by Itô calculus that log Vπ(t) satisfies

d log Vπ(t) =
n∑
i=1

πi(t)d log µi(t) + γ∗π(t)dt, (1.4.2)

where

γ∗π(t) =
1

2

n∑
i,j=1

πi(t) (δij − πj(t))
d〈log µi, log µj〉t

dt
(1.4.3)

is the excess growth rate in continuous time (see (1.3.3)).

The equation (1.4.2) is important for several reasons. First, unlike in mean-variance

analysis, (relative) portfolio value is measured in logarithmic scale which is additive in time.

Second, the dynamics of the relative value is expressed solely in terms of π(t) and the
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Figure 1.3: Capital distribution curve of the Russel 1000 index in June 2015 (this data set

is taken from [79]). The dotted line is the Pareto approximation fitted by ordinary least

squares. The slope of the line is −0.95.

market weights µ(t). This forces us to consider the properties of market weights instead of

the absolute prices. Mathematically, the state space of the market becomes the open unit

simplex

∆n :=

{
p = (p1, . . . , pn) ∈ Rn : pi > 0,

n∑
i=1

pi = 1

}
. (1.4.4)

The capital distribution of the market is defined by rearranging the market weights from

largest to smallest:

µ(1)(t) ≥ µ(2)(t) ≥ · · · ≥ µ(n)(t)

An important fact (see [41, Chapter 4]) is that the capital distribution of a large market is

stable over time and is approximately Pareto distributed (see Figure 1.3 for an example).

On the mathematical side, this leads to a large literature on Atlas and ranked-based models

of interacting diffusions; see [8, 23, 57, 46, 56].

For a general portfolio process {π(t)}, integration of (1.4.2) contains a stochastic integral
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which is difficult to analyze. A remarkable discovery of Fernholz is that for a special class

of portfolio processes which are functions of µ(t), (1.4.2) can be integrated free of stochastic

integrals. For these portfolios – called functionally generated portfolios – log Vπ(t) depends

solely on µ(0), µ(t) and a finite variation process related to time-aggregated market volatility.

Using this almost sure pathwise decomposition formula, Fernholz was able to formulate

conditions under which the portfolio outperforms the market portfolio with probability 1 for

all sufficiently long horizons, i.e., there exists a constant t0 such that

P (Zπ(t) > Zµ(t)) = 1, for all t ≥ t0. (1.4.5)

Such a portfolio is called a relative arbitrage opportunity with respect to the market portfolio.

The existence of relative arbitrage opportunities implies that the underlying market model

does not admit any equivalent martingale measure. See for example [80, 39, 40, 9, 89, 61]

for the analysis of strict local martingales and optimal arbitrages that arise in this context.

The conditions Fernholz used are (i) diversity and (ii) sufficient volatility. By definition,

the market is said to be diverse if there exists δ > 0 such that

sup
t≥0

max
1≤i≤n

µi(t) ≤ 1− δ (1.4.6)

almost surely. That is, no stock is ever allowed to dominate most of the market. A version of

sufficient volatility is non-degeneracy, i.e., the matrix σij(t) =
d〈logµi,logµj〉t

dt
satisfies a uniform

elliptic condition. Under these conditions relative arbitrage opportunities can be constructed

using functionally generated portfolios (see [41, 49, 47, 7]). A remarkable advantage of these

portfolios is that their portfolio weights are deterministic functions of the current market

weights, i.e., π(t) = F (µ(t)) for certain maps F . In other words, implementation of these

portfolios does not require dynamic estimation of parameter and optimization.

1.5 Outline of the thesis

Fernholz’s results give a partial answer to the question about rebalancing: for a rebalanced

portfolio to outperform the market portfolio, a sufficient condition is that the market is
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diverse and sufficiently volatile (in suitable senses). While Fernholz (and most authors in

stochastic portfolio theory) works in continuous time, actual trading takes place at discrete

time points. Also, despite its theoretical significance, the original definition of functionally

generated portfolio (see [41, Theorem 3.1.5]) is somewhat obscure, and it was not immediate

why this is a natural family of portfolios to consider.7 (See [60] for a recent study which

interprets portfolio generating functions as Lyapunov functions.)

To address these issues we adopt a discrete time, pathwise approach which not only clar-

ifies the arguments but also reveals deep mathematical connections with optimal transport

(Part I), nonparametric statistics (Part II) and information geometry (Part III). To illus-

trate why a discrete time approach may be better, let us consider again the first example in

Section 1.3.1. Suppose the returns of asset 1 are reshuffled over time as in Figure 1.1 (right).

Now except the fourth period the price changes are positively correlated. The growth of the

equal-weighted portfolio over the six periods remains unchanged because we can rearrange

the factors:

0.75× 0.75× 0.75× 1.5× 1.5× 1.5 = (0.75× 1.5)3.

Thus, the key driver of the long term growth of the rebalancing portfolio is the number of

times the growth factor 0.75 × 1.5 can be matched.8 Note that matching of two opposing

moves happening at different times is not captured by continuous time stochastic calculus.

More importantly, the discrete time approach allows us to focus on path properties of market

relevant to volatility harvesting without any stochastic modeling assumptions. Indeed, the

basic definitions to be given in Chapter 2 involve no probability at all.

7In a talk given in the 2015 conference ‘Stochastic Portfolio Theory and related topics’ at Columbia
University, Fernholz said that the concept of functionally generated portfolio was discovered after numerous
computations.

8This also shows that negative correlation is not needed for rebalancing to be profitable, at least in the
long run.
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Figure 1.4: Interdependence of the chapters.

1.5.1 Outline

Now we give a more detailed description of the content of the thesis which is mainly based

on the results in [81, 83, 103, 104, 14, 82]. The papers [81, 83, 82] are joint work with Soumik

Pal, and the paper [14] is joint work with Paul Bouchey and Vassillii Nemtchinov. See Figure

1.4 for the interdependence of the chapters.

In Chapter 2 we introduce the mathematical set up which will be adopted throughout

the thesis. As noted above we work under a discrete time model. Under some simplifying

assumptions, the relative value (see (1.4.1)) of a portfolio π relative to the market portfolio

(with weights given by (1.2.1)) satisfies Vπ(0) = 1 and the relation

Vπ(t+ 1)

Vπ(t)
=

n∑
i=1

πi(t)
µi(t+ 1)

µi(t)
. (1.5.1)

Here {µ(t)}∞t=0 is a more or less arbitrary sequence taking values in the simplex ∆n. For the

most part we focus on portfolios whose weights are deterministic functions of the current

market weights. This gives rise to the concept of portfolio map, i.e., a function mapping ∆n

into ∆n, the closed unit simplex.
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In Chapter 3 we illustrate the pathwise approach by analyzing constant-weighted portfo-

lios, i.e., rebalanced portfolios whose weights are constant over time. In particular, we formu-

late conditions under which a constant-weighted portfolio outperforms the market portfolio

in the long run. Constant-weighted portfolios are basic examples of functionally generated

portfolio. We also study the performance of constant-weighted portfolios as a function of the

portfolio weights.

The rest of the thesis is divided into three parts.

Part I: Geometry

In Part I we give a convex-analytic treatment of functionally generated portfolio in relation

to optimal transport theory.

In Chapter 4 we define a functionally generated portfolio as a portfolio map π : ∆n → ∆n

associated with a concave function Φ : ∆n → (0,∞), called the generating function of π

(Definition 4.1.1). Its logarithm ϕ = log Φ is said to be exponentially concave on ∆n. The

analysis of exponentially concave functions plays an important role in our study.

Geometrically, the portfolio weights of a functionally generated portfolio are given in

terms of the supergradients of the log generating function ϕ = log Φ. For such a portfolio,

we can decompose its relative performance in the form (Proposition 4.1.3)

log
Vπ(t+ 1)

Vπ(t)
= ϕ(µ(t+ 1))− ϕ(µ(t)) + T (µ(t+ 1) | µ(t)) , (1.5.2)

where

T (q | p) := log

(
n∑
i=1

πi(p)
qi
pi

)
− (ϕ(q)− ϕ(p)) ≥ 0 (1.5.3)

is called the L-divergence of the portfolio π (the L stands for logarithmic). It is a non-

negative functional on ∆n ×∆n measuring the market volatility harvested by the portfolio.

It is a generalization of excess growth rate defined in (1.3.3).

Functionally generated portfolio can also be characterized by the following property: for

any discrete cycle {µ(t)}m+1
t=0 in ∆n satisfying µ(m+ 1) = µ(0), we have

Vπ(m+ 1) =
m∏
t=0

(
n∑
i=1

πi(µ(t))
µi(t+ 1)

µi(t)

)
≥ 1. (1.5.4)
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The property (1.5.4) is called multiplicative cyclical monotonicity (MCM) (Definition 4.2.2).

The MCM property captures geometrically the idea of volatility harvesting.

Chapter 5 gives a financial justification to the concept of functionally generated port-

folio. Using the notion of pseudo-arbitrage (Definition 5.1.1), we show that functionally

generated portfolios are, in a sense, the only portfolio maps capable of generating relative

arbitrage opportunities if the market is only assumed to be diverse (in a generalized sense)

and sufficiently volatile.

Chapter 6 is a key chapter. Using the MCM property, we show that functionally generated

portfolios can be interpreted as the optimal transport maps of a remarkable optimal transport

problem. To formulate this transport problem, we use the exponential coordinate system of

∆n viewed as a smooth manifold: for p ∈ ∆n, let

θi = log
pi
pn
, i = 1, . . . , n− 1.

We call θ = (θ1, . . . , θn−1) ∈ Rn−1 the exponential coordinates of p. Let X = Y = Rn−1 and

consider the Kantorovich optimal transport problem with the cost function

c(θ, φ) = ψ(θ − φ), θ ∈ X , φ ∈ Y , (1.5.5)

where

ψ(x) = log

(
1 +

n−1∑
i=1

exi

)
.

We prove that the optimal coupling is deterministic, and is given by

φi = θi − log
πi(θ)

πn(θ)
, i = 1, . . . , n− 1,

where π is a functionally generated portfolio viewed as a function of the exponential co-

ordinates. The main idea is to show that the MCM property is equivalent to c-cyclical

monotonicity (Theorem 6.3.1). This result shows that the following objects are essentially

equivalent: (i) functionally generated portfolio, (ii) exponentially concave function, (iii) c-

concave function, (iv) the optimal transport map. In Part III we will study these objects

using the tools of information geometry.
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Given two functionally generated portfolios, it is natural to ask if one is ‘more volatility

harvesting’ than the other. The L-divergence (1.5.3) reflects the concavity of the generating

function and provides a natural partial ordering among functionally generated portfolios:

τ � π ⇔ Tτ (q | p) ≥ Tπ (q | p) . (1.5.6)

In Chapter 7 we study the maximal elements of the partial order defined by (1.5.6). Let

e(1) = (1, 0, . . . , 0) and e =
(

1
n
, . . . , 1

n

)
be a corner and the barycenter of ∆n respectively.

Restricting to the class of continuously differentiable portfolio maps, we show that if π is

generated by a C2 symmetric concave function Φ and∫ 1

0

1

Φ(te+ (1− t)e(1))2
dt =∞, (1.5.7)

then π is maximal (Theorem 7.1.7). In other words, no portfolio maps can beat π in all

diverse and sufficiently volatile market. Some portfolios that satisfy (1.5.7) are the equal-

weighted portfolio and the entropy-weighted portfolio.

Part II: Optimization

In Part I we showed that functionally generated portfolios are volatility harvesting. Given

historical or simulated data, it is natural to find an optimal portfolio, where optimality is

defined in terms of expected or asymptotic growth rate. A major difficulty is that the set

FG of functionally generated portfolios is infinite dimensional.9

Our approach is motivated by a seemingly unrelated problem in nonparametric statistics.

A density f0 on Rd is said to be log-concave if log f0 is concave. For example, Gaussian

densities are log-concave. Suppose X1, . . . , XN are random samples from an unknown log-

concave density f0. The nonparametric maximum likelihood estimate of f0 is defined by

f̂ = arg max
f log-concave

N∑
i=1

log f(Xi). (1.5.8)

9Nevertheless, a blessing fact is that FG is convex.
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It can be shown that (1.5.8) has a unique solution which satisfies nice statistical properties

(see for example [31]). Since log f is concave, the optimization problem (1.5.8) is said to be

shape-constrained.

In Chapter 8 we introduce an analogous problem for functionally generated portfolio.

Let P be a Borel probability measure on ∆n ×∆n representing historical or simulated data.

Consider the optimization problem

π̂ = arg max
π∈FG

∫
∆n×∆n

log

(
n∑
i=1

πi(p)
qi
pi

)
dP, (1.5.9)

where FG is the family of functionally generated portfolios. The solution π̂ can be interpreted

as the maximum likelihood estimate of the optimal portfolio (note that P can be regarded as

an approximation of the true process). In Chapter 8 we establish existence and uniqueness

results (Theorems 8.2.2 and 8.3.1) which are analogous to those for (1.5.8). Note that (1.5.9)

is conceptually more difficult than (1.5.8) since a functionally generated portfolio is given by

the supergradients of an exponentially concave function. We show further that the ‘estimator’

π̂ is consistent: under certain regularity conditions, if P(N) → P weakly, and π̂(N) and π̂ are

the estimators for P(N) and P, then π̂(N) → π̂ almost everywhere on ∆n.

In Chapter 9 we consider a Bayesian version of the problem (1.5.9). Endow the space FG

with the topology of uniform convergence. Let ν0 be a Borel probability measure on FG,

interpreted as the prior distribution. Given the path of the market weights up to time t, we

can define the posterior distribution νt by

νt(B) =
1

V̂ (t)

∫
B

Vπ(t)dν0(t), B ⊂ FG Borel, (1.5.10)

where

V̂ (t) =

∫
FG
Vπ(t)dν0(t) (1.5.11)

is the normalizing factor.

The posterior distribution νt can be interpreted in another way. Imagine a hypothetical

market whose assets are the elements of FG. That is, consider a market of portfolios. Let ν0

be the initial distribution of wealth in the market. Then (1.5.10) is the wealth distribution at
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time t analogous to the market weight (1.2.1), and (1.5.11) is the total (relative) value of the

abstract market. While the capital distribution of a a large equity market is typically stable,

the wealth distribution of a family like FG is likely to become more and more concentrated.

In Chapter 9 we quantify this by a large deviations principle (LDP). Furthermore, if one

invest according to the posterior mean

π̂(t) =

∫
FG
π(µ(t))dνt(π),

the relative value of the portfolio is equal to (1.5.11). Under suitable conditions, we show

(Theorem 9.1.3) that this portfolio has the universality property

lim
t→∞

1

t
log

V̂ (t)

maxπ∈FG Vπ(t)
= 0.

This result generalizes Cover’s univeral portfolio [28] to the family of functionally generated

portfolios.

Part III: Information geometry

Finally, in Chapter 10 we show that information geometry provides the appropriate frame-

work to study the geometric ideas in Part I (see Figure 1.5). For a smooth exponentially

concave function ϕ on ∆n, the L-divergence (1.5.3) can be written in the form

T (q | p) = log (1 +∇ϕ(p) · (q − p))− (ϕ(q)− ϕ(p)) , p, q ∈ ∆n.

We show that the L-divergence induces a Riemannian metric g on ∆n as well as a pair

(∇,∇∗) of affine connections which are dual to each other. This geometric structure has

deep connections with the optimal transport problem studied in Chapter 6. To give an

example of our results we state the following generalized Pythagorean theorem (Theorem

10.1.1): for p, q, r ∈ ∆n, the equality

T (q | p) + T (r | q) = T (r | p)

holds if and only if the ∇∗-geodesic joining p and q is g-orthogonal to the ∇-geodesic joining

q and r. This extends the information geometry of Bregman divergence to L-divergence.
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Figure 1.5: Main theme of Part III.
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Chapter 2

A DISCRETE TIME MARKET MODEL

In this section we introduce the mathematical set up which will be adopted throughout

this thesis. In our framework, the dynamics of asset prices are given exogenously as sequences

in the unit simplex satisfying certain structural conditions. In this sense, we are taking a

model-free, pathwise approach. Nevertheless, our model contains significant and important

simplifications of the way real equity markets operate. These idealizations will be made

explicit as we go along.

2.1 Stocks and market weights

Consider an equity market with n ≥ 2 stocks. We assume that the stocks are infinitely divis-

ible. Without loss of generality, we suppose that each stock has a single share outstanding.

Accordingly, the price of the stock is equal to its market capitalization. Time is taken to

be discrete. For i ∈ {1, . . . , n} and t ≥ 0, we let Xi(t) > 0 be the market capitalization

of stock i at time t. For convenience, we use dollar ($) as the unit of money. Note that

X1(t) + · · ·+Xn(t) is the total capitalization of the market at time t.

Definition 2.1.1 (Market weight). The market weight of stock i at time t is defined by

µi(t) =
Xi(t)

X1(t) + · · ·+Xn(t)
. (2.1.1)

We let µ(t) be the vector (µ1(t), . . . , µn(t)).

The market weight vector µ(t) is a probability vector with positive components. Thus,

it is an element of the open unit simplex defined by (1.4.4). We let ∆n be the closed unit

simplex which is the closure of ∆n in Rn. The evolution of the market can be visualized as
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X(t)

µ(t)

∆n

Figure 2.1: The market weight vector µ(t) is the projection of the price vector X(t) onto the

simplex ∆n.

a (discrete) path in ∆n (see Figure 2.1). Implicitly, we assume that the number of stocks is

constant over time, and the firms do not go bankrupt (Xi(t) > 0 for all t).

For simplicity, we assume that the stocks do not pay dividends and there are no corporate

actions such as public offerings. Thus all changes in market capitalizations are due to price

changes. Explicitly, suppose that Ri(t) is the simple return of stock i over the time period

[t, t+ 1], i.e.,

Xi(t+ 1) = Xi(t) (1 +Ri(t)) .

From (2.1.1), the market weights can be updated by the formula

µi(t+ 1) =
µi(t) (1 +Ri(t))

µ1(t) (1 +R1(t)) + · · ·+ µn(t) (1 +Rn(t))
. (2.1.2)

For our purposes, the market weights contain all relevant information (see Lemma 2.2.1).

Thus the basic object of our model is a sequence of market weight vectors.

Definition 2.1.2 (Market path). A market path is defined by a sequence {µ(t)}∞t=0 with

values in the open unit simplex ∆n.
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In Definition 2.1.2, the sequence of market weights is completely arbitrary. In particular,

we do not impose the usual assumption that {µ(t)}∞t=0 is a stochastic process. Of course,

to obtain meaningful results the market cannot behave arbitrarily. Here is one of the first

structural conditions explored in stochastic portfolio theory.

Definition 2.1.3 (Diversity). The market {µ(t)}∞t=0 is said to be diverse if there exists δ > 0

such that max1≤i≤n µi(t) ≤ 1− δ for all t.

More generally, we may consider the condition µ(t) ∈ K for all t where K is a suitable

subset of ∆n. Other conditions, including sufficient volatility, will be introduced later.

2.2 Portfolio and relative value

A portfolio vector is an element of ∆n. Its components represents the proportions of capital

invested in each of the stocks. By a portfolio we mean a sequence π = {π(t)}∞t=0 of portfolio

weight vectors that are chosen sequentially in time. Given a portfolio π, we can define a self-

financing portfolio whose distribution of capital at time t is π(t). Note that by considering

only elements of ∆n, the portfolio is fully invested in the stock market and does not hold

short positions.

By normalization, we suppose that all portfolios begin with $1 at time 0. We also assume

that there are no transaction costs. Recall that Ri(t) is the simple return of stock i over the

time interval [t, t + 1]. If Zπ(t) denotes the value of the self-financing portfolio π at time t,

then Zπ(0) = 1 by definition and, by linearity of simple return, we have

Zπ(t+ 1) = Zπ(t)

(
1 +

n∑
i=1

πi(t)Ri(t)

)
. (2.2.1)

The most important portfolio is the market portfolio whose portfolio vector at time t is

µ(t) (see Section 1.2). With a slight abuse of notation, we will denote the market portfolio

by µ. Using (2.1.2) and (2.2.1), it is easy to verify that

Zµ(t) =
1

X1(0) + · · ·+Xn(0)
(X1(t) + · · ·+Xn(t)) .
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Consider the ratio

Vπ(t) =
Zπ(t)

Zµ(t)
(2.2.2)

between the value of π and the value of µ. We call it the relative value of the portfolio π.

To the best of our knowledge this definition is due to Fernholz (see [41, Chapter 1]).

Lemma 2.2.1 (Relative value). The relative value defined by (2.2.2) satisfies Vπ(0) = 1 and

Vπ(t+ 1) = Vπ(t)
n∑
i=1

πi(t)
µi(t+ 1)

µi(t)
. (2.2.3)

Proof. Since Zπ(0) = Zµ(0) = 1, it is clear that Vπ(0) = 1. By (2.2.1), we have

Zπ(t+ 1)

Zπ(t)
=

n∑
i=1

πi(t) (1 +Ri(t))

and
Zµ(t+ 1)

Zµ(t)
=

n∑
i=1

µi(t) (1 +Ri(t)) .

By (2.1.2), we have

Vπ(t+ 1)

Vπ(t)
=
Zπ(t+ 1)/Zπ(t)

Zµ(t+ 1)/Zµ(t)

=
n∑
i=1

πi(t)
1 +Ri(t)∑n

j=1 µj(t)(1 +Rj(t))

=
n∑
i=1

πi(t)
µi(t+ 1)

µi(t)
.

By Lemma 2.2.1, the dynamics of the relative value depends only on the market weights,

and the stock returns Ri(t) enter indirectly. Since we regard the market weight vector as the

primary object, we may define the relative value directly by (2.2.3). If we denote by a · b the

Euclidean inner product and p
q

=
(
p1

q1
, . . . , pn

qn

)
the vector of componentwise ratios, we may

write (2.2.3) in the form
Vπ(t+ 1)

Vπ(t)
= π(t) · µ(t+ 1)

µ(t)
.

An important example is the family of constant-weighted portfolios. Besides being the

simplest non-trivial portfolios, they provide a great source of intuition. In Chapter 3 we

provide an in-depth analysis of constant-weighted portfolios.
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Figure 2.2: Visualization of the diversity-weighted portfolio for λ = 0.5 and n = 3. Each dot

on the right is the image a dot on the left.

Definition 2.2.2 (Constant-weighted portfolio). A portfolio π is said to be constant-weighted

if π(t) is constant over time. Abusing notation, we denote the common value by π ∈ ∆n.

A constant-weighted portfolio chooses the same portfolio vector for all states of the mar-

ket. More generally, we may let π(t) depend deterministically on µ(t). This leads to the

concept of portfolio map.

Definition 2.2.3 (Portfolio map). A portfolio map is a function F : ∆n → ∆n. Given a

portfolio map F , we can define a portfolio π by letting π(t) = F (µ(t)) for all t. Abusing

notation, we will also use π to denote the portfolio map itself.

As an example of portfolio map, we mention the diversity-weighted portfolio defined by

πi(t) =
µλi (t)∑n
j=1 µ

λ
j (t)

, i = 1, . . . , n,

where λ ∈ [0, 1] is a fixed parameter (see Figure 2.2). Relative to the market portfolio, the

diversity-weighted portfolio overweights the small stocks and underweights the large stocks.
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Note that when λ = 1 it reduces to the market portfolio, and when λ = 0 it becomes

the equal-weighted portfolio
(

1
n
, . . . , 1

n

)
. For practical applications of the diversity-weighted

portfolio we refer the reader to [45] and [41, Chapter 7]. Both constant-weighted portfolios

and the diversity-weighted portfolio are examples of functionally generated portfolio (see

Chapter 4). Note that (see Section 4.4) it is sometimes more convenient to consider portfolio

maps defined on subsets of ∆n.

Remark 2.2.4 (Rebalancing). Most portfolios, including the constant-weighted portfolios

(where π has at least two strictly positive components), require trading to maintain the

desired portfolio weights. More precisely, suppose the portfolio vector is π(t) at time t. By

the consideration leading to (2.1.2), just before trading happens at time t+1, the proportion

of capital in stock i is

π̃i(t+ 1) =
πi(t)(1 +Ri(t))∑n
j=1 πj(t)(1 +Rj(t))

. (2.2.4)

The implied weights π̃i(t+ 1) are sometimes called the drifted weights by portfolio managers.

In the context of our model, rebalancing is the trading which moves the portfolio weights

from π̃(t + 1) to the new weights π(t + 1) (instead of moving from π(t) to π(t + 1)). With

this terminology, a buy-and-hold portfolio – such as the market portfolio µ – is a portfolio π

satisfying π̃(t + 1) = π(t + 1) for all t. It can be checked that π is a buy-and-hold portfolio

if and only if there exist non-negative constants c1, . . . , cn, not all zero, such that

πi(t) =
ciµi(t)

c1µ1(t) + · · ·+ cnµn(t)

for all i and t (see (1.3.1)). In particular, buy-and-hold portfolios are given by portfolio

maps. Buy-and-hold portfolios require no trading and thus are not subject to transaction

costs.

2.3 Discussion of assumptions

Let us comment on the assumptions of the market model, several of which have already

been highlighted. For our purpose, the most important equation is (2.2.3) which defines the
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relative value of a portfolio with respect to the market portfolio. In practice, the invest-

ment universe is constantly changing as new stocks are issued and firms may go bankrupt.

Also, market capitalizations may change due to corporate actions. A capitalization-weighted

market index like S&P500 is in general not a true buy-and-hold portfolio. Nevertheless, our

model helps clarify the challenges of outperforming a capitalization-weighted index.

The absence of transaction costs presents a more significant problem. In fact, to the best

of our knowledge there has not been any systematic study of transaction costs in the context

of stochastic portfolio theory (see [41, Section 6.3] for a short discussion). For mathematical

simplicity transaction cost has been ignored in this thesis.1

We also want to point out that in (2.2.3), it is assumed implicitly that the investor is

a price taker who has no influence on stock prices. Also, in our discrete time framework,

all trades are performed instantly at the beginning of each time period. Of course, this is

not the case in practice. The study of market impacts and the interactions among investors

fall under the field of market microstructure theory (see for example [52] and [20] for an

introduction). Its relationship with stochastic portfolio theory is essentially unexplored.

2.4 Continuous time model

As mentioned in Section 1.4, stochastic portfolio theory was first developed in a continuous

time setting. We choose to work in discrete time because of its simplicity and the complete

absence of stochastic modeling assumptions. Nevertheless, it is sometimes more convenient

to consider a continuous time model (an example is the problem of short term relative

arbitrage; see [7] and [79]). For completeness, we discuss briefly the continuous time set up

and refer the reader to [41, Chapter 1] and [48, Chapter 1] for more details.

In continuous time, our primary assumption is that stock prices are continuous in time.

The value of a portfolio – trading continuously in time – will then be defined by an integral.

A mathematically convenient and fairly general approach is to assume that the market weight

1Taxation and exchange rates are also absent in the present model.
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{µ(t)}t≥0 is a continuous semimartingale defined on a given filtered probability space. In this

context, a portfolio (allowing short selling) is a uniformly bounded progressively measurable

process {π(t)}t≥0 with values in the hyperplane {p = (p1, . . . , pn) ∈ Rn : p1 + · · ·+ pn = 1}.

The relative value process is defined as the solution of the stochastic differential equation

dVπ(t)

Vπ(t)
=

n∑
i=1

πi(t)
dµi(t)

µi(t)
, Vπ(0) = 1, (2.4.1)

which is the continuous time analogue of (2.2.3).2 Now (1.4.2) can be derived by a routine

application of Itô’s lemma.

2Under these assumptions there exists a positive solution to (2.4.1), and this is why short selling is allowed
in this context. In discrete time short selling may lead to negative portfolio value.
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Chapter 3

CONSTANT-WEIGHTED PORTFOLIOS

As a prelude to what follows, in this chapter we give a treatment of constant-weighted

portfolios based partly on joint work with Soumik Pal [81]. It will be shown that the results

can be extended to a much larger family of portfolios called functionally generated portfolios.

3.1 A pathwise decomposition formula

Let π ∈ ∆n be a portfolio vector and consider the corresponding constant-weighted port-

folio (see Definition 2.2.2). The portfolio will also be denoted by π. Given a market path

{µ(t)}∞t=0 ⊂ ∆n, we are interested in conditions under which the portfolio π outperforms the

market portfolio µ. Following the treatment of [81, Section 3], we will decompose log Vπ(t)

into a sum of two terms: excess growth rate and relative entropy (Proposition 3.1.6). After

discussing the theoretical implications of the decomposition in Section 3.2, we will give some

empirical examples in Section 3.3.

3.1.1 Excess growth rate

We begin with the defining equation (2.2.3):

Vπ(t+ 1)

Vπ(t)
=

n∑
i=1

πi
µi(t+ 1)

µi(t)
.

Taking logarithm on both sides and using the notation ∆A(t) := A(t+ 1)− A(t), we have

∆ log Vπ(t) = log

(
n∑
i=1

πi
µi(t+ 1)

µi(t)

)

=
n∑
i=1

πi log
µi(t+ 1)

µi(t)
+

(
log

(
n∑
i=1

πi
µi(t+ 1)

µi(t)

)
−

n∑
i=1

πi log
µi(t+ 1)

µi(t)

)
.

(3.1.1)
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We will first analyze the last term in parentheses.

Definition 3.1.1 (Excess growth rate). Let π = {π(t)}∞t=0 be a portfolio. The excess growth

rate of π over the period [t, t+ 1] is defined by

γ∗π(t) = log

(
n∑
i=1

πi(t)
µi(t+ 1)

µi(t)

)
−

n∑
i=1

πi(t) log
µi(t+ 1)

µi(t)
. (3.1.2)

The cumulative excess growth rate is defined by Γ∗π(t) =
∑t−1

s=0 γ
∗
π(s).

Lemma 3.1.2. For any portfolio π, the excess growth rate γ∗π(t) is non-negative. In partic-

ular, the cumulative excess growth rate Γ∗π(·) is non-decreasing.

Proof. This is a consequence of Jensen’s inequality. Explicitly, consider a random variable

Y (t) which takes value µi(t+1)
µi(t)

with probability πi(t). It is easy to see that

γ∗π(t) = logEπ(t)Y (t)− Eπ(t) log Y (t),

where Eπ is the expectation under the probability π(t). Since log is a strictly concave

function, γ∗π(t) non-negative by Jensen’s inequality. Note that γ∗π(t) is strictly positive unless

Y (t) is almost surely constant under the probability π(t).

Remark 3.1.3. In terms of the stock returns Ri(t), it can be shown (see [81, Lemma 3.2])

that

γ∗π(t) = log

(
1 +

n∑
i=1

πi(t)Ri(t)

)
−

n∑
i=1

πi(t) log (1 +Ri) .

In words, γ∗π(t) is the difference between the portfolio logarithmic return and the weighted

average logarithmic return of the stocks (see (1.3.3). This is why γ∗π(t) is called the excess

growth rate. See [81] for this numéraire invariance property as well as the chain rule.

Remark 3.1.4. By Taylor approximation, we have

γ∗π(t) ≈ 1

2

n∑
i,j=1

πi(t) (δij − πj(t)) ∆ log µi(t)∆ log µj(t) (3.1.3)

when µ(t+ 1) is close to µ(t). In the continuous time limit, this becomes the excess growth

rate in (1.4.3). Since we work in discrete time, for simplicity we will drop the word ‘discrete’.
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3.1.2 Relative entropy

Now we may write (3.1.1) in the form

∆ log Vπ(t) =
n∑
i=1

πi log
µi(t+ 1)

µi(t)
+ γ∗π(t). (3.1.4)

To interpret the first term on the right hand side of (3.1.4), we introduce the concept of

relative entropy in information theory [27].

Definition 3.1.5 (Relative entropy). For p ∈ ∆n and q ∈ ∆n, the relative entropy H (p | q)

is defined by

H (p | q) =
n∑
i=1

pi log
pi
qi
,

with the convention 0 log 0 = 0.

Now we observe that

n∑
i=1

πi log
µi(t+ 1)

µi(t)
=

n∑
i=1

πi log
µi(t+ 1)

πi
−

n∑
i=1

πi log
πi
µi(t)

= −H (π | µ(t+ 1)) +H (π | µ(t))

= −∆H (π | µ(t)) .

(3.1.5)

Combining (3.1.4) and (3.1.5), we obtain the decomposition

∆ log Vπ(t) = −∆H (π | µ(t)) + γ∗π(t). (3.1.6)

Let us summarize the above derivation in the following proposition.

Proposition 3.1.6. Let π ∈ ∆n be a constant-weighted portfolio. Given a market path

{µ(t)}∞t=0 ⊂ ∆n, the relative value of the portfolio π satisfies the decomposition formula

log Vπ(t) = − (H (π | µ(t))−H (π | µ(0))) + Γ∗π(t). (3.1.7)

Proof. Sum (3.1.6) over time and recall that Γ∗π(·) is the time aggregate of γ∗π(·).
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In Chapter 4 we will show that a decomposition formula analogous to (3.1.7) can be

derived for any functionally generated portfolio (Proposition 4.1.3). We call the general

decomposition formula Fernholz’s decomposition. In (3.1.7), the relative entropy term cor-

responds to the log generating function (Definition 4.1.1), and the excess growth rate is a

special case of the L-divergence (Definition 4.1.2).

3.2 Relative arbitrage

A pathwise decomposition like (3.1.7) can be used in two ways. First, it provides a natural

method of performance attribution. The relative entropy term measures how the relative

value is affected by the position of the market weight vector in the unit simplex. This term

is positive when H (π | µ(t)) < H (π | µ(0)), i.e., the market weight vector becomes closer

to the portfolio weight. The cumulative excess growth rate is a measure of market volatility

captured by the rebalancing portfolio and is always non-decreasing. The relative value of

the portfolio is determined by the interplay between these two quantities. Some empirical

examples will be given in Section 3.3.

Second, and more importantly, the decomposition allows us to formulate pathwise condi-

tions under which the portfolio outperforms the market portfolio. In particular, if the market

behaves in such a way that (i) the relative entropy distance H (π | µ(t)) is bounded above

and (ii) the cumulative excess growth rate Γ∗π(t) tends to infinity, the constant-weighted

portfolio will eventually outperform the market portfolio. Here is a simple version of the

existence of relative arbitrage under suitable conditions.

Proposition 3.2.1 (Relative arbitrage). Let π ∈ ∆n be a constant-weighted portfolio. Let

{µ(t)}∞t=0 be a market path satisfying the following conditions:

(i) (Generalized diversity) There exists a compact set K ⊂ ∆n such that µ(t) ⊂ ∆n.

(ii) (Sufficient volatility) There exists c > 0 such that

Γ∗π(t) ≥ ct (3.2.1)
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for all t ≥ 0.

Then, there exists ε ≥ 0, depending on K only, such that the relative value Vπ(t) satisfies

log Vπ(t) ≥ −ε+ ct.

In particular, we have Vπ(t) > 1 for all t ≥ ε/c.

Proof. The statement follows immediately from the decomposition (3.1.7). Note that the

relative entropy term can be bounded below by

ε := sup
p,q∈K

(H (π | p)−H (π | q)) .

Since the function H (π | ·) is continuous and K is compact, we have ε <∞.

In Proposition 3.2.1, the generalized diversity condition (i) allows us to bound the relative

entropy term; this together with sufficient volatility guarantee long term outperformance. A

more sophisticated approach is to formulate conditions under which the sum of the two terms

remains positive, at least with high probability. Using a specially designed cosine portfolio

(see Example 4.4.2) and the stability of capital distribution over short horizons, Pal [79]

formulated conditions that lead to short term relative arbitrage in large financial markets.

3.3 Empirical examples

Now we apply the decomposition (3.1.7) to empirical data.

Example 3.3.1 (Apple-Starbucks). We first look at a two-stock example considered in Section

1.3.1. The data used is the monthly return series of Apple and Starbucks from January 1994

to January 2016. The market consists of these two stocks and prices are normalized such

that the initial market weight vector is (0.5, 0.5). We consider the relative value of the

equal-weighted portfolio π = (0.5, 0.5).

The decomposition (3.1.7) is plotted in Figure 3.1. In this period, the equal-weighted

portfolio outperforms the market portfolio significantly. Because the market is equal-weighted
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Figure 3.1: Relative value decomposition for the Apple-Starbucks example.

initially and the portfolio is equal-weighted, q 7→ H (π | q) is maximized when q = π =

(0.5, 0.5). As a result, the relative entropy term is non-positive. The relative entropy term

experienced volatile fluctuations between 1997 and 2006. An important observation is that

over an interval [t0, t1] over which H (π | µ(t0)) = H (π | µ(t1)), the log relative return of the

portfolio is positive and equals

log Vπ(t1)− log Vπ(t0) =

t1−1∑
t=t0

γ∗π(t).

Example 3.3.2 (Emerging-market). Next we consider a more realistic example in joint work

with Paul Bouchey and Vassilii Nemtchinov [14]. The dataset consists of monthly returns

of S&P Global BMI country indexes of 20 emerging countries1 from March 1997 to May

2015. Using market capitalization data in May 2015, we construct historical market weights

for these countries by ‘drifting the weights’ back in time, based on the total returns of the

country indexes. This approach excludes changes in capitalization that were due to IPOs,

1The countries are Argentina, Brazil, Chile, China, Colombia, Egypt, India, Indonesia, Malaysia, Mexico,
Morocco, Peru, Philippines, Poland, Russia, South Africa, South Korea, Taiwan, Thailand and Turkey.
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Figure 3.2: Relative value decomposition for the emerging-market example.

changes in float adjustment and stocks that left the index. By construction, all changes in

market capitalization are due to returns.

In this hypothetical market of n = 20 assets, we again consider the relative performance of

the equal-weighted portfolio. The relative value decomposition is shown in Figure 3.2. Again

the equal-weighted portfolio outperforms the market portfolio. Part of this outperformance

can be attributed to the relative entropy term.

3.4 The map π 7→ Vπ(t)

So far we have been studying the behavior of t 7→ Vπ(t) for a fixed constant-weighted portfolio.

In this section we study the behavior of Vπ(t), for t fixed, as a function of π ∈ ∆n. This

topic will be continued in Chapter 9 when we study Cover’s universal portfolio.
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3.4.1 A 3-stock example

Let us first look at an empirical example. Consider the monthly stock returns of Ford,

Walmart and Microsoft from January 2000 to January 2016.2 We refer to them as stocks 1,

2 and 3 in the market model. The ‘market’ consists of these 3 stocks and we normalize the

prices so that the market weight vector is
(

1
3
, 1

3
, 1

3

)
at the beginning of January 2000. The

market portfolio is the buy-and-hold portfolio which invests equally in each of the stocks at

the beginning of January 2000.

For each constant-weighted portfolio π ∈ ∆n, we compute the relative value Vπ(t) using

(2.2.3). In Figure 3.3 we plot the map π 7→ Vπ(t) at the end of January 2005 and January

2016. Since Vπ(0) ≡ 1 by definition (here t = 0 corresponds to the beginning of January

2000), it is natural that the graph for January 2005 is close to a flat surface. In January 2016

the surface becomes more curved. The best portfolio is approximately π∗ = (0.17, 0.39, 0.44),

which achieves a relative value of 1.4735, while the minimum relative value over ∆n is 0.4712.

We will now show that the map π 7→ Vπ(t) is log-concave, i.e., π 7→ log Vπ(t) is concave,

and can be approximated by a constant multiple of a Gaussian density. In fact, in continuous

time the approximation becomes exact.3

3.4.2 Log-concavity

Given a constant-weighted portfolio π ∈ ∆n, recall from (2.2.3) that its relative value is given

by

log Vπ(t) =
t−1∑
s=0

log

(
n∑
i=1

πi
µi(s+ 1)

µi(s)

)
. (3.4.1)

Proposition 3.4.1 (Log-concavity). Fix t ≥ 1. For any market path {µ(s}ts=0 ⊂ ∆n,

consider the relative value Vπ(t) as a function of π, where π ∈ ∆n ranges over all constant-

weighted portfolios. Then the map π 7→ log Vπ(t) is concave in π ∈ ∆n.

2The data is obtained from Yahoo Finance. The returns are adjusted for dividends and splits.

3This fact has been used in [58] and [29] in the context of universal portfolio.



37

Ford

0.0

0.2

0.4
0.6

0.8
1.0W

alm
art

0.0

0.2

0.4

0.6

0.8
1.0

0.0

0.5

1.0

1.5

2005−01

Ford

0.0

0.2

0.4
0.6

0.8
1.0W

alm
art

0.0

0.2

0.4

0.6

0.8
1.0

0.0

0.5

1.0

1.5

2005−01

Ford

0.0

0.2

0.4
0.6

0.8
1.0W

alm
art

0.0

0.2

0.4

0.6

0.8
1.0

0.0

0.5

1.0

1.5

2016−01

Figure 3.3: The map π 7→ Vπ(t) for t = January 2005 (left) and t = January 2016 (right).

Since π3 = 1− π1 − π2, the portfolio weight of stock 3 (Microsoft) is determined by those of

stock 1 (Ford) and stock 2 (Walmart).

Proof. For y ∈ (0,∞)n fixed, the map π ∈ ∆n 7→ log (
∑n

i=1 πiyi), being the composition of

a linear map and an increasing concave function, is concave. Since the map π 7→ log Vπ(t) is

the sum of t such maps, it is concave as well.

3.4.3 Gaussian approximation

To obtain explicit and exact formulas we work in continuous time (see Section 2.4). Using

(1.4.2), the relative value of a constant-weighted portfolio is given by

log Vπ(t) =
n∑
i=1

πi log
µi(t)

µi(0)
+

1

2

n∑
i,j=1

πi (δij − πj) 〈log µi, log µj〉(t). (3.4.2)

Note that (3.4.2) is valid for any π ∈ Rn satisfying π1 + · · · + πn = 1. We see immediately

that log Vπ(t) is a quadratic function in π, meaning that the shape of the map π 7→ Vπ(t) is

Gaussian.

We are interested in the mean and covariance matrix of the density. For convenience of
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computation, we will adopt a coordinate system by dropping the last coordinate. Writing

Yi(t) = log µi(t)
µn(t)
− log µi(0)

µn(0)
for 1 ≤ i ≤ n− 1 and Λij(t) = 〈Yi, Yj〉(t), we can write (3.4.2) in

the form

log Vπ(t) = log
µn(t)

µn(0)
+

n−1∑
i=1

πiYi(t) +
1

2

n∑
i,j=1

πi (δij − πj) Λij(t).

Let θ = (π1, . . . , πn−1) ∈ Rn−1 and write Vθ(t) = Vπ(t). Assuming the ‘relative volatility

matrix’ Λ(t) = (Λij(t))1≤i,j≤n−1 is invertible, we can complete the squares and write, in

matrix notations (where all vectors are column vectors),

log Vθ(t) = log V ∗(t)− 1

2
(θ − θ∗(t))′ Λ(t) (θ − θ∗(t)) , θ ∈ Rn−1. (3.4.3)

In (3.4.3),

θ∗(t) = Λ−1(t)

(
Y (t) +

1

2
diag(Λ(t))

)
and

V ∗(t) = Vθ∗(t)(t). (3.4.4)

From (3.4.3), we see that θ∗(t) achieves the maximum relative value4 (over the time

interval [0, t]) over all constant-weighted portfolios. Thus

V ∗(t) = max
θ∈Rn−1

Vθ(t).

Moreover, the graph of the map θ 7→ Vθ is proportional to the density of the normal

N
(
θ∗(t),Λ−1(t)

)
distribution. In discrete time a similar formula can be derived using second order Taylor

approximation (see (3.1.3)). The graphs in Figure 3.3 are approximations of this Gaussian

density restricted to the unit simplex.

Since Λ(s) ≤ Λ(t) whenever s < t, we expect that the graph of θ 7→ Vθ(t) becomes more

and more concentrated in time.5 This leads naturally to the topic of concentration of wealth

4Since Vθ(t) = Zθ(t)/Zµ(t) (see (2.2.2)), it maximizes the portfolio value as well.

5Note that the covariance matrix depends only on the quadratic variations. In other words, if Λ(t) is
fixed, the concentration does not depend on the value of µ(t).
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in a family of portfolios. Its connection with large deviations and Cover’s universal portfolio

will be studied in Chapter 9.
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Part I

GEOMETRY
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Chapter 4

FUNCTIONALLY GENERATED PORTFOLIO

In this chapter we introduce the concept of functionally generated portfolio which is the

main object of study in this thesis. Functionally generated portfolio was first introduced by

Fernholz in [43] (see also [41, Chapter 3]) as a systematic method of constructing relative

arbitrage opportunities under the conditions of diversity and sufficient volatility. Further

generalizations are considered in [44] and [95].

In joint work with Soumik Pal [83] we showed that functionally generated portfolio has

deep connections with convex analysis and optimal transport, thereby giving theoretical

justifications of the concept. Moreover, we showed that functionally generated portfolios

are, in a sense to be made precise, the only portfolio maps that are volatility harvesting.

These results will be explained in this and the following two chapters. Throughout our

development a key role will be played by multiplicative cyclical monotonicity (Definition

4.2.2).

4.1 Functionally generated portfolio

Functionally generated portfolios are a family of portfolio maps π : ∆n → ∆n satisfying

certain properties. There are several equivalent ways of defining functionally generated

portfolio. We will first give a definition which is analogous to the approach of Chapter 3 and

is easy to state.

Definition 4.1.1 (Functionally generated portfolio). Let π : ∆n → ∆n be a portfolio map

and Φ : ∆n → (0,∞) be a concave function on ∆n. We say that π is generated by Φ if

n∑
i=1

πi(p)
qi
pi
≥ Φ(q)

Φ(p)
(4.1.1)
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for all p, q ∈ ∆n.1 We call ϕ = log Φ : ∆n → (0,∞) the log-generating function. We denote

by FG the collection of all portfolio maps that are functionally generated.

To motivate this definition let us consider constant-weighted portfolios. Recall from

(3.1.6) that the relative value of a constant-weighted portfolio π ∈ ∆n satisfies

∆ log Vπ(t) = −∆H (π | µ(t)) + γ∗π(t) ≥ −∆H (π | µ(t)) .

The last inequality holds because the excess growth rate γ∗π(t) is non-negative. By (2.2.3),

we have

∆ log Vπ(t) = log
Vπ(t+ 1)

Vπ(t)
= log

(
n∑
i=1

πi
µi(t+ 1)

µi(t)

)
.

Writing p = µ(t), q = µ(t+ 1) and exponentiating both sides, we have

n∑
i=1

πi
qi
pi
≥ exp (H (π | p)−H (π | q)) =

Φ(q)

Φ(p)
,

where

Φ(p) = pπ1
1 · · · pπnn (4.1.2)

is the geometric mean with weights π1, . . . , πn. It follows from the definition that the

constant-weighted portfolio is generated by the geometric mean (4.1.2). A way to think

about functionally generated portfolio is that in the decomposition (3.1.6) the relative en-

tropy is replaced by an arbitrary (concave) functions of the market weight vector.

The other term in the decomposition (3.1.6) is the excess growth rate (Definition 3.1.1).

Its generalization in this context is called the L-divergence.

Definition 4.1.2 (L-divergence). Let π be a functionally generated portfolio with log gener-

ating function ϕ. The L-divergence of the portfolio π is the functional T : ∆n×∆n → [0,∞)

defined by

T (q | p) = log

(
n∑
i=1

πi(p)
qi
pi

)
− (ϕ(q)− ϕ(p)) , p, q ∈ ∆n. (4.1.3)

If we need to make π or ϕ explicit we write Tπ or Tϕ.

1It can be shown that concavity of the generating function is a consequence of the inequality (4.1.1).
Fernholz’s original definition (see [41, Theorem 3.1.5]) does not require concavity of Φ.
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The L-divergence of π is well-defined because the log generating function ϕ is unique up

to an additive constant (see Proposition 4.3.2(i)). When π is a constant-weighted portfolio,

its L-divergence is equal to the excess growth rate. An alternative definition of L-divergence,

which depends only on ϕ, will be given in Section 4.5.

With the above definitions, we can write down immediately a decomposition formula for

a functionally generated portfolio analogous to that of a constant-weighted portfolio.2 We

call it Fernholz’s decomposition to acknowledge his fundamental work.

Proposition 4.1.3 (Fernholz’s decomposition). Let π be a functionally generated portfolio

with log generating function ϕ. For any market path, the relative value of π satisfies the

decomposition

log Vπ(t) = (ϕ(µ(t))− ϕ(µ(0))) +
t−1∑
s=0

T (µ(t+ 1) | µ(t)) . (4.1.4)

We write A(t) =
∑t−1

s=0 T (µ(t+ 1) | µ(t)) and call it the drift process.

In particular, suppose K is a subset of ∆n and the market path satisfies the following

conditions:

(i) The generating function Φ is bounded below from zero on K.

(ii) (Generalized diversity) µ(t) ∈ K for all t.

(iii) (Sufficient volatility) A(t) ↑ ∞ as t ↑ ∞.

Then the relative value of π satisfies limt→∞ Vπ(t) =∞.

Proof. The decomposition follows immediately from (4.1.1) and Definition 4.1.2. The second

statement can be proved using the argument of Prosposition 3.2.1.

In Table 4.1 we give several examples of functionally generated portfolio. See [41, Chapter

3] for more examples. The formulas of the portfolio weights can be verified using Proposition

2Compare our approach with the proof of [41, Theorem 3.1.5].
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Name πi(p) Φ(p)

Market pi 1

Buy-and-hold cipi∑n
j=1 cjpj

∑n
j=1 cjpj

Diversity-weighted
pλi∑n
j=1 p

λ
j

(∑n
j=1 p

λ
j

) 1
λ

Equal-weighted 1
n

(p1p2 · · · pn)
1
n

Constant-weighted πi pπ1
1 · · · pnπn

Entropy-weighted −pi log pi∑n
j=1−pj log pj

∑n
j=1−pj log pj

Table 4.1: Examples of functionally generated portfolios

4.3.1 below. It is important to note that the market portfolio is generated by a constant

function which is flat. More generally, buy-and-hold portfolios are generated by linear func-

tions with non-negative coefficients. These functions have zero curvature which explains

the lack of rebalancing. The diversity-weighted portfolio has been introduced in Section

2.2. Together with the entropy and constant-weighted portfolios, these are some of the first

functionally generated portfolios studied in stochastic portfolio theory.

4.2 Multiplicative cyclical monotonicity

In this section we give an equivalent – yet more fundamental – characterization of functionally

generated portfolio. The main mathematical tools are convex analytic and we begin by

reviewing some basic definitions.

4.2.1 Preliminaries in convex analysis

For our purpose we will specialize our treatment to ‘concave’ analysis on the unit simplex

∆n. For more background in convex analysis we refer the reader to [87] which is the standard
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reference of the subject. For now we will require little more than the definitions of concavity

and superdifferential. Additional tools will be introduced as needed.

Let f : ∆n → R. It is said to be concave if

f(λp+ (1− λ)q) ≥ λf(p) + (1− λ)f(q) (4.2.1)

for all p, q ∈ ∆n and λ ∈ [0, 1]. Concave functions enjoy many nice properties. For example,

if f : ∆ → R is concave, it is automatically continuous. Moreover, it is Lipschitz on any

compact subset of ∆n. By Rademacher’s theorem, this implies that f is almost everywhere

differentiable on ∆n.

Next we will define the superdifferential which is a generalization of derivative. By a

tangent vector of ∆n we mean a vector v ∈ Rn satisfying
∑n

i=1 vi = 0, i.e., v is parallel to

∆n. We denote by T∆n the vector space of tangent vectors of ∆n.

Definition 4.2.1 (Superdifferential). Let f : ∆n → R be concave and p ∈ ∆n. A supergra-

dient of f at p is a tangent vector v ∈ T∆n such that

f(p) + v · (q − p) ≥ f(q) (4.2.2)

for all q ∈ ∆n. The superdifferential ∂f(p) of f at p is the set of supergradients of f at p.

Geometrically, ∂f(p) corresponds to the collection of supporting hyperplanes of the graph

of f at the point (p, f(p)). If f is concave, then ∂f(p) is a non-empty compact convex subset

of T∆n (equipped with the usual topology).

4.2.2 Multiplicative cyclical monotonicity

Let π : ∆n → ∆n be a portfolio map. Recall this means that the portfolio vector at time

t is π(µ(t)) where µ(t) is the market weight vector. We want to capture the idea that π is

volatility harvesting.

A simple situation is the following. Suppose there exists m ≥ 0 such that the market

path {µ(t)}∞t=0 satisfies µ(t + (m + 1)) = µ(t) for all t. In other words, the market path is
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(m+1)-periodic. If π is volatility harvesting, we expect that π does not suffer in this market.

Over each cycle of length m+ 1, the log relative return of the portfolio π is

ω :=
m∏
t=0

(
π(µ(t)) · µ(t+ 1)

µ(t)

)
.

Iterating, the relative value at time k(m + 1) is Vπ(k(m + 1)) = ωk. If ω < 1, the relative

value converges to 0 as t → ∞. In order that the relative value does not decay to 0, we

require that ω ≥ 1 over the cycle.

The above discussion leads to the following definition.

Definition 4.2.2 (Multiplicative cyclical monotonicity (MCM)). By a cycle in the unit

simplex we mean a finite sequence {µ(t)}m+1
t=0 ⊂ ∆n satisfying µ(m + 1) = µ(0). Let π :

∆n → ∆n be a portfolio map. We say that π is multiplicatively cyclical monotone if

m∏
t=0

(
π(µ(t)) · µ(t+ 1)

µ(t)

)
≥ 1 (4.2.3)

for all cycles {µ(t)}m+1
t=0 in ∆n.

Note that (4.2.3) may be written in the form

m∑
t=0

log

(
1 +

π(µ(t))

µ(t)
· (µ(t+ 1)− µ(t))

)
≥ 1. (4.2.4)

Remark 4.2.3. The MCM property is a multiplicative version of the classicical notion of

cyclical monotonicity in convex analysis [87, Section 24]. For completeness and motivation

let us review this concept briefly. Let ρ be a multivalued map from Rn to Rn, i.e., ρ(x) is

a non-empty subset of Rn for each x ∈ Rn. We say that ρ is cyclically monotone if for any

cycle {x(t)}m+1
t=0 and any sequence {x∗(t)}m+1

t=0 such that x∗(t) ∈ ρ(x(t)) for all t, we have

m∑
t=0

x∗(t) · (x(t+ 1)− x(t)) ≤ 0. (4.2.5)

Note the similarity between (4.2.5) and (4.2.4).3 Here is the main result concerning cyclical

monotonicity.

3The signs are different because (4.2.5) is for convex functions, wheras (4.2.4) is for concave functions.
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Theorem 4.2.4. [87, Theorem 24.8] Let ρ be a multivalued map from Rn to Rn. Then there

exists a closed proper convex function f on Rn such that ρ(x) ⊂ ∂f(x) if and only if ρ is

cyclically monotone.

The main result of this section is the following analogue of Theorem 4.2.4.

Theorem 4.2.5. Let π : ∆n → ∆n be a portfolio map. Then π is multiplicatively cyclical

monotone if and only if it is functionally generated.

Proof. Our proof is an adaption of the proof of [87, Theorem 24.8]. First suppose that π is

generated by a concave function Φ : ∆n → (0,∞). Using (4.1.1), for any cycle {µ(t)}m+1
t=0 in

∆n we have
m∏
t=0

(
π(µ(t)) · µ(t+ 1)

µ(t)

)
≥

m∏
t=0

Φ(µ(t+ 1))

Φ(µ(t))
= 1.

This shows that π is multiplicatively cyclical monotone.

Conversely, suppose that π is multiplicatively cyclical monotone. We will construct a

function Φ : ∆n → (0,∞) such that (4.1.1) holds. Fix an arbitrary point µ(0) ∈ ∆n and

define Φ on ∆n by

Φ(p) = inf
m∏
t=0

(
π(µ(t)) · µ(t+ 1)

µ(t)

)
, (4.2.6)

where the infimum is taken over all m ≥ 0 and all sequences {µ(t)}m+1
t=0 in ∆n with µ(0) fixed

and µ(m + 1) = p. Financially, Φ(p) is the greatest lower bound of the relative value of π

over a finite market path from µ(0) to p.

We claim that π is generated by the function Φ. First we note that Φ, being the pointwise

infimum of a family of non-negative affine functions on ∆n, non-negative and concave on ∆n.

We also observe that Φ(µ(0)) = 1 by the MCM property (put m = 0). It follows by concavity

and non-negativity that Φ is everywhere positive on ∆n.

It remains to establish (4.1.1). Let p, q ∈ ∆n be given, and let α > Φ(p). By definition

of Φ, there exists m ≥ 0 and a sequence {µ(t)}m+1
t=0 with µ(m+ 1) = p such that

m∏
t=0

(
π(µ(t)) · µ(t+ 1)

µ(t)

)
< α.
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Setting µ(m+ 2) = q and applying the definition (4.2.6) onces more, we have

Φ(q) ≤
(
π(p) · q

p

)
α.

The proof is completed by letting α ↓ Φ(p).

4.3 Basic properties

In this section we establish several useful properties of functionally generated portfolios.

First we note that if Φ : ∆n → (0,∞) is concave, then ϕ = log Φ is also concave on ∆n and

∂ϕ(p) =
1

Φ(p)
∂Φ(p) =

{
1

Φ(p)
v : v ∈ ∂Φ(p)

}
.

Being the logarithm of a concave function, ϕ is said to be exponentially concave. For 1 ≤

i ≤ n, let e(i) = (0, . . . , 1, . . . , 0) be the vertex of ∆n in the pi-direction.

Proposition 4.3.1. Let Φ : ∆n → (0,∞) be concave, and let ϕ = log Φ.

(i) Suppose the portfolio map π : ∆n → ∆n is generated by Φ. For p ∈ ∆n, the tangent

vector v = (v1, . . . , vn) defined by

vi =
πi(p)

pi
− 1

n

n∑
j=1

πj(p)

pj
(4.3.1)

is an element of ∂ϕ(p).

(ii) Conversely, if v ∈ ∂ϕ(p) is a supergradient of ϕ at p, the vector π = (π1, . . . , πn)

defined by
πi
pi

= vi + 1−
n∑
j=1

pjvj, i = 1, . . . , n (4.3.2)

is an element of ∆n. In particular, any selection of ∂ϕ (a map v : ∆n → T∆n satisfying

v(p) ∈ ∂ϕ(p) for all p) defines via (4.3.2) a portfolio generated by Φ.

Finally, the operations π 7→ v and v 7→ π defined by (4.3.1) and (4.3.2) are inverses of

each other.
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Proof. (i) Let p ∈ ∆n. By (4.1.1), we have

1 +
π(p)

p
· (q − p) ≥ Φ(q)

Φ(p)

for all q ∈ ∆n. Note that π(p)
p

is not a tangent vector of ∆n. The normalization (4.3.1)

projects it to v which is a tangent vector. Since π(p)
p
− v is perpendicular to T∆n, the inner

product does not change if π(p)
p

is replaced by v. It follows that v ∈ ∂ϕ(p).

(ii) It is easy to verify that
∑n

i=1 πi = 1. To see that πi ≥ 0 for each i, consider the point

q = p+ t(e(i)− p) where t ∈ [0, 1). Since Φ(p)v ∈ ∂Φ(p), we have

−Φ(p) ≤ Φ(p+ t(e(i)− p))− Φ(p) (since Φ(q) > 0)

≤ Φ(p)v · t(e(i)− p)

= tΦ(p)

(
vi −

n∑
j=1

pjvj

)
.

Letting t ↑ 1 and dividing both sides by Φ(p), we get the desired inequality πi ≥ 0.

That π 7→ v and v 7→ π are inverses of each other can be verified by a direct computation.

Proposition 4.3.2. Let π be a portfolio map generated by a concave function Φ on ∆n, and

let ϕ = log Φ.

(i) The generating function Φ is unique up to a positive multiplicative constant.

(ii) For p ∈ ∆n and i = 1, . . . , n we have

1 +De(i)−pϕ(p) ≤ πi(p)

pi
≤ 1−Dp−e(i)ϕ(p).

Here Dvf(p) is the directional derivative of f in the direction v at p. In particular, if

Φ is differentiable, the portfolio map is given by the formula

πi(p) = pi
(
1 +De(i)−pϕ(p)

)
, i = 1, . . . , n. (4.3.3)
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(iii) If π is continuous, then Φ is continuously differentiable. More generally, if π is of class

Ck, then Φ is of class Ck+1.

Proof. (i) Suppose π is generated by both Φ1 and Φ2. Let p, q ∈ ∆n and consider the

line segment ` from p to q. Consider the restrictions of log Φi to `, denoted by log Φi|`.

They can be parameterized as one-dimensional concave functions. In particular, they are

differentiable on ` except at most for countably many points on `. By Proposition 4.3.1, the

vector π(p)
p

defines a supporting hyperplane of the log generating function. It follows that

log Φ1 and log Φ2 have parallel supporting hyperplanes at all points of ∆n. In particular,

the derivatives of log Φi|1 and log Φi|2 agree almost everywhere on `. By the fundamental

theorem of calculus for concave functions (see [87, Corollary 24.2.1]), we have

log Φ1(q)− log Φ1(p) = log Φ2(q)− log Φ2(p).

Since p and q are arbitrary, Φ2/Φ1 is a positive constant.

(ii) By definition of π, for h ∈ R \ {0} small enough such that p+ h(e(i)− p) ∈ ∆n, the

superdifferential inequality (4.1.1) gives

1 +
π(p)

p
· h(e(i)− p) ≥ Φ(p+ h(e(i)− p))

Φ(p)
. (4.3.4)

Note that the inner product is given by

π(p)

p
· h(e(i)− p) = h

(
πi(p)

pi
− 1

)
.

Taking logarithm on both sides of (4.3.4), we have

log

(
1 + h

(
πi(p)

pi
− 1

))
≥ ϕ(p+ h(e(i)− p))− ϕ(p).

Dividing by h and taking the limits as h ↓ 0 and h ↑ 0, we obtain the desired inequalities.

The next statement is proved by noting that if Φ (and hence ϕ = log Φ) is differentiable, for

every tangent vector v we have Dvϕ(p) = −D−vϕ(p).

(iii) Suppose the map π is continuous. By Proposition 4.3.1, π defines a continuous a

continuous selection of the superdifferential of ϕ. By [86, Proposition 4] ϕ, and hence Φ, is

differentiable on ∆n. By [87, Corollary 25.5.1], Φ is actually continuously differentiable.
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It is easy to see that if π is of class Ck then Φ is of class Ck+1.

Proposition 4.3.3 (Convexity). The set FG of functionally generated portfolios is convex.

Indeed, suppose π(1) and π(2) are functionally generated portfolios with generating functions

Φ(1) and Φ(2). For λ, the portfolio map

π = λπ(1) + (1− λ)π(2) (4.3.5)

is functionally generated, and a generating function is the geometric mean

Φ =
(
Φ(1)

)λ (
Φ(2)

)1−λ
.

Proof. We need to show that the portfolio π defined by (4.3.5) is generated by the geometric

mean Φ. For any p, q, we have

π(i)(p) · q
p
≥ Φ(i)(q)

Φ(i)(p)
, i = 1, 2.

By the AM-GM inequality, we have

π(p) · q
p
≥ λ

Φ(1(q)

Φ(1)(p)
+ (1− λ)

Φ(2)(q)

Φ(2)(p)
≥ Φ(q)

Φ(p)
.

4.4 Functionally generated portfolios on subsets of ∆n

Let Ω be a subset of ∆n. Instead of requiring a portfolio map to be defined on all of ∆n,

we may consider portfolio maps defined only on Ω. The idea is that the portfolio is only

used when the market weight remains in Ω. When the market weight exits Ω, one chooses

another portfolio map. This provides more flexibility for investment purposes.

Note that the proof of Theorem 4.2.5 does not require π to be defined on the whole of

∆n. Thus we have the following extension.

Corollary 4.4.1. Let Ω ⊂ ∆n be any (non-empty) subset, and let π : Ω→ ∆n. If π satisfies

the MCM property for cycles in Ω, there exists a concave function Φ : ∆n → (0,∞) such

that (4.1.1) holds for any p ∈ Ω and q ∈ ∆n. In particular, π can be extended to ∆n as a

portfolio generated by Φ.
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Figure 4.1: Cosine portfolio for n = 2 and k = 2.5. Left: Plot of p1 7→ Φ(p). Right: Plot of

p1 7→ π1(p) using the formula πi(p) = pi(1 +De(i)−p log Φ(p)). The dotted vertical lines show

the endpoints of Ω0. The red vertical lines show the endpoints of Ω.

Proof. The proof of Theorem 4.2.5 yields a positive concave function Φ on ∆n such that

(4.1.1) holds for any p ∈ Ω and q ∈ ∆n. For p /∈ Ω, let π(p) be given by (4.3.2) where v is

any element of ∂ log Φ(p). Then the extended portfolio map is generated by Φ.

By Corollary 4.4.1, an MCM portfolio map on Ω can be extended to an MCM portfolio

on ∆n. Thus, there is no loss of generality if we restrict to functionally generated portfolios

on ∆n. Nevertheless, it is sometimes more convenient to define a functionally generated

portfolio locally.

Example 4.4.2 (Cosine portfolio). Let p0 ∈ ∆n be fixed and k > 0. Consider the function

Φ(p) = cos (k‖p− p0‖)

where ‖ · ‖ is the Euclidean norm. For p ∈ Ω where

Ω =
{
p ∈ ∆n : ‖p− p0‖ <

π

2k

}
,
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the function Φ is positive and concave. This function is used in [79] to construct short term

relative arbitrage in large markets.

Note that Φ does not generate a ∆n-valued portfolio map on the whole of Ω (see Figure

4.1 where n = 2 and k = 2.5). The maximal domain Ω0 of π (for which it is ∆n-valued and

MCM) is approximately 0.2726 ≤ x1 ≤ 0.7273. Outside Ω0, Φ can be extended to a positive

concave function on ∆2 by letting it be affine outside Ω0 (see the black tangent line on the

left). In this context, we may say that π is generated by Φ on Ω0.

4.5 L-divergence

The L-divergence of a functionally generated portfolio has been defined in Definition 4.1.2.

Letting ϕ = log Φ be the log generating function, we have

T (q | p) = log

(
π(p) · q

p

)
− (ϕ(q)− ϕ(p))

for all p, q. For simplicity we restrict to differentiable generating functions in this section.

Since π(p)
p

is essentially the gradient of ϕ at p (see Proposition 4.3.1), we may express T (q | p)

solely in terms of ϕ.

Proposition 4.5.1. Let π be a functionally generated portfolio with a differentiable log gen-

erating function ϕ. Then, for any p, q we have

T (q | p) = log (1 +∇ϕ(p) · (q − p))− (ϕ(q)− ϕ(p)). (4.5.1)

For this reason, we may call T (· | ·) the L-divergence of the differentiable exponentially con-

cave function ϕ.

Proof. This is an immediate consequence of Proposition 4.3.1.

The L-divergence should be distinguished from the Bregman divergence of ϕ defined by

D[q : p] = ∇ϕ(p) · (q − p)− (ϕ(q)− ϕ(p)) . (4.5.2)
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Figure 4.2: Bregman divergence and L-divergence. The Bregman divergence is defined using

the linear approximation, and the L-divergence is defined using the logarithmic approxima-

tion.

Bregman divergence was introduced by Bregman in [16] and is widely applied in statistics

and optimization For example, the relative entropy

H (q | p) =
n∑
i=1

qi log
qi
pi

is the Bregman divergence of the Shannon entropy ϕ(p) = −
∑n

i=1 pi log pi. While L-

divergence appears to be a variant of Bregman divergence with a logarithmic correction,

the logarithm makes the two objects fundamentally different. Indeed, the Bregman diver-

gence is non-negative as soon as ϕ is concave. Since ϕ is the logarithm of a concave function,

its extra concavity cannot be captured by the usual Bregman divergence (see Figure 4.2).

In Chapter 10 we will show that the L-divergence induces a remarkable geometric structure

on the simplex ∆n.’
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Chapter 5

PSEUDO-ARBITRAGE

In Chapter 4 we claimed that functionally generated portfolios are the only portfolio

maps that are relative arbitrage opportunities under (only) the conditions of diversity and

sufficient volatility. In this chapter we make this statement rigorous using the concept of

pseudo-arbitrage introduced in [83].

5.1 Pseudo-arbitrage

Let π be a portfolio map. We want to capture the idea that π is a relative arbitrage with

respect to the market whenever it is diverse and sufficiently volatile. Recall in Definition

2.1.3 we defined diversity as a property of market paths:

sup
t≥0

max
1≤i≤n

µi(t) ≤ 1− δ. (5.1.1)

Alternatively, (5.1.1) is equivalent to µ(t) ∈ K for all t where K is the set {p ∈ ∆n :

max1≤i≤n pi ≤ 1− δ}. In this chapter we consider a generalized diversity condition where K

can be any subset of ∆n. This leads us to consider market paths with values in K.

Definition 5.1.1 (Pseudo-arbitrage). Let K be a subset of ∆n. A portfolio map π is said to

be a pseudo-arbitrage on K (with respect to the market portfolio) if the following properties

hold.

(i) There exists a constant C = C(K, π) ≥ 0 such that for all market paths {µ(t)}∞t=0

taking values in K, we have inft≥0 log Vπ(t) ≥ −C.

(ii) There exists a market path {µ(t)}∞t=0 ⊂ K along which limt→∞ Vπ(t) =∞.
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Definition 5.1.1 formalizes some necessary requirements in order that a given portfolio

map is guarenteed to outperform the market under the generalized diversity condition µ(t) ∈

K and sufficient volatility. First, (i) requires that the portfolio is never allowed to lose more

than a fixed amount. That is, the downside risk is uniformly bounded below regardless of

the market movement in a fixed region. Intuitively, this is because if (i) fails, the unfavorable

market movement may repeat again and again, causing the relative value to tend to zero.

Along this market path the portfolio has no hope of beating the market. Property (ii)

essentially says that the portfolio is not a buy-and-hold portfolio (which satisfies (i)).

Here are the main results of this chapter. First, we show that a pseudo-arbitrage oppor-

tunity is functionally generated.

Theorem 5.1.2. Let K be an open convex subset of ∆n and let π : K → ∆n be a portfolio

map on K. Then π is a pseudo-arbitrage on K if and only if the following properties hold:

(i) π can be extended to ∆n as a portfolio map generated by a positive concave function Φ

on ∆n.

(ii) The function Φ is not affine on K, or equivalently the L-divergence T (q | p) is not

identically zero for p, q ∈ K.

(iii) There exists ε > 0 such that infp∈K Φ(p) ≥ ε.

In Theorem 4.2.5 we showed that a portfolio map is functionally generated if and only

if it is multiplicatively cyclical monotone. The next result complements this and shows that

failing to be MCM is a local property. Here we use ‖ · ‖ to denote the Euclidean norm.

Theorem 5.1.3. Let π : ∆n → ∆n be a portfolio map which does not satisfy the MCM

property.

(i) For any δ > 0, there is a market path {µ(t)}∞t=0 such that ‖µ(t+ 1)− µ(t)‖ < δ for all

t and limt→∞ Vπ(t) = 0. Thus π cannot be a pseudo-arbitrage over any set containing

this path.
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(ii) For any δ > 0, there exists p ∈ ∆n such that the sequence in (i) can be chosen to lie

entirely within the Euclidean ball centered at p with radius δ.

The proofs of Theorems 5.1.2 and 5.1.3 will be given in the next two sections.

5.2 Proof of Theorem 5.1.2

First we suppose that conditions (i), (ii) and (iii) hold. Let {µ(t)}∞t=0 be any market path in

K. By (i), π is functionally generated. By Fernholz’s decomposition (Proposition 4.1.3), we

have

log Vπ(t) = log
Φ(µ(t))

Φ(µ(0))
+

t−1∑
s=0

T (µ(s+ 1) | s) (5.2.1)

for all t.

Since µ(t) ∈ K for all t, by condition (iii) we have

inf
t≥0

log
Φ(µ(t))

Φ(µ(0))
≥ inf

p∈K
(log Φ(p)− log Φ(µ(0))) > −∞.

Also the drift process A(t) =
∑t−1

s=0 T (µ(s+ 1) | s) is non-decreasing in t. It follows that (i)

of Definition 5.1.1 holds.

By condition (ii), there exists p, q ∈ K such that T (q | p) > 0. Now let {µ(t)}∞t=0 be any

market path in K such that (µ(t), µ(t + 1)) = (p, q) for infinitely many t. Then the drift

process tends to infinity as t → ∞, and it follows that limt→∞ Vπ(t) = ∞. Hence π is a

pseudo-arbitrage over the set K.

Conversely, suppose that π is a pseudo-arbitrage on K. Then π must satisfy the MCM

property on K. Thus π is generated by a concave function Φ on K.

Since π is functionally generated, we may apply Fernholz’s decomposition. Consider the

right hand side of (5.2.1). If the L-divergence T (· | ·) vanishes on K×K, the drift process is

identically zero. On the other hand, since a non-negative concave function on ∆n is bounded

above, the first term on the right hand side of (5.2.1) is bounded above. It follows that

supt≥0 Vπ(t) < ∞ for all market paths. This violates (ii) of Definition 5.1.1. Thus T (· | ·)
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does not vanish on K×K. Since K is (relatively) open in ∆n, this implies that the restriction

of Φ to K is not affine.

It remains to show that Φ is bounded away from 0 on K. We proceed by contradiction.

Suppose zero is a limit point of Φ(K). As a positive concave function on ∆n, Φ can be

extended continuously to ∆n. We can thus find a point q in K such that Φ(q) = 0. Fix a

point p ∈ K and let {λ(t)}∞t=0 be a strictly increasing sequence in [0, 1) converging to 1. Let

{µ(t)}∞t=0 be the market path in K defined by

µ(t) = (1− λ(t))p+ λ(t)q.

Since K is convex, we have [p, q) ⊂ K. We choose λ(t) such that log Φ is differentiable at

µ(t) for all t (this is possible sense log Φ is not differentiable for at most countably many

points on the segment [p, q]). Since log Φ is differentiable at µ(t), we have

π(µ(t))

µ(t)
· (µ(t+ 1)− µ(t)) = ∇ log Φ(µ(t)) · (µ(t+ 1)− µ(t)).

Using the elementary inequality log(1 + x) ≤ x for x > −1, we get

∞∑
t=0

log

(
π(µ(t))

µ(t)
· (µ(t+ 1)− µ(t))

)
≤

∞∑
t=0

∇ log Φ(µ(t)) · (µ(t+ 1)− µ(t)). (5.2.2)

Comparing the right hand side of (5.2.2) with the line integral∫
[p,q]

π(p)

p
dp = log Φ(q)− log Φ(p) = −∞,

we may choose {λ(t)}∞t=0 such that the right hand side of (5.2.2) is −∞. Thus, along this

market path the relative value Vπ(t) tends to zero as t→∞. This shows that π cannot be a

pseudo-arbitrage if zero is a limit point of Φ(K). This completes the proof of Theorem 5.1.2.

5.3 Proof of Theorem 5.1.3

To prove (i) we need the following definition.

Definition 5.3.1 (δ-MCM). Let δ > 0. A portfolio map π : ∆n → ∆n satisfies δ-MCM if the

inequality (4.2.3) holds for all market cycles where the successive jump sizes ‖µ(t+1)−µ(t)‖

are all less than δ.
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Lemma 5.3.2. Let π : ∆n → ∆n be a portfolio map. Then π is MCM if and only if π is

δ-MCM for all δ > 0.

Proof. It is clear that if π is MCM then π is δ-MCM for all δ > 0. To prove the converse,

suppose π is δ-MCM for all δ > 0. The idea is to repeat the proof of Theorem 4.2.5 with the

additional restriction that the jumps have sizes less than δ. Consider the function Φ defined

by (4.2.6), where now the infimum is taken over all m ≥ 0 and all choices of cycles {µ(t)}m+1
t=0

where ‖µ(t+ 1)− µ(t)‖ < δ for all t. Following the proof of Theorem 4.2.5, we see that Φ is

a positive concave function on ∆n and

Φ(p) + Φ(p)
π(p)

p
· (q − p) ≥ Φ(p), ‖p− q‖ < δ. (5.3.1)

This shows that the component of Φ(p)π(p)
p

parallel to ∆n (which is a tangent vector) is a

supergradient of the restricted concave function Φ|V at p, where V is a convex neighborhood

of p ∈ ∆n. However, by [87, Theorem 23.2] we have

∂Φ(p) = {ξ ∈ T∆n : DvΦ(p) ≤ ξ · v, for all v ∈ T∆n} .

Since the directional derivatives of Φ depends only on the values of Φ in a neighborhood

of p, we observe that ∂Φ(P ) = ∂ (Φ|V ) (p) for any convex neighborhood V of p. It follows

that (5.3.1) holds for all p, q ∈ ∆n. Hence π is generated by Φ, and by Theorem 4.2.5 π is

MCM.

Now (i) of Theorem 5.1.3 is an immediate consequence of Lemma 5.3.2.

To prove (ii), we will show that given δ > 0, there is a point p ∈ ∆n such that the MCM

property fails inside the Euclidean ball of radius δ around p. Then we may repeat the proof

of (i) in this ball. This will be achieved by a method of contradiction using the following

claim.

Claim. Suppose there exists δ > 0 such that for any p ∈ ∆n, the MCM property holds

over any choice of points selected within a ball of radius δ around p. Then the MCM property

holds on ∆n.
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Figure 5.1: Decomposing a loop as a union of local loops. Here r = γ1(u2).

To prove the above claim let us recall the notions of line integrals and conservative vector

fields. Let γ be a piecewise linear curve in ∆n indexed by a closed interval, say [0, 1]. The

curve will be called a loop if γ(0) = γ(1). The line integral of the vector field w(µ) := π(µ)/µ

over any γ will be denoted by

Iγ(w) :=

∫
γ

π(µ)

µ
dµ =

∫ 1

0

π(µ(t))

µ(t)
· µ′(t)dt.

The line integral does not depend on parametrization, except for the orientation. By a slight

abuse of notation, the line from any a to any b in ∆n, irrespective of parametrization, will

be denoted by [a, b].

Let p ∈ ∆n and let Bδ(p) = {q ∈ ∆n : ‖q − p‖ < δ}. Consider any loop γ whose range is

contained in Bδ(p). Then we have

Iγ(w) = 0. (5.3.2)

In other words, the vector field w is locally conservative restricted to every Bδ(p). To see

(5.3.2), we use the fact that π satisfies MCM overBδ(p). Therefore, by Theorem 4.2.5, there is

a positive concave function Φ on ∆n which generates π on Bδ(p). Consider any line ` = [p1, p2]

contained in Bδ(p). By [87, Theorem 24.2], we have I`(π/µ) = log Φ(p2) − log Φ(p1). Thus

(5.3.2) holds for any piecewise linear loop in Bδ(p).

We now show that any locally bounded and conservative vector field over ∆n must be

globally conservative. While this statement is well known for smooth vector fields, we only
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assume that π/µ is measurable and locally bounded, and the resulting potential log Φ is not

necessarily differentiable. Since we are unable to find a reference for this result, we will give

a sketch of proof and refer the reader to [83, Proof of Theorem 8] for more details.

Let w(µ) = π(µ)/µ be locally conservative in the sense of (5.3.2). Fix p, q ∈ ∆n and

consider two piecewise linear curves γ1 and γ2 from p to q. We will be done once we show∫
γ1

w(µ)dµ =

∫
γ2

w(µ)dµ. (5.3.3)

Without loss of generality, we may assume that γ2(t) = (1− t)p+ tq.

In fact, we can assume that γ1 has exactly three corners p, r, q and is a concatenation of

[p, r] and [r, q] (we call such curves triangular). This is because once we establish (5.3.3) for

such triangular curves, we can inductively eliminate corners in any other γ1 and establish

(5.3.3) in general.

For the rest of the argument we assume that γ1 is triangular and γ2 is [p, q]. Assume

both γ1 and γ2 are indexed by [0, 1].

We first suppose that sup0≤t≤1 ‖γ1(t) − γ2(t)‖ < δ
2
. In this case, choose points u0 =

0 < u1 < u2, . . . in [0, 1] such that their images on γ2 are a sequence of equidistant points

with successive distance less than δ/2. Now add lines between γ1(ui) and γ2(ui). Now

consider each loop which is formed by the 4 oriented lines [γ2 (ui+1) , γ2 (ui)], [γ2 (ui) , γ1 (ui)],

[γ1 (ui) , γ1 (ui+1)], and [γ1 (ui+1) , γ2 (ui+1)]. See Figure 5.1.

By the triangle inequality for Euclidean distance it follows that the loop lies entirely

inside Bδ (γ2 (ui)). Hence, by our assumption on local conservation, the integrals of w over

these loops are zero. However, the sum of the integrals over all these loops is precisely the

integral of w over the concatenation of lines γ1 and −γ2. Therefore this integral is zero,

proving (5.3.3).

It can be shown by means of a simple geometric argument that any other case can be

reduced to Case 1 above (see [83] for details). Now that we have shown that w is globally

conservative, we can unambiguously define a function Φ on ∆n by fixing some p0 ∈ ∆n and
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defining

log Φ(p) =

∫
γ

π

µ
dµ, p ∈ ∆n, (5.3.4)

where the integral is over any piecewise linear curve from p0 to p. Over any Bδ(p), the

function Φ must coincide (up to a constant) with the concave function resulting from the

local MCM property of the vector field w. Thus, Φ is locally concave on ∆n and hence it is

concave (see [55, page 58]) and generates π. This shows that π is MCM over ∆n and this

completes the proof of the theorem.
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Chapter 6

OPTIMAL TRANSPORT

In this chapter we explore a remarkable connection between functionally generated port-

folio and optimal transport theory. This relation is first studied in joint work with Soumik

Pal in [83, 82]. We begin by reviewing some general definitions of optimal transport theory.

For more background we refer the reader to [101] and [4].

6.1 Preliminaries in optimal transport

Let X and Y be Polish (separable complete metric) spaces. By P(X ) we mean the set of all

Borel probability measures on X (same for Y). Let c : X ×Y → R be a measurable function

called the cost function.

Let P ∈ P(X ) and Q ∈ P(Y). A coupling of the pair (P,Q) is a probability measure

R ∈ P(X × Y) whose marginals are P and Q respectively, i.e.,

R(A× Y) = P (A), R(X ×B) = Q(B)

for any Borel set A of X and any Borel set B of Y . We denote by Π(P,Q) the set of all

couplings of (P,Q). Note that Π(P,Q) is non-empty for any P and Q, for it contains the

product measure R = P ⊗ Q. A coupling R of (P,Q) can be represented by a random

element (X, Y ) whose distribution is R.

Given P and Q, the Monge-Kantorovich optimal transport problem is the problem

inf
R∈Π(P,Q),(X,Y )∼R

ER[c(X, Y )]. (6.1.1)

Here the notation means that the random element (X, Y ) has distribution R. The infimum

in (6.1.1) is called the value of the optimal transport problem. A coupling that attains the
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infimum is called an optimal coupling. If R is an optimal coupling, we say that R solves the

optimal transport problem. An optimal coupling (X, Y ) of (6.1.1) is said to be deterministic

if there exists a measurable function F : X → Y such that Y = F (X) almost surely.

It is well known that under mild technical conditions (see [101]), cyclical monotonicity is

a necessary and sufficient solution criteria of the optimal transport problem (6.1.1).

Definition 6.1.1. Let A be a subset of X × Y . We say that A is c-cyclical monotone if for

any m ≥ 1, any sequence {(x(k), y(k))}mk=1 in A and any permutation σ of {1, . . . , k}, we

have
m∑
k=1

c(x(k), y(k)) ≤
m∑
k=1

c(x(k), y(σ(k))). (6.1.2)

It can be shown that c-cyclical monotonicity is equivalent to the property that for any

finite sequence {(x(k), y(k))}mk=1 in A, we have
m∑
k=1

c(x(k), y(k)) ≤
m∑
k=1

c(x(k + 1), y(k)) (6.1.3)

with the convention x(m + 1) = x(1) and y(m + 1) = y(1). The proof uses the cyclical

decomposition of an arbitrary permutation.

6.2 Exponential coordinate system

In this section we formulate the optimal transport problem using the exponential coordinate

system. In [83] we studied two (almost equivalent) formulations of the transport problems.1

In this thesis we focus on the formulation given in terms of the exponential coordinates. The

following notations will also be used in Chapter 10.

6.2.1 ∆n as an exponential family

Consider the open unit simplex

∆n =

{
p = (p1, . . . , pn) ∈ Rn : pi > 0,

n∑
i=1

pi = 1

}
.

1Also see [83] for a related transport problem on ∆n where the negative relative entropy is taken as the
cost function.
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p1

p2

θ1

θ2

Figure 6.1: Coordinate curves of the exponential coordinate system.

We regard it as an (n−1)-dimensional smooth manifold. The exponential coordinate system

defines a global coordinate system on ∆n (see Figure 6.1).

Definition 6.2.1 (Exponential coordinate system). The exponential coordinate

θ = (θ1, . . . , θn−1) ∈ Rn−1

of p ∈ ∆n is given by

θi = log
pi
pn
, i = 1, . . . , n− 1. (6.2.1)

We denote this map by θ : ∆n → Rn−1. By convention we set θn ≡ 0. The inverse

transformation p := θ−1 is given by

pi = pi(θ) = eθi−ψ(θ), 1 ≤ i ≤ n, (6.2.2)

where

ψ(θ) = log

(
1 +

n−1∑
i=1

eθi

)
= log

(
n∑
i=1

eθi

)
(6.2.3)

Remark 6.2.2 (∆n as an exponential family). Let X = {1, 2, . . . , n}. Then the open unit

simplex ∆n can be regarded as the family of positive probability densities on X with respect
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to the counting measure. For i = 1, . . . , n− 1, let si : X → R be the function defined by

si(x) =

1 if x = i,

0 if x 6= i.

Now we may rewrite (6.2.1) and (6.2.2) in the form

px = f(x; θ) = exp

(
n∑
i=1

θisi(x)− ψ(θ)

)
, x ∈ X.

Thus we have expressed ∆n as an exponential family of probability densities where si are

the sufficient statistics. Moreover,

ψ(θ) = log

(
n∑
i=1

exp

(
n−1∑
i=1

θisi(x)

))
is the cumulant generating function of the family (see [2, Section 2.2.2]).

The exponential coordinate system is the first of several coordinate systems we will intro-

duce on the simplex. By changing coordinate systems, any function on ∆n can be expressed

as a function on Rn−1 and vice versa. Explicitly, a function ϕ on ∆n can be expressed in

exponential coordinates by θ 7→ ϕ(p(θ)). To simplify the notations, we simply write ϕ(p) or

ϕ(θ) depending on the coordinate system used. For example, if ϕ(p) =
∑n

i=1 πi log pi is the

cross entropy where π ∈ ∆n, then ϕ(θ) =
∑n−1

i=1 πiθi − ψ(θ).

6.2.2 Portfolio as a transport map

Now let π : ∆n → ∆n be a portfolio map.2 If the current market weight is µ(t) = p, the

portfolio vector is π(p). We may represent both p and π(p) in terms of the exponential

coordinate system. Let the exponential coordinates of p be θ = (θ1, . . . , θn). Then, there

exists φ ∈ Rn−1 such that the exponential coordinates of π(p) is θ − φ, i.e.,

θi − φi = log
πi(p)

πn(p)
, i = 1, . . . , n− 1. (6.2.4)

2Note that the range of π is ∆n but not the closed unit simplex ∆n. We need this assumption in order
to use the exponential coordinate system. In [83] we give another formulation of the transport problem
which does not require this assumption. Our formulation is slightly less general but is more suitable for
information geometry to be studied in Part III.
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Rearranging, we have

φi = θi − log
πi(θ)

πn(θ)
, i = 1, . . . , n− 1, (6.2.5)

and

πi(θ) = eθi−φi−ψ(θ−ψ), i = 1, . . . , n− 1.

Here we abuse notations and write π(θ) to mean π as a function of the exponential coor-

dinates. In other words, φ is the negative shift in exponential coordinates to go from p to

π(p). By (6.2.5), each portfolio map π : ∆n → ∆n induces a map F : Rn−1 → Rn−1 that

‘transport’ θ to φ.

6.2.3 The optimal transport problem

Now we may state the optimal transport problem. Using the notations of Section 6.1, we

take X = Y = Rn−1 which is a Polish space when equipped with the usual Euclidean metric

and topology. As for the cost function, we take

c(θ, φ) = ψ(θ − φ) = log

(
1 +

n−1∑
i=1

eθi−φi

)
, θ ∈ X , φ ∈ Y . (6.2.6)

Since the cost function is real-valued and continuous, there exists an optimal coupling

under mild integrability conditions on P and Q (see [101, Theorem 4.1]).

6.3 c-cyclical monotonicity

In this section we give the connection between portfolio theory and the cost function (6.2.6).

To do this, we need to express the relative value of a portfolio in terms of the exponential

coordinate system. Let π : ∆n → ∆n be a portfolio map, and let {µ(t)}∞t=0 be a market path.

Let θ(t) ∈ X = Rn−1 be the exponential coordinate of µ(t). Then we may regard the market

as a path in X .

We write φ = φ(θ) = F (θ) for the negative shift map induced by π (see (6.2.5)). For no-

tational convenience we write θn = φn = 0. Then θi = eθi−ψ(θ) and πi(θ) = eθi−φi(θ)−ψ(θ−φ(θ))

for all 1 ≤ i ≤ n.
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Using (2.2.3), we have

Vπ(t+ 1)

Vπ(t)
=

n∑
i=1

πi(µ(t))
µi(t+ 1)

µi(t)

=
n∑
i=1

eθi(t)−φi(θ(t))−ψ(θ(t)−φ(θ(t))) e
θi(t+1)−ψ(θ(t+1))

eθi(t)−ψ(θ(t))

= e−ψ(θ(t)−φ(θ(t)))+ψ(θ(t))−ψ(θ(t+1))eψ(θ(t+1)−φ(θ(t))).

Taking logarithm on both sides, we have

log
Vπ(t)

Vπ(t)
= [ψ(θ(t))− ψ(θ(t+ 1))] + [ψ(θ(t+ 1)− φ(θ(t)))− ψ(θ(t)− φ(θ(t)))] .

Summing over time, we get

log Vπ(t) = ψ(θ(0))− ψ(θ(t)) +
t−1∑
s=0

[ψ(θ(s+ 1)− φ(s))− ψ(θ(s)− φ(θ(s)))]

= ψ(θ(0))− ψ(θ(t)) +
t−1∑
s=0

[c(θ(s+ 1), φ(θ(s)))− c(θ(s), φ(θ(s)))] .

(6.3.1)

Now consider a discrete cycle {µ(t)}m+1
t=0 in ∆n where µ(m+1) = µ(m). Putting t = m+1

in (6.3.1), we have

log Vπ(m+ 1) =
m∑
t=0

[c(θ(t+ 1), φ(θ(t)))− c(θ(t), φ(θ(t)))] .

Using (6.1.3), we summarize the results in the following theorem.

Theorem 6.3.1. For any portfolio map π : ∆n → ∆n the following statements are equivalent.

(i) There exists an exponentially concave function ϕ on ∆n which generates π in the sense

of Definition 4.1.1.

(ii) The portfolio map is multiplicatively cyclical monotone in the sense of Definition 4.2.2.

(iii) The graph of the map θ 7→ φ defined by (6.2.5) is c-cyclical monotone.
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6.4 Optimal transport and duality

6.4.1 c-concavity and duality

Now we make use of the notion of c-concavity in optimal transport theory. The results of

this section will be useful in Chapter 10. The definitions we use are standard and can be

found in [4, Chapter 1]. For f : X → R ∪ {±∞} we define its c-transform by

f ∗(φ) = inf
θ∈X

(c(θ, φ)− f(θ)) , φ ∈ Y . (6.4.1)

The c-transform of a function g : Y → R ∪ {±∞} is defined analogously. We say that

f : X → R∪ {−∞} is c-concave if there exists g : Y → R∪ {−∞} such that f = g∗ (similar

for c-concave function on Y). A function h (on X or Y) is c-concave if and only if h∗∗ = h.

If f : X → R ∪ {−∞} is c-concave, its c-superdifferential is defined by

∂cf = {(θ, φ) ∈ X × Y : f(θ) + f ∗(φ) = c(θ, φ)} . (6.4.2)

For θ ∈ X we define ∂cf(θ) = {φ ∈ Y : (θ, φ) ∈ ∂cf}. If this set is a singleton {φ}, we call

φ the c-supergradient of f at θ and write φ = ∇cf(θ). Analogous definitions hold for a

c-concave function g on Y .

Let f : X → R ∪ {−∞} be c-concave. By definition, equality holds in

f(θ) + f ∗(φ) ≤ c(θ, φ) (6.4.3)

if and only if (θ, φ) ∈ ∂cf . This is a generalized version of Fenchel’s identity and will be used

frequently in this section.

Lemma 6.4.1 (Exponential concavity and c-concavity). For ϕ : ∆n → R ∪ {−∞} the

following statements are equivalent.

(i) ϕ is exponentially concave on ∆n.

(ii) The function f : X → R ∪ {−∞} defined by

f(θ) = ϕ(p(θ)) + ψ(θ)
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is c-concave on X .

(iii) The function g : Y → R ∪ {−∞} defined by

g(φ) = ϕ(p(−φ)) + ψ(−φ),

where −φ is the exponential coordinate, is c-concave on Y.

Proof. We prove the implication (i) ⇒ (ii) and the others can be proved similarly. Suppose

(i) holds and consider the non-negative concave function Φ = eϕ on ∆n. By [87, Theorem

10.3], we can extend Φ continuously up to ∆n, the closure of ∆n in Rn. We further extend Φ

to the affine hull H of ∆n in Rn by setting Φ(p) = −∞ for p /∈ ∆n. The extended function

Φ is then a closed concave function on H. By convex duality (see [87, Theorem 12.1]), there

exists a family C of affine functions on H such that

Φ(p) = inf
`∈C

`(p), p ∈ ∆n. (6.4.4)

Since Φ is non-negative on ∆n, each ` ∈ C is non-negative on ∆n. Replacing ` by the sequence

`k = ` + 1
k
, we may assume without loss of generality that each ` ∈ C is positive on ∆n.

We parameterize ` ∈ C in the form `(p) =
∑n

i=1 aipi where a1, . . . , an are positive constants.

Now we write

log `(p) = log

(
n∑
i=1

aipi

)

= log

(
1 +

n−1∑
i=1

ai
an

pi
pn

)
+ log pn + log an

= c(θ − φ)− ψ(θ) + log an,

where φi := − log ai
an

, i = 1, . . . , n− 1. It follows from (6.4.4) that

ϕ(θ) + ψ(θ) = inf
`∈C

(c(θ − φ) + log an) .

Define h : Y → R ∪ {−∞} by setting

h(φ) = inf

{
− log an : ∃ `(p) =

n∑
i=1

aipi ∈ C s.t. φi = − log
ai
an
∀ i

}
,
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where the infimum of the empty set is −∞. Thus f = ϕ + ψ = h∗ which shows that f is

c-concave on X .

Now we show that the transport problem is solved by a deterministic coupling under mild

conditions.

Proposition 6.4.2. Let R be an optimal coupling for the transport problem with cost c(θ, φ) =

ψ(θ − φ). Suppose that P is absolutely continuous with respect to the Lebesgue measure on

Rn−1 and the optimal cost is finite. Then there exists an exponentially concave function ϕ

on ∆n such that

(θ, φ) = (θ,∇cf(θ))

R-almost surely, where f = ϕ + ψ. In particular, the optimal coupling is attained by a

deterministic map.

Proof. Since R is an optimal coupling, its support is c-cyclical monotone. It follows that

there exists a c-concave function f on X such that the support of R is a subset of ∂cf ,

the c-superdifferential of f (see [4, Chapter 1]). Recall that (θ, φ) ∈ ∂cf if and only if

f(θ) + f ∗(φ) = c(θ, φ). Since −∞ + a = −∞ for all a ∈ [−∞,∞), f and f ∗ are real-

valued under P and Q respectively. By Lemma 6.4.1, if we define ϕ = f − ψ, then ϕ is

exponentially concave. We know that an exponentially concave function is almost everywhere

differentiable on its domain. Since P is assumed to be absolutely continuous, f is P -almost

surely differentiable. Thus φ = ∇cf(θ) P -almost surely.

In the smooth case, the transport map θ 7→ φ gives another coordinate system of the

simplex which will play a crucial role in Chapter 10. To prove this, we will impose the

following regularity conditions on the exponentially concave function ϕ.

Assumption 6.4.3 (Regularity conditions). We assume the following.

(i) The function ϕ is smooth (i.e., infinitely differentiable) on ∆n.
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(ii) The (Euclidean) Hessian of Φ = eϕ is strictly negative definite everywhere on ∆n. In

particular, Φ is strictly concave and the portfolio π generated by ϕ maps ∆n into ∆n.

The following is the c-concave version of the classical Legendre transformation [87].

Theorem 6.4.4 (c-Legendre transformation). Let ϕ be an exponentially concave function ϕ

satisfying Assumption 6.4.3, and let π be the portfolio map generated by ϕ. Given ϕ, consider

the c-concave function

f(θ) := ϕ(θ) + ψ(θ) (6.4.5)

defined on X = Rn−1 via the exponential coordinate system.

(i) The c-supergradient of f is given by (6.2.5), i.e.,

∇cf(θ) =

(
θi − log

πi(θ)

πn(θ)

)
1≤i≤n−1

, θ ∈ X . (6.4.6)

Moreover, the map ∇cf : X → Y is injective.

(ii) Let Y ′ ⊂ Y be the range of ∇cf . Then the c-supergradient of f ∗ is given on Y ′ by

∇cf ∗(φ) = (∇cf)−1 (φ).

In fact, the map ∇cf is a diffeomorphism from X to Y ′ whose inverse is ∇cf ∗. Also, the

function f ∗ is smooth on the open set Y ′.

Proof of Theorem 6.4.4. In this proof we treat θ and φ as independent variables.

We prove (i) and (ii) together. We begin by observing that

∂

∂θi
f(θ) = πi(θ), 1 ≤ i ≤ n− 1. (6.4.7)

To see this, write pi = eθi−ψ(θ). Switching coordinates and using the chain rule, we have

∂

∂θi
f(θ) =

n∑
j=1

∂ϕ

∂pj
(p)(−pipj) +

∂ϕ

∂pi
(p)pi + pi

= pi

(
1 +

∂ϕ

∂pi
(p)−

n∑
j=1

pj
∂ϕ

∂pj
(p)

)
= πi(θ).
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Consider the c-transform of f given by

f ∗(φ) = inf
θ∈X

(ψ(θ − φ)− f(θ)) . (6.4.8)

Differentiating ψ(θ− φ)− f(θ) and using (6.4.7), we see that θ ∈ X attains the infimum

in (6.4.8) if and only if

eθi−φi∑n
j=1 e

θj−φj
= πi(θ), i = 1, . . . , n− 1.

Rearranging, we have

φi = θi − log
πi(θ)

πn(θ)
, i = 1, . . . , n− 1. (6.4.9)

This proves that equality holds in

f(θ) + f ∗(φ) ≤ ψ(θ − φ) (6.4.10)

if and only if θ and φ satisfies the relation (6.4.9). In particular, for θ ∈ X the c-supergradient

∇cf(θ) is given by (6.4.9).

Next we we prove that the minimizer in (6.4.8), if exists, is unique. Consider instead

maximization of the quantity

eϕ(θ)+ψ(θ)−ψ(θ−φ) = Φ(θ)
eψ(θ)

eψ(θ−φ)
.

Expanding and switching to Euclidean coordinates, this equals

Φ(p)

∑n
i=1 e

θi∑n
i=1 e

θi−φi
= sup

p∈∆n

Φ(p)
1∑n

i=1 aipi
, (6.4.11)

where ai = e−φi > 0. Being the quotient of a strictly concave function and an affine function,

the right hand side of (6.4.11) is strictly quasi-concave, i.e., its superlevel sets are strictly

convex (see [15, Example 3.38]). This shows that the minimizer θ in (6.4.8) is unique if it

exists.

Let φ ∈ Y ′. Then there exists unique θ ∈ X such that equality holds in (6.4.10) and

φ = ∇cf(θ). In particular, the c-supergradient ∂cf ∗(φ) is θ and ∇cf ∗(∇cf(θ)) = θ. This

completes the proof of (i) and (ii).
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p ◦ −Id −θφθ p

p∗

∆n

primal Euclidean

∆n

dual Euclidean

X = Rn−1

primal exponential

Y ′ ⊂ Rn−1

dual exponential

∇cf

∇cf∗

Figure 6.2: Coordinate systems on ∆n.

It remains to prove that ∇cf : X → Y ′ is a diffeomorphism. Since ∇cf : X → Y is

smooth and injective, by the inverse function theorem it suffices to show that the Jacobian

of ∇cf is invertible everywhere. Using the fact that the Hessian of Φ is strictly positive

definite, this can be verified by a tedious calculation which we omit. Having known that the

transformation ∇cf ∗ is smooth, we see that

f ∗(φ) = c(∇cf ∗(φ), φ)− f(∇cf ∗(φ))

is smooth on Y ′ as well.

Although Y ′ is in general a strict subset of Y , the dual variable φ = ∇cf(θ) defines a

global coordinate system of the manifold ∆n. In Chapter 10 we will use another coordinate

system on ∆n called the dual Euclidean coordinate system. Thus we have four coordinate

systems on ∆n: Euclidean, primal, dual and dual Euclidean (see Figure 6.2). In the following

we will frequently switch between coordinate systems to facilitate computations. To avoid

confusions let us state once for all the conventions used. We let ϕ and f = ϕ+ ψ be given.

Definition 6.4.5 (Coordinate systems). For the manifold ∆n we call the identity map

p = (p1, . . . , pn), pi > 0,
n∑
i=1

pi = 1
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the (primal) Euclidean coordinate system with range ∆n. We let

θ = θ(p) =

(
log

p1

pn
, . . . , log

pn−1

pn

)
be the primal (exponential) coordinate system with range X and

φ = φ(p) := ∇cf(θ)

be the dual (exponential) coordinate system with range Y ′. The dual Euclidean coordinate

system is defined by the composition

p∗ = p∗(p) := p(−φ(p)).

From now on p, p∗, θ and φ always represent the same point of ∆n. In particular, unless

otherwise specified θ and φ are dual to each other in the sense that φ = ∇cf(θ). By

convention we let θn = φn = 0 for any p ∈ ∆n.

Notation 6.4.6 (Switching coordinate systems). We identify the spaces ∆n, X and Y ′ using

the coordinate systems in Definition 6.4.5. If h is a function on any one of these spaces, we

write h(p) = h(θ) = h(φ) = h(p∗) depending on the coordinate system used.

We also record a useful fact. A formula analogous to the first statement is derived in [95].

Lemma 6.4.7. For 1 ≤ i ≤ n− 1, we have

∂

∂θi
f(θ) = πi(θ),

∂

∂φi
f ∗(φ) = −πi(φ).

Proof. The first statement is derived in the proof of Theorem 6.4.4. The second statement

can be proved in a similar way using the chain rule.

6.5 Empirical examples: two stocks case

In general, solving optimal transport problems (either analytically or numerically for given P

and Q) is a difficult task; see for example [10] and the references therein. Designing practical

algorithms for solving the transport problem with cost (6.2.6) is an interesting open problem.
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In the case n = 2, the solution can be characterized explicitly due to the special structure of

the real line and the convexity of the cost function. In this section we present the solution

and give several empirical examples.

6.5.1 Monotone rearrangements

Throughout this section we assume n = 2. A typical point p in ∆n is represented as

p =

(
eθ

1 + eθ
,

1

1 + eθ

)
,

where θ ∈ R is the exponential coordinate of p. A portfolio vector π(p) with positive weights

corresponding to p can be expressed as

π(p) =

(
eθ−φ

1 + eθ−φ
,

1

1 + eθ−φ

)
for some φ ∈ R. So the exponential coordinate of π(p) is θ − φ. We will choose φ as a

function of θ. As φ increases, the portfolio underweights more and more stock 1 relative to

the market weight. See Figure 6.3 for the dependence of the portfolio on φ at different points

on the simplex. As an example, if |φ| is bounded by 0.6, the graph of the resulting portfolio

will lie within the curves labeled −0.6 and 0.6.

Consider the transport problem with cost (6.2.6). Let P and Q be probability measures

on R. We assume that P is absolutely continuous with respect to the Lebesgue measure.

The cost is

c(θ, φ) = ψ(θ − φ) = log
(
1 + eθ−φ

)
, θ, φ ∈ R.

Here ψ(x) = log (1 + ex) is smooth and strictly convex. The transport problem is

ER∈Π(P,Q)ψ(θ − φ) (6.5.1)

where (θ, φ) is a random element in R× R with distribution R.

Let G and H be the distribution functions of P and Q respectively.
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Figure 6.3: Plot of π1(p) = eθ−φ

1+eθ−φ
as a function of p1 = eθ

1+eθ
, for different values of φ

(labeled).

Definition 6.5.1 (Monotone rearrangement). The monotone transport map from P to Q is

the map F : R→ R defined by

F (x) = inf{y : H(y) ≥ G(x)}. (6.5.2)

In other words, F is defined by matching the quantiles of H to those of G. It is clear from

(6.5.2) that F is non-decreasing. Moreover, it is easy to check that if θ ∼ P , then F (θ) ∼ Q.

Thus (θ, F (θ)) is a coupling of (P,Q). In fact, F is the unique non-decreasing function (up

to the null sets of P ) which maps P to Q.

The following theorem is a special case of a well-known fact (see for example [59, Theorem

3.1]). Indeed, the monotone transport map remains optimal if ψ is replaced by any strictly

convex function.

Theorem 6.5.2. The coupling (θ, F (θ)) where θ ∼ P and F is the monotone transport map

from P to Q is the unique solution to the transport problem (6.5.1).
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An explicit example is where P and Q are normal. In this case, the monotone transport

map is linear and the corresponding portfolio is essentially a diversity-weighted portfolio.

Proposition 6.5.3. Let P = N(m1, σ
2
1) and Q = N(m2, σ

2
2). Then the monotone transport

map is given by

F (θ) = m2 +
σ2

σ1

(θ −m1), θ ∈ R.

Moreover, the portfolio map corresponding to the transport map F is given by

π(p) =

(
cpα1

cpα1 + pα2
,

pα2
cpα1 + pα2

)
, (6.5.3)

where α = 1− σ2

σ1
and c = exp

(
σ2

σ1
m1 −m2

)
.

Proof. Let X ∼ N(m1, σ
2
1) and Y ∼ N(m2, σ

2
2). The first statement follows from the fact

that (X −m1)/σ1 and (Y −m2)/σ2 have the same distribution.

To show (6.5.3), note that θ = log p1

p2
and, by definition of π(p), we have

log
π1(p)

π2(p)
= θ − F (θ) =

(
1− σ2

σ1

)
log

p1

p2

+

(
σ2

σ1

m1 −m2

)
= α log

p1

p2

+ log c.

Rearranging gives the result.

Clearly the portfolio has the form (6.5.3) whenever the transport map is linear, so the

normality assumption is not required. Nevertheless, it is instructive to see how the portfolio

depends on the means and variances of P and Q. In particular, the exponent α in Proposition

6.5.3 depends on the ratio σ2

σ1
. If σ1 = σ2, then α = 0 and π is a constant-weighted portfolio.

If 0 < σ2 < σ1, then 0 < α < 1 and π is essentially the diversity-weighted portfolio. If

σ2 > σ1 > 0, then α is negative and the corresponding portfolio is studied in the recent paper

[99]. On the other hand, the mean m2 of Q̃ represents systematic overweight/underweight

of stock 1 and interacts with other parameters to determine the constant c.

We may generalize Proposition 6.5.3 as follows.
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Example 6.5.4 (Product of Gaussian distributions). Let P be a product of one-dimensional

Gaussian distributions:

P =
n−1⊗
i=1

N(ai, σ
2
i ),

where ai ∈ R and σi > 0. Also let

Q =
n−1⊗
i=1

N(bi, (1− λ)σ2
i )

where bi ∈ R and 0 < λ < 1. Then the optimal transport map for the measures P and Q is

given by the map (6.2.5), where π is the following variant of the diversity-weighted portfolio:

πi(p) =
cip

λ
i∑n

j=1 cjp
λ
j

, ϕ(p) =
1

λ
log

(
n∑
j=1

cjp
λ
j

)
. (6.5.4)

Here the coefficients ci are chosen such that (1− λ)ai − log ci
cn

= bi for all i.

6.5.2 Empirical examples

In this subsection we use a simple example to illustrate how our methodology of optimal

transport might be applied in practice. Consider the monthly stock prices of Walmart (stock

1) and Microsoft (stock 2) from January 1995 to July 2015. The stock prices (normalized to

be $1 at January 1995) are plotted in Figure 6.4 (top left). The ‘market’ consists of the two

stocks and the initial market weight is (0.5, 0.5). We compute the exponential coordinate

process θ(t) = log µ1(t)
µ2(t)

(top right). Suppose we use the first 10 years of data (120 months) as

training data. Our objective is to use the training data as well as choices of Q to construct

portfolios that will be backtested using the next 10 years of data. To do this using optimal

transport, we need to specify the probability distributions P and Q on R.

Choice of P . The measure P reflects our belief of the position of θ(t) in the future.

Figure 6.4 plots the density estimate of θ(t) over the training period (bottom left). The

distribution is bimodal (corresponding to the periods 1997–2000 and 2002–2004) and is

mostly concentrated in the interval [−1.2, 0]. Suppose our belief is that the market weight

will most likely remain in this region in the next decade. For simplicity, we take P to be the
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Figure 6.4: Plots of the data. Top left: Time series of the normalized stock prices. Top

right: Time series of θ(t), the exponential coordinate process. Bottom left: Density estimate

of θ(t) over the training period (solid curve) and density of P (dashed curve). Bottom right:

Densities of our choices of Q.

normal distribution whose mean and standard deviation match those of the density estimate.

Explicitly, we have

P = N(−0.626, 0.305).

A more diffuse distribution can be chosen if the investor is less certain.

Choice of Q. Recall that the portfolio has the representation

π(p) =

(
eθ−φ

1 + eθ−φ
,

1

1 + eθ−φ

)
,
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where φ is a function of θ and Q is the marginal distribution of φ, given that θ is distributed

as P .

To illustrate the effects of different distributions we consider three distributions given as

follow:

Q1 = N(0, 0.08),

Q2 = Uniform(−0.2, 0.6),

Q3 = Laplace(location = −0.2, scale = 0.1).

Here we recall that the Laplace distribution with location parameter a and scale parameter

b has density given by f(x) = 1
b

exp
(
− |x−a|

b

)
. The densities of these distributions are shown

in Figure 6.4 (bottom right). We denote the resulting portfolios by π(1), π(2) and π(3).

Let us give some intuitions about these distributions. Overall, the distributions we choose

concentrate in the interval [−0.6, 0.6]. From Figure 6.3, they allow moderate deviations from

the market weight but not too much (most of the time).

Note that Q1 has mean 0 and has a rather small standard deviation (about a quarter

of the standard deviation of P ). This means that on average π(1) will not overweight or

underweight stock 1 (Walmart) and the deviation is most of the time small. By Proposition

6.5.3, we know that π(1) is a diversity-weighted portfolio with α = 1 − 0.08
0.305

≈ 0.74. (From

(6.5.3), the portfolio is constant-weighted if α = 0 and buy-and-hold if α = 1.)

For Q2, we expect that π(2) tends to underweight stock 1 (about 75% of the time provided

the future empirical distribution of θ(t) is close to P ). Since Q2 has bounded support,

the weight ratios of π(2) are uniformly bounded on ∆n. However, the underweight can be

significant on a certain region.

Finally, Q3 has a Laplace distribution which has fatter tails than the normal distribution.

Thus we expect that π(3) deviates more (from the market portfolio) than a diversity-weighted

portfolio with matching parameters near the boundary of the simplex. Also Q3 is chosen

to have negative mean. Thus π(3) will tend to overweight stock 1. In practice, the location

measure of Q should reflect the investor’s belief about the relative performances of the stocks
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in the future.

Results. For each choice of Q we solve the optimal transport problem using the method of

monotone rearrangement (Theorem 6.5.2). The resulting portfolio functions π(i) are plotted

in Figure 6.5. The range of µ1 shown contains more than 99.9% of the mass of P .

The features of the portfolios are consistent with our intuitions. As noted π(1) is a

diversity-weighted portfolio which is quite close to the market portfolio by construction. Note

that the curve intersects the market weight function around p1 = 0.35. This corresponds to

the median of P and is a consequence of the fact that Q1 is symmetric about 0. Thus if P

is close to reality, π(1) will overweight stock 1 half of the time and underweight stock 1 half

of the time.

The portfolio π(2) consistently underweights stock 1 because Q2 is biased towards the

right, and it has the largest deviation on the range shown. Nevertheless, if we draw the

curves towards the boundary points 0 and 1, the boundedness of the support of Q2 forces

π(2) to be close to the market weight near the boundary of the simplex (in the sense that the

weight ratios are bounded). This is not the case for π(1) and π(3) whose distributions have



83

Log relative values of the portfolios

2006 2008 2010 2012 2014

−
0.

02
0.

00
0.

02
0.

04
0.

06

Normal
Uniform
Laplace

Figure 6.6: Log relative values of the portfolios π(i) in the testing period 2005− 2015.

unbounded supports.

As for π(3), we note that most of the curve is above the market because Q3 has negative

mean. The portfolio deviates more and more towards the boundary because the Laplace

distribution has fat tails. In this case, optimal transport couples large values of |φ| with the

boundary values of p which have small probability under P .

Backtesting. Finally we compute the relative values of the three portfolios with respect

to the market portfolio during the testing period 2005–2015. The result is shown in Figure

6.6.

At the end of the period all three portfolios outperformed the market (by respectively

2.17%, 7.49% and 2.38%, in log scale, over the 10 year period). The amounts are not large

(except perhaps for π(2)), and this is mostly because the portfolios deviate only moderately

from the market portfolio. While detailed analysis of the performance is beyond the scope

of the paper, we note that the relative riskiness of the portfolio (with respect to the market

portfolio, also called the tracking error) depends on the deviation from the market weights

and hence the location and dispersion of Q. The distribution Q2 deviates most from 0 and

thus π(2) is riskier; it also has the biggest reward at the end of the period. Note that the

approach of optimal transport optimizes a portfolio function over a region of ∆n instead
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of picking portfolio weights period by period; it is simpler and perhaps more robust and

prevents overfitting.
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Chapter 7

RELATIVE CONCAVITY

Let π : ∆n → ∆n be a portfolio map generated by a concave function Φ on ∆n. In

Chapter 4 we saw that its L-divergence T (· | ·) measures the concavity of Φ (or, rather,

ϕ = log Φ) as well as the market volatility harvested by the portfolio. Using Fernholz’s

decomposition (Proposition 4.1.3), we can formulate conditions on {µ(t)}∞t=0 under which π

is a relative arbitrage opportunity with respect to the market portfolio.

So far we have been using the market portfolilo as the benchmark. In this chapter we ask

the following natural question: if we replace the market portfolio by an arbitrary functionally

generated portfolio (such as the equal-weighted portfolio), can we follow the same approach

and construct relative arbitrage opportunities under the conditions of diversity and sufficient

volatility?

Restricting to portfolio maps that are continuously differentiable, we showed in [103] that

the answer is in general no. The main idea is the following. Let τ and π be functionally

generated portfolios with generating functions Ψ and Φ. If τ is ‘volatility harvesting’ relative

to π, it must be the case that Ψ is everywhere more concave than Ψ. Thus, the concept of

‘relative’ volatility harvesting induces a partial ordering on functionally generated portfolios

and their generating functions. We will formulate a sufficient condition for a given portfolio

to be maximal with repsect to this ordering. Such portfolios cannot be beaten if only diversity

and sufficient volatility are assumed. Some portfolios that are maximal in this sense are the

equal-weighted portfolio and the entropy-weighted portfolio.
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7.1 Maximal portfolio

In this section we define the partial ordering under which portfolio maps are compared. In

Chapter 4 we used the concept of multiplicative cyclical monotonicity (MCM) to capture

the idea of volatility harvesting (with respect to the market portfolio). Now we extend the

definition to allow an arbitrary benchmark portfolio.

Definition 7.1.1 (Relative muliplicative cyclical monotonicity (RMCM)). Let π and τ be

portfolio maps. We say that τ is multiplicatively cyclical monotone relative to π if over any

discrete cycle

µ(0), µ(1), . . . , µ(m), µ(m+ 1) = µ(0)

in ∆n we have

Vτ (m+ 1) =
m∏
t=0

(
τ(µ(t)) · µ(t+ 1)

µ(t)

)
≥

m∏
t=0

(
π(µ(t)) · µ(t+ 1)

µ(t)

)
= Vπ(m+ 1). (7.1.1)

In words, τ is MCM relative to π if τ does not earn less than π over any finite cycle in

∆n. We will show that RMCM is equivalent to the following property.

Definition 7.1.2 (Domination on compacts). Let π and τ be portfolio maps. We say that

τ dominates π on compacts (written τ � π) if for any compact subset K of ∆n, there exists

a constant C = C(π, τ,K) ≥ 0 such that

log
Vτ (t)

Vπ(t)
≥ −C, t ≥ 0 (7.1.2)

for any market path {µ(t)}∞t=0 ⊂ K.

As the next lemma shows, the partial order � is closely related to pseudo-arbitrage

introduced in Chapter 5.

Lemma 7.1.3. Let π and τ be portfolio maps. Suppose τ is a pseudo-arbitrage relative to

π on Kj for all j, where {Kj} is a compact exhaustion of ∆n. Then τ dominates π on

compacts.
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Proof. Condition (7.1.2) is simply condition (i) of the definition of pseudo-arbitrage.

Theorem 7.1.4. Let π be a portfolio map generated by a concave function Φ : ∆n → (0,∞),

and let τ be an arbitrary portfolio map. Then the following statements are equivalent.

(i) τ dominates π on compacts, i.e., τ � π.

(ii) τ satisfies MCM relative to π.

(iii) τ is generated by a concave function Ψ, and the L-divergence Tτ (· | ·) of (τ,Ψ) domi-

nates Tπ (· | ·) of (π,Φ) in the sense that

Tτ (q | p) ≥ Tπ (q | p) (7.1.3)

for all p, q ∈ ∆n.

Proof. (i) ⇒ (ii): Suppose τ dominates π on compacts. If τ is not MCM relative to π, we

can find a discrete cycle {µ(t)}m+1
t=0 in ∆n over which η := Vτ (m+1)/Vπ(m+1) < 1. Consider

the market path which goes over this cycle again and again, i.e., µ(t) = µ(t + (m + 1)) for

all t. Then
Vτ (k(m+ 1))

Vπ(k(m+ 1))
= ηk

for all k ≥ 0 and the ratio tends to 0 as k → ∞. This contradicts the hypothesis τ � π.

Thus if τ dominates π on compacts then τ satisfies MCM relative to π.

(ii) ⇒ (iii): Suppose τ satisfies MCM relative to π. Since Vµ(·) ≡ 1 by definition and π

satisfies MCM relative to the market portfolio (by Theorem 4.2.5), τ satisfies MCM relative

to the market portfolio as well. By Theorem 4.2.5 again τ has a generating function Ψ. To

prove (7.1.3), let p, q ∈ ∆n with p 6= q. Let {q = µ(1), . . . , µ(m), µ(m+1) = p} be a partition

of the line segment [q, p]. Setting µ(0) = p, {µ(t)}m+1
t=0 is a cycle which starts at p, jumps to

q and then returns to p along the partition. Then the RMCM inequality (7.1.1) implies that(
1 +

τ(p)

p
· (q − p)

) m∏
t=1

(
1 +

τ(µ(t))

µ(t)
· (µ(t+ 1)− µ(t))

)
≥
(

1 +
π(p)

p
· (q − p)

) m∏
t=1

(
1 +

π(µ(t))

µ(t)
· (µ(t+ 1)− µ(t))

)
.

(7.1.4)



88

Taking log on both sides, we have

log

(
1 +

τ(p)

p
· (q − p)

)
+

m∑
t=1

log

(
1 +

τ(µ(t))

µ(t)
· (µ(t+ 1)− µ(t))

)
≥ log

(
1 +

π(p)

p
· (q − p)

)
+

m∑
t=1

log

(
1 +

π(µ(t))

µ(t)
· (µ(t+ 1)− µ(t))

)
.

By the fundamental theorem of calculus for concave function and Taylor approximation, we

can choose a sequence of partitions with mesh size going to zero, along which

m∑
t=0

log

(
1 +

π(µ(t))

µ(t)
· (µ(t+ 1)− µ(t))

)
→
∫
γ

π

µ
dµ = log

Φ(p)

Φ(q)
,

m∑
t=0

log

(
1 +

τ(µ(t))

µ(t)
· (µ(t+ 1)− µ(t))

)
→
∫
γ

τ

µ
dµ = log

Ψ(p)

Ψ(q)
,

where γ is the line segment from q to p. Taking the corresponding limit in (7.1.4), we obtain

the desired inequality (7.1.3).

(iii) ⇒ (i): Let {µ(t)}∞t=0 be any market path. By Proposition 4.1.3 we can write

log
Vτ (t)

Vπ(t)
= log

Ψ(µ(t))/Ψ(µ(0))

Φ(µ(t))/Φ(µ(0))
+ (Aτ (t)− Aπ(t)) ,

where Aτ and Aπ are the drift processes of τ and π respectively. By (iii), Aτ (t) − Aπ(t) is

non-decreasing in t. Since log Ψ(µ(t))/Ψ(µ(0))
Φ(µ(t))/Φ(µ(0))

is bounded as long as µ(t) stays within a compact

subset of ∆n, τ dominates π on compacts.

Having defined the partial order �, we introduce the concept of maximal portfolio.

Definition 7.1.5 (Maximal portfolio). Let S be a family of portfolio maps. We say that a

portfolio π ∈ S is maximal in S if there is no portfolio map in S, other than π itself, that

dominates π on compacts, i.e., τ ∈ S and τ � π implies τ = π.

We are interested in the case where π is functionally generated. To state the main result

of this chapter we need a definition taken from [41, Definition 3.4.1].
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Definition 7.1.6 (Measure of diversity). We say that Φ is a measure of diversity if it is a

C2 (twice continuously differentiable) concave function on ∆n which is symmetric, i.e.,

Φ(p1, . . . , pn) = Φ(pσ(1), . . . , pσ(n))

for all p ∈ ∆n and any permutation σ of {1, . . . , n}.

Theorem 7.1.7. Let π be a portfolio map generated by a measure of diversity Φ. Let

e =
(

1
n
, . . . , 1

n

)
be the barycenter of the simplex ∆n. If∫ 1

0

1

Φ(te(1) + (1− t)e)2
dt =∞, (7.1.5)

then π is maximal in the family of continouously differentiable portfolios maps.

This sufficient condition is satisfied by the equal and entropy weighted portfolios among

many other portfolios. Note that by Theorem 7.1.4, if π is functionally generated and τ

dominates π on compacts, then τ must be functionally generated. Thus we may rephrase

Theorem 7.1.7 by saying that if (7.1.5) holds then π is maximal in the family of functionally

generated portfolios with C2 generating functions. A consequence of Theorem 7.1.7 is the

following.

Corollary 7.1.8. Under the setting of Theorem 7.1.7, suppose τ is a C1 portfolio map not

equal to π. Then there is a compact set K ⊂ ∆n and a market path {µ(t)}∞t=0 taking values

in K, such that the portfolio value of τ relative to π tends to zero as t tends to infinity.

One can interpret Corollary 7.1.8 by saying that if π is maximal and τ 6= π, it is possible

to find a diverse and sufficiently volatile market in which π beats τ in the long run. In this

sense, for a portfolio map π satisfying (7.1.5), it is impossible to find a portfolio map which

is a relative arbitrage with respect to π in all diverse and sufficiently volatile markets.

Remark 7.1.9. The relation ‘domination on compacts’ refers to global properties of portfolio

maps. Even if π is maximal, for a fixed subset K ⊂ ∆n it may be possible to find a portfolio

τ (depending on K) which beats π in the long run whenever {µ(t)}∞t=0 ⊂ K. For example,
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when n = 2, it can be shown that the entropy-weighted portfolio beats the equal-weighted

portfolio in the long run if {µ(t)} is sufficiently volatile and stays in a sufficiently small

neighborhood of
(

1
2
, 1

2

)
. This, however, requires that K is known in advance. Maximality of

π requires that there is no single τ which beats π on all compact sets K ⊂ ∆n.

7.2 Drift quadratic form

By Theorem 7.1.4, to prove Theorem 7.1.7 we need to study the relative concavities of

generating functions, where concavity is measured by L-divergence. Since we restrict to

generating functions that are twice continuously differentiable, the infinitesimal version of

(7.1.3) leads to second order differential inequalities.

Definition 7.2.1. Let FG2 be the collection of portfolio maps generated by C2 concave

functions. We write (π,Φ) ∈ FG2 to emphasize that π is generated by Φ.

Definition 7.2.2 (Drift quadratic form). Let (π,Φ) ∈ FG2. Its drift quadratic form, denoted

by both Hπ and HΦ, is defined by

Hπ(p)(v, v) :=
−1

2Φ(p)
Hess Φ(p)(v, v), p ∈ ∆n, v ∈ T∆n.

Here Hess Φ is the Hessian of Φ regarded as a quadratic form. By definition, it is given by

Hess Φ(p)(v, v) =
d2

dt2
Φ(p+ tv)

∣∣∣∣
t=0

. (7.2.1)

Remark 7.2.3. In Chapter 10 we will interpret 2Hπ(p)(·, ·) as a Riemannian metric on ∆n

induced by the generating function.

Lemma 7.2.4. The L-divergence and the drift quadratic form are concave in the portfolio

weights in the following sense. Let (π(1),Φ(1)), (π(2),Φ(2)) ∈ FG. For λ ∈ [0, 1], let π =

λπ(1) + (1− λ)π(2) and let Φ =
(
Φ(1)

)λ (
Φ(2)

)1−λ
be the generating function of π. Let T , T (1)

and T (2) be the L-divergences of (π,Φ), (π(1),Φ(1)) and (π(2),Φ(2)) respectively. Then

T (q | p) ≥ λT (1) (q | p) + (1− λ)T (2) (q | p) , p, q ∈ ∆n. (7.2.2)
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If Φ(1) and Φ(2) are C2, then Hπ ≥ λHπ(1) + (1− λ)Hπ(2) in the sense that

Hπ(p)(v, v) ≥ λHπ(1)(p)(v, v) + (1− λ)Hπ(2)(p)(v, v) (7.2.3)

for all p ∈ ∆n and v ∈ T∆n.

Proof. To prove (7.2.2) we write the L-divergence T (q | p) of a functionally generated port-

folio (π,Φ) in the form

T (q | p) = log

(
1 +

〈
π(p)

p
, q − p

〉)
− Iπ(γ),

where Iπ(γ) = log Φ(q)− log Φ(p) =
∫
γ
π(p)
p
dp is the line integral of the weight ratio along the

line segment from p to q. Since the line integral is linear in π and the logarithm is concave,

we see that T (q | p) is concave in π. The statement for the drift quadratic form follows from

the Taylor approximation (7.2.5).

Lemma 7.2.5. Let (π,Φ), (τ,Ψ) ∈ FG2, and let Tπ and Tτ be their corresponding L-

divergences. If τ � π and therefore Tτ (q | p) ≥ Tπ (q | p) for all p, q ∈ ∆n, then Hτ ≥ Hπ in

the sense that

Hτ (p)(v, v) ≥ Hπ(p)(v, v) (7.2.4)

for all p ∈ ∆n and v ∈ T∆n.

Proof. The lemma follows immediately from the Taylor approximation

Tπ (p+ tv | p) =
−t2

2Φ(p)
Hess Φ(p)(v, v) + o

(
t2
)
. (7.2.5)

where p ∈ ∆n, v is a tangent vector, and t ∈ R is small.

As a consequence of Lemma 7.2.5, in order to show that a portfolio π ∈ FG2 is maximal

in FG2, it is enough to show that its drift quadratic form Hπ is not dominated (in the sense

of (7.2.4)) by that of some other portfolio. This is the approach we use to prove Theorem

7.1.7. Simple examples show, however, that Hτ ≥ Hπ does not imply Tτ ≥ Tπ.
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Example 7.2.6 (Diversity-weighted portfolio). For 0 < r < 1, the diversity-weighted portfolio

π is generated by the function

Φ(p) =

(
n∑
j=1

prj

) 1
r

.

It is easy to show that Φ is bounded below by 1. Let τ be the portfolio generated by

Ψ := Φ − 1. Then it can be shown that τ � π. To see this, write the L-divergence in the

form

Tπ (q | p) = log
Φ(p) +Dq−pΦ(p)

Φ(q)
, p, q ∈ ∆n. (7.2.6)

Then

Tτ (q | p) = log
(Φ(p)− 1) +Dq−pΦ(p)

Φ(q)− 1
≥ Tπ (q | p) .

From (7.2.6), we can show that for a portfolio (π,Φ) to be maximal in FG2, it is necessary

that the continuous extension of Φ to the closure ∆n (which exists by [87, Theorem 10.3])

vanishes at all the vertices e(1), . . . , e(n) (because otherwise we can subtract an affine

function from Φ and make T larger). However this condition is not sufficient for π to be

maximal in FG2.

7.3 Relative concavity

To illustrate the ideas of the proof of Theorem 7.1.7 we first give a proof of the maximality

of the equal-weighted portfolio for n = 2.

7.3.1 Two-asset case

Proposition 7.3.1. For n = 2, the equal-weighted portfolio π ≡
(

1
2
, 1

2

)
generated by the

geometric mean Φ(p) =
√
p1p2 is maximal in FG2.

Proof. Let (τ,Ψ) ∈ FG2 be a portfolio which dominates (π,Φ) on compacts. Define u(x) =

Φ(x, 1−x) =
√
x(1− x) and let v(x) = Ψ(x, 1−x), x ∈ (0, 1). Then u and v are positive C2

concave functions on (0, 1). By Theorem 7.1.4 and Lemma 7.2.5, the drift quadratic form of
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τ dominates that of π. Using (7.2.1), we have the differential inequality

−v′′(x)

v(x)
≥ −u

′′(x)

u(x)
=

1

4 (x(1− x))2 , x ∈ (0, 1). (7.3.1)

We claim that v also generates the equal-weighted portfolio, and so τ = π.

We will use a transformation which amounts to a change of numéraire using y = log x
1−x .

See the binary tree model in [81, Section 4] for the motivation of this transformation and

related results. Define a function τ1 : (0, 1)→ [0, 1] by

τ1(x) = x+ x(1− x)
v′(x)

v(x)
= x [1 + (1− x)(log v)′(x)] . (7.3.2)

By (4.3.3), this is the portfolio weight of stock 1 generated by v and τ1 takes value in [0, 1].

Let y = log x
1−x , so x = ey

1+ey
. Define q : R→ [0, 1] by

q(y) = τ1(x) =
ey

1 + ey
+

ey

(1 + ey)2

v′(x)

v(x)
, x =

ey

1 + ey
, y ∈ R.

For the equal-weighted portfolio the corresponding portfolio weight function is identically 1
2
.

It follows from a straightforward computation that

q(y)(1− q(y))− q′(y) =
−e2y

(1 + ey)4

v′′(x)

v(x)
.

Now (7.3.1) can be rewritten in the form

q(y)(1− q(y))− q′(y) ≥ 1

4
, y ∈ R. (7.3.3)

The proof is then completed by the following elementary lemma.

Lemma 7.3.2. Suppose q : R → [0, 1] is differentiable and q(y)(1 − q(y)) − q′(y) ≥ 1/4 on

R. Then q(y) ≡ 1/2.

Proof. Since 0 ≤ q(y) ≤ 1, we have

q′(y) ≤ q(y)(1− q(y))− 1

4
≤ 1

4
− 1

4
= 0,
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so q is non-increasing. If q(y0) = q0 <
1
2

for some y0, then on y ∈ [y0,∞], q must satisfy the

differential inequality

q′(y) ≤ q0(1− q0)− 1

4
< 0,

which contradicts the fact that q(y) ≥ 0. Similarly, if q(y0) = q0 > 1
2

for some y0, the

same inequality is satisfied on (−∞, y0], again a contradiction. Thus we get q(y) ≡ 1
2

for all

y ∈ R.

The main idea of the proof of Proposition 7.3.1 is that for a portfolio to dominate the

equal-weighted portfolio π on compacts, it must be more aggressive than π everywhere on the

simplex. This means buying more and more the underperforming stock at a sufficiently fast

rate satisfying (7.3.3), but this is impossible to continue up to the boundary of the simplex.

While there is a multi-dimensional analogue of the differential inequality (7.3.3) (see [83,

Theorem 9]), we are unable to extend this proof to the multi-asset case since the market

and portfolio weights can move in many directions. Instead, we will work with portfolio

generating functions.

7.3.2 Relative concavity lemma

The main ingredient of the proof of Theorem 7.1.7 is the following ingenious observation taken

from [25] and [26, Lemma 2] (it is called the relative convexity lemma in these references).

It related to Sturm’s comparison theorem for elliptic equations and can be proved by direct

differentiation.

Lemma 7.3.3 (Relative concavity lemma). [25] Let −∞ < a < b ≤ ∞ and c, C : [a, b)→ R

be continuous. Suppose u, v : [a, b)→ (0,∞) are C2 and satisfy the differential equations

u′′(x) + c(x)u(x) = 0, x ∈ [a, b),

v′′(x) + C(x)v(x) = 0, x ∈ [a, b).

Define F : [a, b)→ [0,∞) by

F (x) =

∫ x

a

1

u(t)2
dt, x ∈ [a, b).
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Let G be the inverse of F defined on [0, `), where ` = limx↑b F (x). Then the function

w(y) :=
v(G(y))

u(G(y))

defined on [0, `) satisfies the differential equation

w′′(y) = −(C(x)− c(x))u(x)4w(y), 0 ≤ y < `, x = G(y).

In particular, if C(x) ≥ c(x) on [a, b), then w is concave on [0, `).

7.4 Proof of Theorem 7.1.7

Let τ : ∆n → ∆n be a C1 portfolio map which dominates π on compacts. We want to prove

that τ = π. By Theorem 7.1.4, τ is generated by a concave function Ψ : ∆n → (0,∞). Since

τ is C1, by [83, Proposition 5(iii)] Ψ is C2, so τ ∈ FG2. Thus we may rephrase Theorem

7.1.7 by saying that π is maximal in FG2.

Let Ψ be a generating function of τ . Recall that e is the barycenter of ∆n. By scaling,

we may assume that Ψ(e) = Φ(e). We will prove that Ψ equals Φ identically, so Ψ generates

π and τ = π. We divide the proof into the following steps.

Step 1 (Symmetrization). Let Sn be the set of permutations of {1, . . . , n}. For σ ∈ Sn, define

Ψσ by relabeling the coordinates, i.e.,

Ψσ(p) = Ψ(pσ(1), . . . , pσ(n)).

Since τ � π, by Lemma 7.2.5 (and relabeling the coordinates) we have HΨσ ≥ HΦσ for all

σ ∈ Sn. But Φ is a measure of diversity, so Φσ = Φ by symmetry and we have HΨσ ≥ HΦ

for all σ ∈ Sn. Let

Ψ̃ =
∏
σ∈Sn

(Ψσ)
1
n!

be the symmetrization of Ψ. By Proposition 4.3.3, Ψ̃ generates the symmetrized portfolio

τ̃(p) =
1

n!

∑
σ∈Sn

τ(pσ(1), . . . , pσ(n)), p ∈ ∆n.
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By Lemma 7.2.4, we have

HΨ̃ ≥
1

n!

∑
σ∈Sn

HΨσ ≥ HΦ. (7.4.1)

ThusHΨ̃ � HΦ. Clearly Ψ̃ is a measure of diversity and by symmetry it achieves its maximum

at e.

Step 2 (Ψ̃ ≤ Φ). We claim that Ψ̃ ≤ Φ on ∆n. Let p ∈ ∆n and consider the one-dimensional

concave functions

u(t) = Φ((1− t)e+ tp)

v(t) = Ψ̃((1− t)e+ tp)
(7.4.2)

defined on [0, 1]. We have u(0) = v(0) and u′(0) = v′(0) = 0 since both Φ and Ψ̃ achieve

their maximums at e. Since HΨ̃ ≥ HΦ, we have

−v′′(t)
v(t)

≥ −u
′′(t)

u(t)
, t ∈ [0, 1].

By the relative concavity lemma (Lemma 7.3.3),

w(y) =
v(G(y))

u(G(y))
(7.4.3)

is a positive concave function on [0, `], where ` =
∫ 1

0
1

u(t)2dt, with w(0) = 1 and w′(0) = 0

(by the quotient rule). Note that ` <∞ as Φ is continuous and positive on the line segment

[e, p] ⊂ ∆n. Also, it is straightforward to see that in this case the relative concavity lemma

can be applied to [0, `] instead of [0, `). This implies that w is non-increasing and so w(`) =

Ψ̃(p)/Φ(p) ≤ 1.

Step 3 (Ψ̃ ≡ Φ). Let Z = {p ∈ ∆n : Ψ̃(p) = Φ(p)} and we claim that Z = ∆n. Here we

follow an idea in the proof of [26, Theorem 3]. Define u and v on [0, 1) by (7.4.2) with p

replaced by e(1). Then the function w defined as in (7.4.3) is positive and concave on [0,∞)

since the integral in (7.1.5) (which defines ` =
∫ 1

0
1

u(t)2dt) diverges. Again w satisfies w(0) = 1

and w′(0) = 0. But since w is defined on an infinite interval, if w′(y) < 0 for some y, then
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w must hit zero as w′ is non-increasing by concavity. This contradicts the positivity of w,

and so w is identically one on [0,∞). It follows that Ψ̃ = Φ on the line segment [e, e(1)). By

symmetry, Z contains the segments [e, e(i)) for all i.

Next we show that the set Z is convex. Let p, q ∈ Z. Again we consider the pair of

functions

u(t) = Φ((1− t)p+ tq)

v(t) = Ψ̃((1− t)p+ tq)
(7.4.4)

on [0, 1]. Let w̃(t) = v(t)
u(t)

, t ∈ [0, 1]. By the relative concavity lemma again, we know that

w̃ is concave after a reparameterization. But w̃(t) ≤ 1 by Step 2 and w̃ equals one at the

endpoints 0 and 1. By concavity, w̃ is identically one on [0, 1]. Hence if Z contains p and q,

it also contains the line segment [p, q]. Now Z is a convex set containing [e, e(i)) for all i. It

is easy to see that Z is then the simplex ∆n. Hence Ψ̃ equals Φ identically.

Step 4 (Desymmetrization). We have shown that Ψ̃ ≡ Φ, and so HΨ̃ = HΦ. By (7.4.1), we

have

HΦ = HΨ̃ ≥
1

n!

∑
σ∈Sn

HΨσ ≥ HΦ.

Since HΨσ ≥ HΦ for each σ ∈ Sn, we have HΨσ = HΦ for all σ. In particular, taking σ to be

the identity, we have HΨ = HΦ. It remains to show that Ψ equals Φ identically (recall that

we assume Ψ(e) = Φ(e)).

Fix i ∈ {1, . . . , n} and consider

u(t) = Φ((1− t)e+ te(i))

v(t) = Ψ((1− t)e+ te(i))

for t ∈ [0, 1). By the argument in Step 3, if
(
v
u

)′
(0) ≤ 0, the integral condition (7.1.5) implies

that v/u is identically one. So
(
v
u

)′
(0) ≤ 0 implies

(
v
u

)′
(0) = 0. For σ ∈ Sn let

vσ(t) = Ψ((1− t)e+ te(σ(i))).



98

Since Ψ̃ = Φ, we have ∏
σ∈Sn

(
vσ(t)

u(t)

) 1
n!

= 1.

Taking logarithm on both sides and differentiating, we see that the average of the derivatives(
v
u

)′
(0) over i is 0 (recall that Φ is symmetric). Since all derivatives are non-negative by the

above argument, in fact they are all 0, and so Ψ = Φ on [e, e(i)) for all i.

Since the vectors e(i)− e span the plane parallel to ∆n, the graphs of Ψ and Φ have the

same tangent plane at e. Since Φ achieves its maximum at e, we see that Ψ achieves its

maximum at e as well. Now we may apply the argument in Steps 2 and 3 to conclude that

Ψ equals Φ identically on ∆n. Thus τ = π and we have proved that π is maximal in FG2.

This finishes the proof of Theorem 7.1.7.

Proof of Corollary 7.1.8. Let τ be a C1 portfolio not equal to π. By the maximality of π, it

is not the case that τ � π. By Theorem 7.1.7, τ does not satisfy MCM relative to π. Thus,

there is a cycle {µ(t)}m+1
t=0 (with µ(0) = µ(m+ 1)) over which

Vτ (m+ 1)

Vπ(m+ 1)
< 1. (7.4.5)

Consider, as in the proof of Theorem 7.1.7, the market weight sequence which goes through

this cycle again and again. Clearly {µ(t)}∞t=0 takes values in a finite set K which is compact.

From (7.4.5), it is clear that Vτ (t)/Vπ(t)→ 0 as t→∞.

It is interesting to remove the symmetry and differentiability conditions in Theorem 7.1.7.
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Part II

OPTIMIZATION
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Chapter 8

POINT ESTIMATION

In Part I we characterized functionally generated portfolios as the family of volatility

harvesting portfolio maps (Theorem 4.2.5). A natural problem is to optimize over the family

based on observed data and other information. Optimization of functionally generated port-

folio is an open problem stated in [41, Problems 3.1.7–8]. To the best of our knowledge only

limited progress has been made. In joint work with Soumik Pal [81] we made an attempt

in the two asset case, and in Chapter 6 we studied an optimal transport problem. Also see

[64] for a machine learning perspective. In this chapter we study an optimization problem

analogous to nonparametric density estimation based on [104].

8.1 Nonparametric estimation of functionally generated portfolio

8.1.1 Relative value as an integral

We begin by introducing some notations which will be used in this and the next chapter.

Let π be a functionally generated portfolio with generating function Φ. Given a market path

{µ(t)}∞t=0 ⊂ ∆n, the relative value of the portfolio π at time t is given by

log Vπ(t) =
t−1∑
s=0

log

(
π(µ(s)) · µ(s+ 1)

µ(s)

)

= log
Φ(µ(t))

Φ(µ(0))
+

t−1∑
s=0

T (µ(s+ 1) | µ(s)) .

(8.1.1)

Recall that T (· | ·) is the L-divergence of π. Let `π : ∆n ×∆n → R be defined by

`π(p, q) = log

(
π(p) · q

p

)
, p, q ∈ ∆n. (8.1.2)

In other words, `π(p, q) is the relative log return of the portfolio if the market weight jumps

from p to q.
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For each t, let

Pt =
1

t

t−1∑
s=0

δ(µ(s),µ(s+1)) (8.1.3)

be the empirical measure of the pair (µ(s), µ(s + 1)) up to time t. It is a Borel probability

measure on the product set ∆n ×∆n. Now we may rewrite (8.1.1) in the form

1

t
log Vπ(t) =

∫
∆n×∆n

`π(p, q)dPt

=
1

t
log

Φ(µ(t))

Φ(µ(0))
+

∫
∆n×∆n

T (q | p) dPt.
(8.1.4)

For technical reasons, throughout this and the next chapter we will impose the following

condition on the market path.

Assumption 8.1.1. There exists a constant M > 0 such that the market path {µ(t)}∞t=0

satisfies
1

M
≤ µi(t+ 1)

µi(t)
≤M (8.1.5)

for all t ≥ 0 and 1 ≤ i ≤ n. Let

S =

{
(p, q) ∈ ∆n ×∆n :

1

M
≤ qi
pi
≤M for 1 ≤ i ≤ n

}
. (8.1.6)

Then (8.1.5) states that (µ(t), µ(t+ 1)) ∈ S for all t ≥ 0.

Assumption 8.1.1 states that the relative returns of the stocks are bounded and is common

in the literature (see for example [28, 54, 29, 53]). We do not assume that the investor knows

the value of M .

8.1.2 Two optimization problems

Let P be a Borel probability measure on S where S is defined by (8.1.6). We call P an

intensity measure. It represents the intensity of jumps of the market path in the simplex.

Assumption 8.1.2. We assume that P is either discrete or is absolutely continuous with

respect to the Lebesgue measure on S × S.
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Consider the following two optimization problems. The first problem maximizes the

average logarithmic growth rate under P:

sup
π∈FG

∫
S
`π(p, q)dP. (8.1.7)

The second problem maximizes the average L-divergence:

sup
π∈FG

∫
S
T (q | p) dP. (8.1.8)

Remark 8.1.3. For any π ∈ FG, its generating function Φ is differentiable almost everywhere.

Thus π is almost everywhere given in terms of the unique gradient of ϕ = log Φ. This implies

that the maps `π(·, ·) and T (· | ·) are Lebesgue measurable. Assuming P to be either discrete

or absolutely continuous, the integrals in (8.1.7) and (8.1.7) are well-defined. Note that the

set of nondifferentiability depends on Φ; this is main source of technicality in this and the

next chapters.

The second problem (8.1.8) is the one we studied in [103].1 The intuitive idea is the

following. The concavity of Φ allows the portfolio to harvest market volatility. If we have

information about the future position of the market weight (quantified by the intensity

measure P), we should let Φ be most concave on the region where the market is most

likely to fluctuate around. This leads naturally to the problem (8.1.8). Since we expect

1
t

log Φ(µ(t)) → 0 in typical markets, the two optimization problems should give similar

results.

In this chapter we focus on the first problem (8.1.7) as it is more directly related to

nonparametric density estimation.2 Indeed, we treat the logarithmic growth rate 1
t

log Vπ(t)

as a quantity analogous to the likelihood function. Then a portfolio maximizing the growth

rate can be regarded as the maximum likelihood estimator. Throughout the development it

is helpful to keep in mind the analogy between (8.1.7) and maximum likelihood estimation

1In [103] we imposed the rather restrictive condition that P is supported on a compact subset of ∆n×∆n.
This condition can be relaxed by imposing Assumption 8.1.5.

2The mathematical treatments of the two problems are essentially identical.
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of a log-concave density. In that context, we are given a random sample X1, . . . , XN from a

log-concave density f0 on Rd (i.e., log f0 is concave). The log-concave maximum likelihood

estimate (MLE) f̂ is the solution to

max
f

N∑
j=1

log f(Xj), (8.1.9)

where f ranges over all log-concave densities on Rd. It can be shown that the MLE exists

almost surely (when N ≥ d + 1 and the support of f0 has full dimension) and is unique;

see [31] for precise statements of these results. We remark that (8.1.7) is conceptually

more complicated than (8.1.9) because the portfolio weights correspond to selections of the

superdifferential ∂ϕ, while (8.1.9) involves only the values of the density.

We end this section by giving some examples of intensity measures. The first example

deals with infinite horizon while the second examples is concerned with a finite (but random)

horizon. We will first study some theoretical properties of this abstract (unconstrained)

optimization problem, and then focus on a discrete special case where numerical solutions

are possible. In contrast to classical portfolio selection theory where the portfolio weights

are optimized period by period, in (8.1.7) and (8.1.8) we optimize the portfolio weights over

a region simultaneously.

Example 8.1.4. Suppose {(µ(t − 1), µ(t))} is an ergodic Markov chain on S. Then we can

take P to be its stationary distribution.

Example 8.1.5. We model {µ(t)}∞t=0 as a stochastic process. Let K be a subset of ∆n con-

taining µ(0). Let τ be the first exit time of K, i.e.,

τ = inf{t ≥ 0 : µ(t) /∈ K}.

Consider the measure G on K ×K defined by

G(A) = E

[
τ−1∑
t=1

1{(µ(t−1),µ(t))∈A}

]
,
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for any Borel set A ⊂ S. Suppose G(K ×K) = E(τ − 1) <∞, i.e., the exit time has finite

expectation. Then

P(A) =
1

G(K ×K)
G(A)

defines a Borel probability measure on S.

8.2 Existence and uniqueness

We focus on the optimization problem (8.1.7) where P is a discrete or absolutely continuous

intensity measure on S and S is defined by (8.1.6). By Proposition 4.3.3 the set FG is

convex. Also, by the argument of Proposition 3.4.1, the map

π 7→
∫
S
`π(p, q)dP

is concave in π ∈ FG. Thus (8.1.7) is a convex optimization problem and we expect that it

has good properties.

To formulate a uniqueness statement we need a technical condition. Given an intensity

measure P, it can be decomposed in the form

P(dpdq) = P1(dp)P(dq|p), (8.2.1)

where P1 is the first marginal of P and P2 is the conditional distribution fo the second variable

given p.

Assumption 8.2.1 (Support condition). Let P be an absolutely continuous measure on S with

the decomposition (8.2.1). Write P1(dp) = f(p)dp where f is the density of P1 with respect

to the Lebesgue measure on ∆n. We say that P satisfies the support condition if for almost

all p for which f(p) > 0, for all v ∈ T∆n there exists λ > 0 such that p+ λv belongs to the

support of P2(· | p).

Theorem 8.2.2 (Existence and uniqueness). Consider the optimization problem (8.1.7)

where P is a discrete or absolutely continuous intensity measure on S.

(i) The problem has an optimal solution π̂.
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(ii) If π̂(1) and π̂(2) are optimal solutions, then

π̂(1)(p)

p
· (q − p) =

π̂(2)(p)

p
· (q − p) (8.2.2)

for P-almost all (p, q). In particular, if P(dpdq) = P1(dp)P2(dq|p) is absolutely contin-

uous with P1(dp) = f(p)dp and satisfies the support condition, then π̂(1) = π̂(2) almost

everywhere on {p ∈ ∆n : f(p) > 0}.

We first give some convex analytic lemmas that are useful in the proofs of Theorem 8.2.2

and other results.

Lemma 8.2.3. Let p0 ∈ ∆n be fixed and let C0 be the collection of positive concave functions

Φ on ∆n satisfying Φ(p0) = 1. Then any sequence in C0 has a subsequence which converges

locally uniformly on ∆n to a function in C0.

Proof. By [87, Theorem 10.9] it suffices to prove that C0 has a uniform upper bound. We

first derive an upper bound in the one-dimensional case. Let f be a non-negative concave

function on the real interval [a, b]. Let x0 ∈ (a, b) and suppose f(x0) = 1. Let x ∈ [a, x0] and

write x0 = λx+ (1− λ)b for some λ ∈ [0, 1]. By concavity we have

1 = f(x0) ≥ λf(x) + (1− λ)f(b) ≥ λf(x).

Thus

f(x) ≤ 1

λ
=

b− x
b− x0

≤ b− a
b− x0

, x ∈ [a, x0]

The case x ∈ [x0, b] can be handled similarly, and we get

f(x) ≤ b− a
min{|x0 − a|, |x0 − b|}

, x ∈ [a, b]. (8.2.3)

Now let Φ ∈ C0. Applying (8.2.3) to the restriction of Φ to line seqments in ∆n containing

p0, we get

Φ(p) ≤ diam(∆n)

dist(p0, ∂∆n)
, p ∈ ∆n,

where diam(∆n) is the Euclidean diameter of ∆n and dist(p0, ∂∆n) is the Euclidean distance

from p0 to the boundary of ∆n. This completes the proof of the lemma.
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In view of Lemma 8.2.3 we give the following definition.

Definition 8.2.4. Let C0 be the set of all positive concave functions Φ on ∆n satisfying the

normalization Φ(e) = 1, where e =
(

1
n
, . . . , 1

n

)
is the barycenter of e. We endow C0 with the

topology of local uniform convergence. We define a metric on C0 as follows. For m = 1, 2, . . .,

let Km be the compact set {p ∈ ∆n : pi ≥ 1
m
, 1 ≤ i ≤ n}. Then {Km}∞m=1 is a compact

exhaustion of ∆n. For Φ,Ψ ∈ C0 we define

d(Φ,Ψ) =
∞∑
m=1

2−m
maxp∈Km |Φ(p)−Ψ(p)|

1 + maxp∈Km |Φ(p)−Ψ(p)|
.

With this metric C0 becomes a compact metric space.

Next we show that convergence of generating functions implies convergence of portfolio

weights almost everywhere.

Lemma 8.2.5. Let Φ0 ∈ C0 and p0 ∈ ∆n. Let K ⊂ ∆n be a compact set whose (relative)

interior contains p0. Then, for any ε > 0, there exists δ > 0 such that whenever Φ ∈ C0,

maxp∈K |Φ(p)− Φ0(p)| < δ and |q − p0| < δ, we have maxp:|p−p0|<δ |π(p)− π0(p0)| < ε.

Proof. This is a uniform version of [87, Theorem 24.5]. We will proceed by contradiction. If

the statement is false, there exists ε0 > 0 such that the following holds. For every k ≥ 1,

there exists Φk ∈ C0 and pk ∈ ∆n such that

max
p∈K
|Φk(p)− Φ0(p)| < 1

k
, |pk − p0| <

1

k

and

∂Φk(pk) ⊂ ∂ log Φ(p0) + ε0B(0, 1),

where B(0, 1) is the closed unit ball. This contradicts [87, Theorem 24.5] and thus the lemma

is proved.

Using Lemma 8.2.5 and Proposition 4.3.1 we have the following corollary which is a

refined version of [104, Lemma 11].
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Lemma 8.2.6. Let π(0) be a portfolio generated by Φ(0). Let p0 ∈ ∆n be a point at which

Φ(0) is differentiable. For any ε > 0 and any compact neighborhood K of p0 in ∆n, there

exists δ > 0 such that whenever π is generated by Φ and maxp∈K |Φ(p) − Φ(0)(p)| < δ, we

have maxp:|p−p0|<δ |π(p)− π(0)(p0)| < δ.

In particular, suppose π(k) is generated by Φ(k), π is generated by Φ, and Φ(k) converges

locally uniformly to Φ as k →∞. Then π(k)(p)→ π(p) almost everywhere on ∆n.

Proof of Theorem 8.2.2. (i) The existence of an optimal solution will be proved by a compact-

ness argument. Suppose (π(k),Φ(k)) is a maximizing sequence for the optimization problem

(8.1.7). By scaling, we may assume that Φ(k)(p0) = 1 where p0 ∈ ∆n is fixed. By Lemma

8.2.3, we may replace it by a subsequence such that Φ(k) converges locally uniformly on ∆n

to a positive concave function Φ on ∆n. Let π be any portfolio generated by Φ.

Case 1. P is discrete and has masses at (p(j), q(j)) ∈ S. By a diagonal argument, we

can extract a further subsequence (still denoted by (π(k),Φ(k)) such that limk→∞ π
(k)(p(j))

exists for all j. We claim that if we redefine π on {p(1), p(2), . . .} such that π(p(j)) =

limk→∞ π
(k)(p(j)), then π is still generated by Φ. By definition of functionally generated

portfolio (Definition 4.1.1), it suffices to show that

lim
k→∞

π(p(j)) · q

p(j)
≥ Φ(q)

Φ(p(j))

for all j and q ∈ ∆n. Since π(k) is generated by Φ(k), we have

lim
k→∞

π(k)(p(j)) · q

p(j)
≥ Φ(k)(q)

Φ(k)(p(j))
.

Letting k →∞ proves the claim.

It follows that

lim
k→∞

`π(k)(p, q) = lim
k→∞

log

(
π(k)(p) · q

p

)
= `π(p, q)

P-almost everywhere. By Assumption 8.1.1, we have |`π(k)(p, q)| ≤ logM on S. Thus, by

the bounded convergence theorem, we have

lim
k→∞

∫
S
`π(k)(p, q)dP =

∫
S
`π(p, q)dP.
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This shows that π is an optimal solution.

Case 2. P is absolutely continuous. By Lemma 8.2.6, π(k) converges almost everywhere

to π. It follows that `π(k)(p, q) → `π(p, q) almost everywhere on S. Again by the bounded

convergence theorem, we see that π is optimal.

(ii) Suppose (π(1),Φ(1)) and (π(2),Φ(2)) are optimal solutions. Define π = 1
2
π(1) + 1

2
π(2)

which is generated by the geometric mean Φ =
√

Φ(1)Φ(2). By concavity of log, we have

log

(
π(p) · q

p

)
≥ 1

2
log

(
π(1)(p) · q

p

)
+

1

2
log

(
π(2)(p) · q

p

)
.

Hence π is optimal. But log is strictly concave, thus

π(1)(p)

p
· (q − p) =

π(2)(p)

p
· (q − p)

for P-almost all (p, q).

If P is absolutely continuous and satisfies sthe support condition, then for almost all p

for which f(p) > 0, we have
π(1)(p)

p
· v =

π(2)(p)

p
· v

for all tangent vectors of ∆n. This implies that π(1)(p) = π(2)(p) for these values of p. This

completes the proof of the theorem.

8.3 Consistency

Let P be an intensity measure on S. Suppose {PN}N≥1 is a sequence of discrete or absolutely

continuous probability measures on S that converges weakly to P. By definition, this means

that

lim
N→∞

∫
S
fdPN =

∫
S
fdP

for all bounded continuous functions on S. For example, one may sample i.i.d. observations

{(p(j), q(j))}Nj=1 from P and take PN be the empirical distribution

PN =
1

N

N∑
j=1

δ(p(j),q(j)),
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where δ(p(j),q(j)) is the point mass at (p(j), q(j)). From the perspective of statistical inference,

the optimal portfolio π̂(N) which solves (8.1.7) for P(N) can be regarded as a point estimate of

the optimal portfolio π̂ for P. The following result states that the estimator is consistent. See

[30, Theorem 4] for an analogous statement in the context of log-concave density estimation.

Theorem 8.3.1 (Consistency). Let π be an optimal portfolio in (8.1.7) for P where P(dpdq) =

P1(dp)P2(dq|p) is absolutely continuous with P1(dp) = f(p)m(dp), supported on S, and sat-

isfies the support condition. Let {PN}∞N=1 be a sequence of discrete or absolutely continuous

probability measures on S converging to P weakly, and let π̂(N) be optimal for the measure

PN , N ≥ 1. Then π̂(N) → π almost everywhere on {p : f(p) > 0}.

Theorem 8.3.1 will be established by a series of lemmas that are also useful in Chapter

9. First we prove a ‘strong law of large numbers’ for individual elements of FG.

Lemma 8.3.2. Suppose PN is a sequence of discrete or absolutely continuous probability

measures on S that converges weakly to an absolutely continuous probability measure P.

Then for every π ∈ FG we have

lim
N→∞

∫
S
`πdPN =

∫
S
`πdP. (8.3.1)

Proof. Note that (8.3.1) does not follow directly from the definition of weak convergence

because `π may have discontinuities. (But `π is bounded by Assumption 8.1.1.)

Let ε > 0 be given. Let Φ ∈ C0 be the generating function of π and consider the set

D = {p ∈ ∆n : Φ is differentiable at p}.

Then ∆n \D has Lebesgue measure 0. Given ε > 0, there exists ε′ > 0 such that whenever

π(1), π(2) ∈ ∆n and |π(1) − π(2)| < ε′, we have∣∣∣∣log

(
π(1) · q

p

)
− log

(
π(2) · q

p

)∣∣∣∣ < ε (8.3.2)

for all (p, q) ∈ S.
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For each p ∈ D, by Lemma 8.2.6 there exists δ(p) > 0 such that B(p, δ(p)) ⊂ ∆n and

|q − p| < δ(p) implies

|π(p)− π(q)| < ε′. (8.3.3)

As a subspace of a separable metric space, D is separable. Hence, there exists a countable

set {pk}∞k=1 ⊂ D such that

D ⊂
∞⋃
k=1

B(pk, δ(pk)).

Set A1 = B(p1, δ(p1)) and for k ≥ 2 define

Ak = B(pk, δ(pk)) \
k−1⋃
j=1

B(pj, δ(pj)).

Then the sets {Ak} are disjoint and

(D ×∆n) ∩ S ⊂
∞⋃
k=1

(Ak ×∆n) ∩ S.

Since P((D×∆n)∩S) = 1 by absolute continuity, by continuity of measure, there exists

a positive integer k0 such that

P

(
k0⋃
k=1

(Ak ×∆n) ∩ S

)
> 1− ε.

Let

A0 = ∆n \

(
k0⋃
k=1

Ak

)
.

Then

P((A0 ×∆n) ∩ S) ≤ ε. (8.3.4)

Note that for 0 ≤ k ≤ k0, (Ak × ∆n) ∩ S is a P-continuity set as it is formed by set-

theoretic operations on S (which has piecewise smooth boundary), ∆n and Euclidean balls.

Also, by Assumption 8.1.1 |`π(·, ·)| is bounded uniformly on S by M ′ := logM . So, for each

1 ≤ k ≤ k0 the map

(p, q) 7→ `π(p(k))(p, q) := log

(
π(p(k)) · q

p

)
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is a bounded continuous function on S

By weak convergence and Lemma 8.5.2 in Section 8.5, there exists a positive integer N0

such that for N ≥ N0 we have

PN ((A0 ×∆n) ∩ S) < 2ε (8.3.5)

and ∣∣∣∣∫
(Ak×∆n)∩S

`π(p(k))d(PN − P)

∣∣∣∣ < ε

k0

. (8.3.6)

(note that k0 is fixed before t0 is chosen).

Now we estimate the difference
∣∣∫
S `πd (PN − P)

∣∣. We have∣∣∣∣∫
S
`πd (PN − P)

∣∣∣∣ ≤
∣∣∣∣∣
k0∑
k=1

∫
(Ak×∆n)∩S

`πd (PN − P)

∣∣∣∣∣+

∣∣∣∣∫
(A0×∆n)∩S

`πd (PN − P)

∣∣∣∣ . (8.3.7)

Using the boundedness of `π, (8.3.4) and (8.3.5), the second term of (8.3.7) is bounded

by 3M ′ε. Now for each k, by (8.3.2), (8.3.3) and (8.3.6) we have∣∣∣∣∫
(Ak×∆n)∩S

`πd (PN − P)

∣∣∣∣
≤
∫

(Ak×∆n)∩S

∣∣`π − `π(pk)

∣∣ dPN +

∫
(Ak×∆n)∩S

∣∣`π − `π(pk)

∣∣ dP +

∣∣∣∣∫
(Ak×∆n)∩S

`π(pk)d (PN − P)

∣∣∣∣
≤ εPN ((Ak ×∆n) ∩ S) + εP ((Ak ×∆n) ∩ S) +

ε

k0

.

Summing the above inequality over k, we get∣∣∣∣∫
S

`πd (PN − P)

∣∣∣∣ ≤ ε+ ε+ ε+ 3M ′ε, t ≥ t0,

and the lemma is proved.

Now we observe that the proof of Lemma 8.3.2 can be modified to yield a uniform version.

Recall that d(Φ,Ψ) is the metric on C0 given in Definition 8.2.4.

Lemma 8.3.3. Suppose PN converges weakly to an absolutely continuous probability measure

P on S. Let π(0) ∈ FG be generated by Φ(0) ∈ C0. For any ε > 0, there exists δ > 0 such that

lim sup
N→∞

sup
π∈FG(π(0),δ)

∣∣∣∣∫
S
`π(p, q)d(PN − P)

∣∣∣∣ < ε, (8.3.8)
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where FG(π0, δ) is the set of all functionally generated portfolio π whose generating function

Φ ∈ C0 satisfies d(Φ,Φ(0)) < δ. In particular, we have the ‘uniform strong law of large

numbers’

lim
t→∞

sup
π∈FG

∣∣∣∣∫
S
`π(p, q)d(PN − P)

∣∣∣∣ = 0. (8.3.9)

Proof. Recall from Definition 8.2.4 that Km =
{
p ∈ ∆n : pi ≥ 1

m

}
. By continuity of measure,

we can choose m so that

P ((Km ×∆n) ∩ S) > 1− ε.

Since (Km ×∆n) ∩ S is a P-continuity set, for t sufficiently large we have∣∣∣∣(∫
S
−
∫

(Km×∆n)∩S

)
(`π − `π0) dPN

∣∣∣∣ < 4Mε,

where M ′ = logM is the upper bound of |`π| and |`π0| on S. This allows us to focus on the

set (Km ∩∆n) ∩ S.

Fix ε′ > 0. By Lemma 8.2.6, for each p in the (relative) interior of Km at which Φ(0) is

differentiable (call this set Dm), there exists δ′(p) > 0 such that whenever maxq∈Km |Φ(q)−

Φ0(q)| < δ′(p) and |q − p| < δ′(p), we have |π(q)− π(0)(p)| < ε′.

As in the proof of Lemma 8.3.2, we may cover Dm by a disjoint countable union
⋃∞
k=1Ak,

where Ak is a P-continuity set containing pk and has diameter bounded by δ′(pk).

Now choose a positive integer k0 such that

P

((
k0⋃
k=1

Ak ×∆n

)
∩ S

)
> 1− 2ε.

Also, choose δ > 0 such that

d(Φ,Φ(0)) < δ ⇒ max
p∈Km

|Φ(p)− Φ(0)(p)| < min
1≤k≤k0

δ′(pk).

It follows that

sup
π∈FG(π(0),δ(pk))

sup
p:|p−pk|<δ′(pk)

∣∣π(p)− π(0)(pk)
∣∣ < ε′,
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With this uniform local approximation, we may follow the same steps as the proof of Lemma

8.3.2 to prove that

lim sup
N→∞

sup
π∈FG(π(0),δ)

∣∣∣∣∫
S
`π(p, q)dPN −

∫
S
`π(0)(p, q)dPN

∣∣∣∣ < Cε, (8.3.10)

where C > 0 is a constant. Thus (8.3.8) follows by letting ε→ 0.

Note that (8.3.8) implies that

sup
π∈FG(π0,δ)

∣∣∣∣∫
S
`π(p, q)dP−

∫
S
`π(0)(p, q)dP

∣∣∣∣ ≤ ε.

Since C0 is compact, we may cover FG by finitely many sets of the form FG(π(0), δ), and

(8.3.9) follows.

Proof of Theorem 8.3.1. Let Φ(N) ∈ C0 be the generating function of π̂(N). For any subse-

quence of {Φ(N)}, there exists a further subsequence {Φ(N ′)} which converges locally uni-

formly on ∆n. Let Φ(0) be the limiting function, and let π(0) be a portfolio generated by

Φ(0).

By optimality of π̂(N ′), we have∫
S
`π̂(N)dPN ≥

∫
S
`π̂dPN ′ .

Taking liminf on both sides as N ′ →∞, by Lemma 8.3.2 we have

lim inf
N ′→∞

∫
S
`π̂(N)dPN ′ ≥ lim inf

N ′→∞

∫
S
`π̂dPN ′ =

∫
S
`πdP. (8.3.11)

Since Φ(N ′) → Φ(0) locally uniformly, as a consequence of (8.3.10), we have

lim
N ′→∞

∫
S
`π̂(N)dPN ′ =

∫
S
`π(0)dP. (8.3.12)

By (8.3.11), it follows that π(0) is optimal for P. By Theorem 8.2.2, we have π(0) = π̂ almost

everywhere on {p : f(p) > 0}. Since Φ(N ′) → Φ(0) locally uniformly, by Lemma 8.2.6 we have

π̂(N) → π̂ almost everywhere on {p : f(p) > 0}. Since the subsequence is arbitrary, we have

the statement of the theorem.
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8.4 Finite dimensional reduction

Without further constraints, the optimal portfolio weights of (8.1.7) may be highly irregular.

Now we restrict to the special case where

P =
1

N

N∑
j=1

δ(p(j),q(j)) (8.4.1)

is a discrete measure and (p(j), q(j)) ∈ S for j = 1, . . . , N . This presents no great loss of

generality because in practice the market weights have finite precisions and we can choose

the pairs (p(j), q(j)) to take values in a grid approximating S. Moreover, from Theorem 8.3.1

we expect that when N is large the optimal solution approximates that of the continuous

counter part. Consider the modified optimization problem

maximize
π∈FG

∫
`π(p, q)dP

subject to (π(p(1)), . . . , π(p(N))) ∈ C,
(8.4.2)

where C is a given closed convex subset of
(
∆n

)N
.3 Some examples of C are given in Table

8.1, where each constraint is a cylinder set of the form {π(p(j)) ∈ Cj} with Cj a closed

convex set of ∆n. It can be verified easily that the proof of Theorem 8.2.2 goes through

without changes with these constraints, so (8.4.2) has an optimal solution. Moreover, if π̂(1)

and π̂(2) are optimal solutions, then

π̂(1)(p(j))

p(j)
· (q(j)− p(j)) =

π̂(2)(p(j))

p(j)
· (q(j)− p(j)), j = 1, . . . , N.

For maximum likelihood estimation of a log-concave density, it is shown in [31] that

the logarithm of the MLE f̂ is polyhedral, i.e., log f̂ is the pointwise minimum of finitely

many affine functions (see [87, Section 19]). In particular, there exists a triangulation of

the data points over which log f̂ is piecewise affine, and this fact was used to derive an

algorithm for computing f̂ . We show that an analogous statement holds for (8.4.2). Let

D = {p(j), q(j) : j = 1, . . . , N} be the set of data points.

3In (8.4.2) we may replace the function `π(p, ) by T (q | p).



115

Table 8.1: Examples of additional constraints imposed for p ∈ {p(1), . . . , p(N)}. The pa-

rameters may be given functions of p.

Constraint Interpretation

ai ≤ πi(p) ≤ bi Box constraints on portfolio weights

mi ≤ πi(p)
pi
≤Mi Box constraints on weight ratios

(π(p)− p)′Σ(π(p)− p) < ε Constraint on tracking error given a covariance matrix

Theorem 8.4.1. Let (π,Φ) be an optimal portfolio for the problem (8.4.2) where P =

1
N

∑N
j=1 δ(p(j),q(j)). Let Φ : ∆n → (0,∞) be the smallest positive concave function on ∆n

such that Φ(p) ≥ Φ(p) for all x ∈ D. Then Φ is a polyhedral positive concave function on

∆n satisfying Φ ≤ Φ and Φ(p) = Φ(p) for all p ∈ D. Moreover, Φ generates a portfolio π

such that π(p(j)) = π(p(j)) for all j. In particular, (π,Φ) is also optimal for the problem

(8.4.2).

Proof. It is a standard result in convex analysis that Φ such defined is finitely generated ([87,

Section 19]). By [87, Corollary 19.1.2], Φ is a polyhedral concave function. By definition of

Φ and concavity of Φ, we have Φ(p) = Φ(p) for all x ∈ D and Φ ≤ Φ. This implies that

∂ log Φ(p(j)) ⊂ ∂ log Φ(p(j)) for all j. Thus Φ generates a portfolio π which agrees with π

on {p(1), . . . , p(N)}. It follows that

`π(p(j), q(j)) = `π(p(j), q(j))

for all j, and hence (π,Φ) is optimal.

Theorem 8.4.1 reduces (8.4.2) to a finite-dimensional problem which can in principle be

solved numerically. We refer the reader to [83] for an empirical example for the problem

(8.1.8). An interesting problem is to design efficient algorithms.
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8.5 Appendix

The following lemmas are both standard results. Since we are unable to find suitable refer-

ences, we will provide the proofs for completeness.

Lemma 8.5.1. Let X be a topological space and Y be a subset of X equipped with the

subspace topology. If A ⊂ Y , then

∂XA ⊂ ∂YA ∪ ∂XY.

Proof. We will argue by contradiction. Suppose x ∈ ∂XA and x /∈ ∂YA ∪ ∂XY .

By the definition of subspace topology and boundary, there exist neighborhoods U1 and

U2 of x in X such that

(1) U1 ∩ Y ⊂ A or (2) U1 ∩ Y ⊂ Y \ A,

and

(i) U2 ⊂ Y or (ii) U2 ⊂ X \ Y.

We may replace U1 and U2 above by their intersection U = U1 ∩ U2. Also, since x ∈ ∂XA,

U intersects both A and X \ A. We claim that the above statements are incompatible. We

consider the following cases.

(1) and (i): Since U ⊂ Y and U ∩Y ⊂ A, we have U ⊂ A. This contradicts the fact that

U intersects X \ A.

(2) and (i): We have U ⊂ Y \ A. But A ⊂ Y , so U does not intersect A and we have a

contradiction.

(ii): If U ∩ Y = ∅, then U does not intersect A which is a contradiction.

Lemma 8.5.2. Suppose PN converges weakly to P. Let f : S → R be bounded continuous

and let Y be a P-continuity set in S with P(Y ) > 0. Then

lim
N→∞

∫
Y

fdPN =

∫
Y

fdP.
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Proof. Consider the measures conditioned on Y :

P̃N(·) =
PN(· ∩ Y )

PN(Y )
, P̃(·) =

P(· ∩ Y )

P(Y )
.

Since PN(Y )→ P(Y ) > 0 as A is a P-continuity set, the measures P̃N are well defined for N

sufficiently large.

We claim that P̃N converges weakly to P̃. This implies the statement because f is bounded

continuous on Y and∫
S
fdP̃N =

1

PN(Y )

∫
Y

fdPN →
1

P(Y )

∫
Y

fdP =

∫
S
fdP̃.

To prove the claim, it suffices by the Portmanteau theorem to show that P̃N(A)→ P̃(A)

for all A ⊂ Y with P̃(∂YA) = 1
P(Y )

P (∂YA ∩ Y ) = 0. Note that ∂YA ⊂ Y , so P (∂YA) = 0.

By Lemma 8.5.1, we have ∂SA ⊂ ∂YA∪ ∂SY , and so P (∂SA) = 0 as Y is a P-continuity set.

Thus A = A∩Y is a P-continuity set and we have PN(A)→ P(A). This completes the proof

of the lemma.
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Chapter 9

UNIVERSAL PORTFOLIO AND LARGE DEVIATIONS

9.1 Introduction

9.1.1 Universal portfolio theory

Universal portfolio theory is a very active research field in mathematical finance and machine

learning. Instead of giving an extensive review (for which we refer the reader to the recent

survey [67] and the references therein) let us explain the main ideas of Cover’s classic paper

[28] which started the subject. Cover asked the following question: Without any knowledge

of future stock prices, is it possible to invest in such a way that the resulting wealth is close

to

V ∗(t) = max
π∈∆n

Vπ(t),

the performance of the best constant-weighted portfolio chosen with hindsight? While this

seems an unrealistically ambitious goal, Cover constructed a non-anticipative sequence of

portfolio weights π̂(t) such that the resulting wealth V̂ (t) satisfies the universality property

1

t
log

V̂ (t)

V ∗(t)
≥ C

t(n−1)/2
→ 0, (9.1.1)

where C > 0 is a constant, for arbitrary sequences of stock returns. Explicitly, Cover’s

universal portfolio is given by

π̂(t) =

∫
∆n
πVπ(t)dπ∫

∆n
Vπ(t)dπ

. (9.1.2)

That is, π̂(t) is the average of all constant-weighted portfolios weighted by their performances,

and it can be shown that

V̂ (t) =

∫
∆n
Vπ(t)dπ∫
∆n
dπ

.
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This allows us to view Cover’s portfolio as a buy-and-hold portfolio of all constant-weighted

portfolios, where each portfolio receives the same infinitesimal wealth initially. Cover’s result

(9.1.1) states that the maximum and average of Vπ(t) over π ∈ ∆n have the same asymptotic

growth rate, and can be viewed as a consequence of Laplace’s method of integration and

the fact that for constant-weighted portfolios the map π 7→ Vπ(t) is essentially a multiple

of a normal density. While numerous alternative portfolio selection algorithms have been

proposed for constant-weighted and other families of portfolios, the idea of forming a wealth-

weighted average underlies many of these generalizations.

9.1.2 Universal portfolio and stochastic portfolio theory

It is natural to ask if functionally generated portfolios and Cover’s universal portfolio are

connected in some way [48, Remark 11.7]. Recently, [18] showed that Cover’s portfolio (9.1.2)

is, in a generalized sense, functionally generated. With hindsight, this is not surprising since

Cover’s portfolio is a buy-and-hold portfolio of constant-weighted portfolios, and both buy-

and-hold portfolios and constant-weighted portfolios are functionally generated (see Section

4.1). Instead, it is more interesting to think of Cover’s portfolio as a market portfolio

where each constituent asset is the value process of a portfolio in a family. The capital

distribution then generalizes to the distribution of wealth over the portfolios. While the

capital distribution of an equity market is typically stable and diverse (as mentioned in

Chapter 1), this is not true for the distribution of wealth over a family of portfolios. Quite

the contrary, wealth often concentrates exponentially around an optimal portfolio, and under

suitable conditions this can be quantified by a pathwise large deviation principle (LDP).

Moreover, we show that Cover’s portfolio (9.1.1) can be generalized to the nonparametric

family of functionally generated portfolios which contains the constant-weighted portfolios.

Indeed, this chapter can be viewed as the Bayesian counterpart of Chapter 8.
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9.1.3 Summary of main results

To formulate the main results we introduce some notations. We consider an equity market (as

formulated in Chapter 2 satisfying Assumption 8.1.1. Consider a family {πθ}θ∈Θ of portfolio

maps, where Θ is a topological index set and each πθ is a map from ∆n to ∆n.

Imagine at time 0 we distribute wealth over the family according to a Borel probability

measure ν0 on Θ; we call ν0 the initial distribution. The wealth distribution of the family

{πθ}θ∈Θ at time t is the Borel probability measure νt on Θ defined by

νt(B) =
1∫

Θ
Vθ(t)dν0(θ)

∫
B

Vθ(t)dν0(θ), B ⊂ Θ. (9.1.3)

We will be interested in situations where the wealth distribution of the family {πθ}θ∈Θ

concentrates exponentially around some optimal portfolio. A natural way to quantify this

is to prove a large deviation principle (LDP) (see Figure 9.1). A standard reference of large

deviation theory is [32].

Definition 9.1.1. Let I : Θ → [0,∞] be a lower-semicontinuous function, called the rate

function. We say that the sequence {νt}∞t=0 satisfies the large deviation principle on Θ with

rate I if the following statements hold.

(i) (Upper bound) For every closed set F ⊂ Θ,

lim sup
t→∞

1

t
log νt(F ) ≤ − inf

θ∈F
I(θ).

(ii) (Lower bound) For every open set G ⊂ Θ,

lim inf
t→∞

1

t
log νt(G) ≥ − inf

θ∈G
I(θ).

A sufficient condition for existence of LDP is that the asymptotic growth rate

W (θ) = lim
t→∞

1

t
log Vθ(t) (9.1.4)

exists for all θ ∈ Θ and the map θ 7→ Vθ(t) is ‘sufficiently regular’. As preparation, in Section

9.3 we study a simple situation where the family {πθ}θ∈Θ, as maps from ∆n to ∆n, is totally

bounded in the supremum metric.
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Θ

νt

B

νt(B) ≈ e−t infθ∈B I(θ)

Figure 9.1: Wealth distribution of a family of portfolios.

Theorem 9.1.2. Let {πθ}θ∈Θ be a totally bounded family of portfolio maps from ∆n to ∆n.

Suppose the asymptotic growth rate W (θ) = limt→∞
1
t

log Vθ(t) exists for all θ ∈ Θ and the

initial distribution ν0 has full support on Θ. Then the sequence of wealth distribution satisfies

LDP on Θ with rate function

I(θ) = W ∗ −W (θ),

where W ∗ = supθ∈ΘW (θ).

Consider the family FG of functionally generated portfolios. We endow FG with the

topology of uniform convergence. Recall the notation

Pt =
1

t

t−1∑
s=0

δ(µ(s),µ(s+1))

for the empirical measure of the pair (µ(s), µ(s+ 1)) up to time t. Here is the main result

of this chapter. Here we impose an asymptotic condition on {Pt}∞t=0 in the spirit of [58].

Theorem 9.1.3. Suppose Pt converges weakly to an absolutely continuous Borel probability

measure P on ∆n ×∆n.

(i) (Glivenko-Cantelli property) The asymptotic growth rate W (π) defined by (9.1.4) exists

for all π ∈ FG. Furthermore, we have

lim
t→∞

sup
π∈FG

∣∣∣∣1t log Vπ(t)−W (π)

∣∣∣∣ = 0.
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(ii) (LDP) Let ν0 be any initial distribution on FG. Then the sequence {νt}∞t=0 of wealth

distributions given by (9.1.3) satisfies LDP with rate

I(π) =

W
∗ −W (π) if π ∈ supp (ν0),

∞ otherwise,

where W ∗ = supπ∈supp (ν0)W (π).

(iii) (Universality) There exists a probability distribution ν0 on FG such that

W ∗ = sup
π∈supp (ν0)

W (π) = sup
π∈FG

W (π)

for any absolutely continuous P. For this initial distribution, consider Cover’s portfolio

π̂(t) =

∫
FG
π(µ(t))dνt(π). (9.1.5)

Let V̂ (t) be the value of this portfolio and let V ∗(t) = supπ∈FG Vπ(t). Then

lim
t→∞

1

t
log V̂ (t) = lim

t→∞

1

t
log V ∗(t) = W ∗. (9.1.6)

In particular, we have limt→∞
1
t

log
(
V̂ (t)/V ∗(t)

)
= 0.

9.2 Wealth distributions of portfolios

In this section we give more details for the terms defined in the previous section. Let Θ be

an index set and suppose each θ ∈ Θ is associated with a portfolio map πθ. The individual

components of πθ will be denoted by (πθ,1, . . . , πθ,n). (Sometimes we will use π1, ..., πk to

refer to a sequence of portfolios; the meaning should be clear from the context.) We are

interested in the properties of Vθ(t) := Vπθ(t) as a function of both t and θ. To this end, we

will consider an imaginary market whose basic assets are the portfolios πθ.

We assume that Θ is a topological space and we are given a Borel probability measure

ν0 on Θ. The measure ν0 will be called the initial distribution. The support supp (ν0) of ν0

is the smallest closed subset F of Θ satisfying ν0(F ) = 1. We say that ν0 has full support
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if supp (ν0) = Θ. Intuitively, the imaginary market is defined by distributing unit wealth

over the portfolios {πθ}θ∈Θ according to the initial distribution ν0, and letting the portfolios

evolve. At time 0, the portfolio πθ receives wealth ν0(dθ) which grows to Vθ(t)ν0(dθ) at time

t. Thus

V̂ (t) :=

∫
Θ

Vθ(t)dν0(θ) (9.2.1)

is the total relative value of the imaginary market at time t. In order that (9.2.1) and related

quantities (such as (9.2.2)) are well defined, we assume that the map (p, θ) 7→ πθ(p) on ∆n×Θ

is jointly measurable in (p, θ). This condition usually follow immediately from the definition

of the family considered, and for now we take this as granted. By Assumption 8.1.1, we have

Vπ(t+ 1)/Vπ(t) ≤M for any portfolio, so V ∗(t) <∞ and the integral in (9.2.1) is finite.

Definition 9.2.1 (Wealth distribution). Given a family of portfolios {πθ}θ∈Θ and an initial

distribution ν0, the wealth distribution is the sequence of Borel probability measures {νt}∞t=0

defined by

νt(B) =
1

V̂ (t)

∫
B

Vθ(t)dν0(θ), (9.2.2)

where B ranges over the measurable subsets of Θ.

Note that dνt
dν0

(θ) = 1

V̂ (t)
Vθ(t). The main interest in the quantity V̂ (t) is the following fact

first exploited by Cover in [28], where {πθ}θ∈Θ is the family of constant-weighted portfolios.

A proof can be found in [29, Lemma 3.1].

Lemma 9.2.2 (Cover’s portfolio). For each t, define the portfolio weight vector

π̂(t) :=

∫
Θ

πθ(µ(t))dνt(θ). (9.2.3)

Then Vπ̂(t) ≡ V̂ (t) for all t. We call π̂ Cover’s portfolio.

Let

V ∗(t) = sup
θ∈Θ

Vθ(t) (9.2.4)
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be the performance of the best portfolio in the family over the time interval [0, t]. The

original goal of Cover’s portfolio (9.2.3) is to track V ∗(t) in the sense that

1

t
log

V̂ (t)

V ∗(t)
→ 0 (9.2.5)

as t → ∞. If (9.2.5) holds, the portfolio π̂ performs asymptotically as good as the best

portfolio in the family. In Section 9.3.3 we give a simple example to show that (9.2.5)

does not always hold. This question is naturally related to the concentration of the wealth

distribution and motivates our study.

Remark 9.2.3. As pointed out by many authors (see for example [29]), the construction of

Cover’s portfolio (9.2.3) as a wealth-weighted average has a strong Bayesian flavor. Imagine

the problem of finding the best portfolio in the family {πθ}θ∈Θ. Little is known at time 0,

but from historical data, experience and insider knowledge one may form a prior distribution

ν0 which describes the belief of the investor. At time t, having observed the returns of the

portfolios up to time t, the investor updates the belief with the posterior distribution νt

which satisfies
dνt
dν0

(θ) ∝ Vθ(t)

Vθ(0)
= Vθ(t).

This corresponds to Bayes’ rule where the relative return plays the role of the likelihood.

Note that this procedure is time-consistent. Namely, for t > s, we have

dνt
dνs

(θ) ∝ Vθ(t)

Vθ(s)
.

Cover’s portfolio (9.2.3) is then the posterior mean of πθ(µ(t)).

9.3 LDP for totally bounded families

To gain intuition about how Cover’s portfolio and the wealth distribution behave for a

general (possibly nonparametric) family, and to prepare for the more technical treatment

of functionally generated portfolio in Section 9.4, in this section we study large deviation

properties of wealth distributions where the family of portfolios is totally bounded with

respect to the uniform metric.
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9.3.1 Finite state

To fix ideas we begin with an even simpler situation where the sequence {µ(t)}∞t=0 takes

values in a finite set E ⊂ ∆n. The finite set E may be obtained by approximating the

simplex by a finite grid. Let

Θ =
{
π : E → ∆n

}
=
(
∆n

)E
be the set of all portfolio maps on E. (Note that the family is indexed by the symbol π

itself.) We equip Θ with the topology of uniform convergence. Since E is finite, this is the

same as the topology of pointwise convergence. Note that Θ is compact and convex. Recall

the notations in Section 8.1.1.

Lemma 9.3.1. Suppose Pt converges weakly to a probability measure P on E×E. Then for

each π ∈ Θ, the asymptotic growth rate exists and we have

W (π) = lim
t→∞

1

t
log Vπ(t) =

∫
E×E

`πdP.

Moreover, there is a portfolio π∗ ∈ Θ satisfying

W (π∗) = W ∗ := max
π∈Θ

W (π). (9.3.1)

If we write P(p, q) = P1(p)P2 (q | p), where P1 is the first marginal and P2 is the conditional

distribution, then

π∗(p) = arg max
x∈∆n

∫
E

log

(
x · q

p

)
P2 (dq | p) (9.3.2)

for all p where P1(p) > 0.

A portfolio satisfying (9.3.1) may be called a log-optimal portfolio.

Proof. Since E × E is a finite set, by weak convergence we have

W (π) = lim
t→∞

∫
E×E

`πdPt =

∫
E×E

`πdP.
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Thus the asymptotic growth rate exists for all π ∈ Θ. Clearly W (·) is a continuous function

on Θ. Since Θ is compact, it has a maximizer π∗. The last statement follows from the

representation

W (π) =

∫
E

(∫
E

`π(p, q)P2 (dq | p)
)
P (dp) .

The following LDP is a special case of Theorem 9.1.2 which will be proved in the next

subsection.

Theorem 9.3.2 (Finite state LDP). Suppose {µ(t)}∞t=0 takes values in a finite set E ⊂ ∆n.

Let Θ =
(
∆n

)E
and suppose that the initial distribution ν0 has full support.

(i) The portfolio π̂ satisfies the universality property (9.3.3).

lim
t→∞

1

t
log

V̂ (t)

V ∗(t)
= 0. (9.3.3)

(ii) If Pt converges weakly to a probability measure P on E×E, the family {νt}∞t=0 satisfies

the large deviation principle on Θ with the convex rate function

I(π) = W ∗ −W (π).

Remark 9.3.3. In the setting of Theorem 9.3.2(i), it is not difficult to show (see [29, Theorem

3.1]) that V ∗(t)/V̂ (t) is bounded above by a constant multiple of td, where d = |E|(n− 1) is

the ‘dimension’ of Θ and |E| is the cardinality of E.

9.3.2 LDP for totally bounded families

In this subsection we prove Theorem 9.1.2. Now {µ(t)}∞t=0 is any sequence in ∆n satisfying

Assumption 8.1.1.

Let Θ be a subset of L∞
(
∆n,∆n

)
, the set of functions from ∆n to ∆n equipped with

the supremum metric ‖ · ‖∞ (defined in terms of the Euclidean norm | · | on ∆n). We endow
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Θ with the induced topology, i.e., the topology of uniform convergence. A consequence of

Assumption 8.1.1 is that the function `π(·, ·) defined by (8.1.2) is bounded on S between

log 1
M

and logM , for any π ∈ Θ.

We say that Θ is totally bounded if for any ε > 0, there exists π1, . . . , πN ∈ Θ with the

following property: for any π ∈ Θ, there exists 1 ≤ j ≤ N such that ‖π − πj‖∞ < ε. The

smallest such N is called the ε-covering number of Θ. Thus Θ is totally bounded if and only

if the covering number is finite for all ε > 0.

First we prove a simple lemma which generalizes [29, Theorem 3.1] to nonparametric

families. In this generality it seems that a quantitative bound like (9.1.1) is out of reach.

Lemma 9.3.4. Suppose the market satisfies Assumption 8.1.1. Let Θ be a totally bounded

subset of L∞(∆n,∆n) and let ν0 be any initial distribution on Θ with full support. Then

Cover’s portfolio π̂ satisfies the universality property (9.3.3).

Proof. It suffices to show that lim inft→∞
1
t

log V̂ (t)
V ∗(t)

≥ 0. Let ε > 0 be given. Then there

exists ε′ > 0 and portfolios π1, . . . πN ∈ Θ such that the set {πj}1≤j≤N are ε′-dense in Θ, and

whenever ‖π − πj‖∞ < ε′ we have |`π − `πj | < ε on S.

For every t > 0, there exists a portfolio π[t] ∈ Θ such that

1

t
log Vπ[t](t) >

1

t
log V ∗(t)− ε,

and from the above construction there exists 1 ≤ j[t] ≤ N such that π[t] ∈ B(πj[t] , ε
′), the

open ball in Θ with radius ε′ centered at πj[t] . Thus∣∣∣∣1t log Vπ
j[t]

(t)− 1

t
log V ∗(t)

∣∣∣∣ < 2ε. (9.3.4)

Moreover, if π ∈ Bj[t] := B(πj[t] , ε
′), then∣∣∣∣1t log Vπ(t)− 1

t
log Vπ

j[t]
(t)

∣∣∣∣ < ε
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for all t. Combining these inequalities, we have

1

t
log V̂ (t) ≥ 1

t
log

∫
B
j[t]

Vπ(t)ν0(dπ)

≥ 1

t
log

∫
B
j[t]

exp

(
t ·
(

1

t
log V ∗(t)− 3ε

))
ν0(dπ)

≥ 1

t
log V ∗(t)− 3ε+

1

t
log ν0(Bj[t]).

(9.3.5)

Since ν0 has full support, we have limt→∞min1≤j≤N
1
t

log ν0(Bj) = 0. Hence

lim inf
t→∞

1

t
log

V̂ (t)

V ∗(t)
≥ −3ε.

The proof is completed by letting ε→ 0.

Theorem 9.1.2 is a consequence Lemma 9.3.4 and the following ‘uniform strong law of

large numbers’. The proof is a standard bracketing argument similar to the proof of Lemma

9.3.4 and can be found, for example, in [96, Section 3.1].

Lemma 9.3.5. Under the hypotheses of Theorem 9.1.2, we have

lim
t→∞

sup
π∈Θ

∣∣∣∣1t log Vπ(t)−W (π)

∣∣∣∣ = 0.

Proof of Theorem 9.1.2. By assumption, W (π) = limt→∞
1
t

log Vπ(t) exists for all π ∈ Θ.

Using the argument of the proof of Lemma 9.3.4, it can be shown that

lim
t→∞

1

t
log V̂ (t) = lim

t→∞

1

t
log V ∗(t) = W ∗(t). (9.3.6)

Since

1

t
log νt(B) =

1

t
log

(
1

V̂ (t)

∫
Θ

Vπ(t)dν0(π)

)

=
1

t
log

(∫
Θ

Vπ(t)dν0(π)

)
− 1

t
log V̂ (t)

and thanks to (9.3.6), to prove the LDP it suffices to show that

lim sup
t→∞

1

t
log

∫
F

Vπ(t)dν0(π) ≤ sup
π∈F

W (π) (9.3.7)
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for all closed sets F and

lim inf
t→∞

1

t
log

∫
G

Vπ(t)dν0(π) ≥ inf
π∈G

W (π) (9.3.8)

for all open sets G. Indeed, we will show that (9.3.7) holds for all measurable sets no matter

it is closed or not.

By Lemma 9.3.5, the quantity

R(t) = sup
π∈Θ

∣∣∣∣1t log Vπ(t)−W (π)

∣∣∣∣
converges to 0 as t→∞. To prove the upper bound, write

1

t
log

∫
F

Vπ(t)dν0(π) ≤ 1

t
log

∫
F

exp (t (W (π) +R(t))) dν0(π)

≤ sup
π∈F

W (π) +R(t) +
1

t
ν0(F )

≤ sup
π∈F

W (π) +R(t),

since ν0(F ) ≤ 1 for all F . Letting t → ∞ establishes the upper bound for all measurable

sets. The lower bound for open sets can be proved in a similar manner using the fact that

ν0 has full support.

Proof of Theorem 9.3.2. Since E is finite, Θ is a totally bounded family of functions from E

to ∆n. (It can be extended from E to ∆n by setting π(p) = π0 for p /∈ E, where π0 is a fixed

element of ∆n.) The first statement then follows from Lemma 9.3.4. Moreover, by Lemma

9.3.1 the limit W (π) = limt→∞
∫
E×E `πdPt exists and equals

∫
E×E `πdP for all π ∈ Θ. Thus

Theorem 9.1.2 applies. It is easy to see that I(π) is convex in π.

9.3.3 An example

Theorem 9.1.2 assumes that the family is totally bounded in the supremum metric and the

asymptotic growth rates of all portfolios exist. Now we give a simple example to show what

might go wrong. First, if the family is too large and the topology is not chosen appropriately,

universality may fail. Second, the LDP may be trivial even if there is an optimal portfolio.
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Consider a market with two stocks (so n = 2). Assume that the market weight takes

values in the countable set

E = {p = (p1, p2) ∈ ∆2 : p1, p2 ∈ Q}.

Let Θ =
(
∆2

)E
be the set of portfolio maps on E and equip Θ with the topology of pointwise

convergence. Let the initial distribution ν0 be the infinite product of the uniform distribution

on ∆2. Then ν0 has full support on Θ.

Let δ > 0 be a rational number and consider the path {µ(t)}t≥0 in E defined recursively

by

µ(0) =

(
1

2
,
1

2

)
, µ(t+ 1) =

(
µ1(t)

1 + δµ2(t)
,
(1 + δ)µ2(t)

1 + δµ2(t)

)
. (9.3.9)

Note that
µ2(t+ 1)

µ2(t)
= (1 + δ)

µ1(t+ 1)

µ1(t)
(9.3.10)

for all t ≥ 0 and it can be verified directly that {µ(t)}t≥0 satisfies Assumption 8.1.1 with

M = 1 + δ.

From (9.3.10), it is clear that any optimal portfolio π up to time t satisfies π(µ(s)) = (0, 1)

for all 0 ≤ s ≤ t− 1. It follows that V ∗(t) = maxπ∈Θ Vπ(t) = µ2(t)
µ2(0)

for all t.

Proposition 9.3.6. For the market weight path given by (9.3.9), Cover’s portfolio π̂ satisfies

V̂ (t) =
µ2(t)

µ2(0)

(
1− 1

2

δ

1 + δ

)t
.

In particular, we have

lim
t→∞

1

t
log

V̂ (t)

V ∗(t)
= log

(
1− 1

2

δ

1 + δ

)
< 0.

Thus Cover’s portfolio does not satisfy the universality property (9.3.3) for all market weight

paths satisfying Assumption 8.1.1.

Proof. Given a portfolio π ∈ Θ, we have

Vπ(t) =
t−1∏
s=0

(
π1(µ(s))

µ1(s+ 1)

µ1(s)
+ π2(µ(s))

µ2(s+ 1)

µ2(s)

)
.
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By (9.3.10), we can write

Vπ(t) =
t−1∏
s=0

(
µ2(s+ 1)

µ2(s)

(
1

1 + δ
π1(µ(s)) + π2(µ(s))

))

=
µ2(t)

µ2(0)

t−1∏
s=0

(
1− (1− π2(µ(s)))

δ

1 + δ

)
.

The value of Cover’s portfolio is

V̂ (t) =
µ2(t)

µ2(0)

∫
Θ

t−1∏
s=0

(
1− (1− π2(µ(s)))

δ

1 + δ

)
dν0(π).

Since ν0 is an infinite product of uniform distributions, by independence we have

V̂ (t) =
µ2(t)

µ2(0)

(
1− 1

2

δ

1 + δ

)t
.

Proposition 9.3.7. For the market weight path given by (9.3.9), the wealth distributions

{νt}∞t=0 satisfies LDP on Θ with the trivial rate function I(π) ≡ 0.

Proof. Let G be any open set of Θ. Then G contains a cylinder set of the form

C = {(π(p1), . . . , π(p`)) ∈ B} , (9.3.11)

where p1, . . . , p` ∈ E and B is an open subset of
(
∆2

)`
. It follows that

νt(G) ≥ 1(
1− 1

2
δ

1+δ

)t ∫
C

t−1∏
s=0

(
1− (1− π2(µ(s)))

δ

1 + δ

)
dν0(π).

Using the fact that C puts restrictions on only finitely many coordinates, we have

lim
t→∞

1

t
log

∫
C

t−1∏
s=0

(
1− (1− π2(µ(s)))

δ

1 + δ

)
dν0(π) = log

(
1− 1

2

δ

1 + δ

)
.

So lim inft→∞
1
t

log νt(G) ≥ 0 and limt→∞
1
t

log νt(G) = 0. Since the upper bound holds

trivially, the LDP is proved.
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9.4 LDP for functionally generated portfolios

This section is devoted to proving Theorem 9.1.3 for functionally generated portfolios. As in

Section 9.3 we impose Assumption 8.1.1 on the market weight sequence {µ(t)}∞t=0. In fact,

most of the hard work has been done in Chapter 8

Let FG ⊂ L∞
(
∆n,∆n

)
be the family of all functionally generated portfolios π : ∆n →

∆n. It is known that FG is convex. Indeed, if π is generated by Φ and η is generated by Ψ,

then for any λ ∈ (0, 1) the portfolio λπ + (1 − λ)η (a constant-weighted portfolio of π and

η is generated by the geometric mean ΦλΨ1−λ. We endow FG with the topology of uniform

convergence. The following lemma shows that the current setting is not covered by Theorem

9.1.2.

Lemma 9.4.1. FG is not totally bounded. In fact, FG is not separable.

Proof. We give an example for n = 2 and similar considerations can be applied to all dimen-

sions. For each θ ∈ (0, 1), let πθ : ∆2 → ∆2 be the portfolio

πθ(p) =

(1, 0) if p1 ≤ θ

(0, 1) if p1 > θ.

It is easy to verify that each πθ is functionally generated and {πθ}θ∈(0,1) forms an uncountable

discrete set in FG. Hence FG is not separable.

Although the portfolio maps π : ∆n → ∆n are the primary objects, it is technically

more convenient to work with their generating functions. Recall the family C0 introduced

in Definition 8.2.4. By Proposition 4.3.2 the generating function of a functionally generated

portfolio is unique up to a positive multiplicative constant. Thus by a normalization we may

assume without loss of generality that C0 is the set of generating functions. Although FG is

not totally bounded, by Lemma 8.2.3 it is ‘almost the same’ as C0 which is a compact metric

space. This allows us to show under appropriate conditions that Vπ(t) behaves nicely as a

function of π when t is large.
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Remark 9.4.2. It is natural to ask why we do not use the compact set C0 as the index space.

There are three reasons for this. First, the portfolio maps π : ∆n → ∆n are the primary

objects for portfolio analysis, and the generating functions are only derived entities. Second,

even if π1 and π2 have the same generating function, over a finite horizon Vπ1(t) and Vπ2(t)

may have quite different behaviors. Third, even though for each Φ ∈ C0 we may choose a

portfolio πΦ generated by Φ, there is no canonical way of doing this so that the maps Φ 7→ πΦ

and Φ 7→ VπΦ
(t) are measurable.

Now we prove Theorem 9.1.3. First we rephrase Lemma 8.3.2 as follows.

Lemma 9.4.3. Suppose Pt converges weakly to an absolutely continuous probability measure

P on S. Then for every π ∈ FG the asymptotic growth rate W (π) = limt→∞
1
t

log Vπ(t) exists

and is given by

W (π) = lim
t→∞

∫
S
`πdPt =

∫
S
`πdP. (9.4.1)

Recall that d(Φ,Ψ) is the metric on C0 given in Definition 8.2.4. The following lemma is

a restatement of Lemma 8.3.3.

Lemma 9.4.4. Suppose Pt converges weakly to an absolutely continuous probability measure

P on S. Let π0 ∈ FG be generated by Φ0 ∈ C0. For any ε > 0, there exists δ > 0 such that

lim sup
t→∞

sup
π∈FG(π0,δ)

∣∣∣∣1t log Vπ(t)− 1

t
log Vπ0(t)

∣∣∣∣ < ε,

where FG(π0, δ) is the set of all functionally generated portfolio π whose generating function

Φ ∈ C0 satisfies d(Φ,Φ0) < δ. In particular, we have the ‘uniform strong law of large

numbers’

lim
t→∞

sup
π∈FG

∣∣∣∣1t log Vπ(t)−W (π)

∣∣∣∣ = 0.

Recall that V̂ (t) =
∫

Θ
Vπ(t)dν0(π) and V ∗(t) = supπ∈Θ Vπ(t).

Lemma 9.4.5. Suppose Pt converges weakly to an absolutely continuous probability measure

P on S. Let ν0 be any initial distribution on FG and W ∗ = supπ∈supp(ν0)W (π). Then

limt→∞
1
t

log V̂ (t) = W ∗.
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Proof. For π ∈ FG write
1

t
log Vπ(t) = W (π) +Rπ(t)

where Rπ(t) is the remainder. By Lemma 9.3.5 we have limt→∞ supπ∈FG |Rπ(t)| = 0. Write

V̂ (t) =

∫
supp(ν0)

et(W (π)+Rπ(t))dν0(π).

It is clear that lim supt→∞
1
t

log V̂ (t) ≤ W ∗. To show the other inequality, note that W (π)

is continuous in π ∈ FG. Thus for any π ∈ supp (ν0) and ε > 0, by restricting the integral

to a neighborhood of π we have lim inft→∞
1
t

log V̂ (t) ≥ W (π) − ε. Taking supremum over

π ∈ supp (ν0) completes the proof.

Proof of Theorem 9.1.3. (i) This has been proved in Lemma 9.4.4.

(ii) We argue as in the proof of Theorem 9.1.2. Write

νt(B) =
1

V̂ (t)

∫
B∩supp (ν0)

Vπ(t)dν0(π).

Using the uniform convergence property (i), we can show that

lim sup
t→∞

1

t
log

∫
F

Vπ(t)dν0(π) ≤ sup
π∈F∩supp (ν0)

W (π) (9.4.2)

for any set F with F ∩ supp (ν0) 6= ∅, and

lim inf
t→∞

1

t
log

∫
G

Vπ(t)dν0(π) ≥ inf
π∈G∩supp (ν0)

W (π) (9.4.3)

for all open sets G such that G ∩ supp (ν0) 6= ∅. These inequalities and Lemma 9.4.5 imply

the LDP.

(iii) Let {Φk}∞k=1 be a countable dense set in the metric space (C0, d). For each k, let πk

be a portfolio generated by Φk. Consider an initial distribution of the form

ν0 =
∞∑
k=1

λkδπk , (9.4.4)

where λk > 0 and
∑∞

k=1 λk = 1.
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To see that ν0 works, let π be any functionally generated portfolio and Φ ∈ C0 be its

generating function. Then there is a sequence πk′ whose generating functions Φk′ con-

verges locally uniformly to Φ. By Lemma 9.3.5, we have W (πk′) → W (π). Thus W ∗ =

supπ∈supp (ν0) W (π) = supπ∈FGW (π). By Lemma 9.4.5, to establish the asymptotic univer-

sality property (9.1.6) it remains to show that

lim
t→∞

1

t
log V ∗(t) = W ∗,

but this is a direct consequence of the uniform convergence property (i).

Similar to [58], the results in this chapter are asymptotic in nature, and in this non-

parametric setting we are unable to establish quantitative bounds that hold for all finite

horizons. It is desirable to obtain quantitative bounds despite of the fact that they may be

too conservative to be useful in practice. Even if the underlying market process is modeled

correctly, the convergence 1
t

log Vπ(t) → W (π) may take a long time and the portfolio π̂(t)

may be dominated by noise. A possible remedy is to use a smaller family or to impose

regularization via a suitable prior (initial distribution). Tackling this bias-variance trade-off

in dynamic portfolio selection is an interesting problem of great practical importance.

Instead of using Cover’s portfolio as a wealth-weighted average, we may use other portfolio

selection algorithms to construct universal portfolios for functionally generated portfolios.

Perhaps the follow-the-regularized-leader (FTRL) approach of [53] can be generalized to this

nonparametric set up.

A classic result in asymptotic parametric statistics is the Bernstein von-Mises Theorem

which states that the posterior distribution is asymptotically normal under appropriate scal-

ing [97, Chapter 10]. Certain generalizations to nonparametric models are possible, see

for example [21]. As noted in the Introduction, for constant-weighted portfolios the map

π 7→ Vπ(t) is essentially a multiple of a normal density (see [58] and [29]). Hence the wealth

distribution, when suitably rescaled, is approximately normal if the initial distribution is

sufficiently regular. Since the family of functionally generated portfolios is convex, it can be

viewed as an infinite dimensional constant-weighted family of portfolios. It is interesting to
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formulate and prove a version of Bernstein von-Mises Theorem in the setting of Theorem

9.1.3.
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Part III

INFORMATION GEOMETRY
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Chapter 10

INFORMATION GEOMETRY OF L-DIVERGENCE

Information geometry is the geometric study of manifolds of probability distributions. In

this chapter we study the unit simplex ∆n regarded as the set of probability distributions

on n atoms. We show that the L-divergence of any exponentially concave function induces a

remarkable geometric structure on ∆n which has deep connections with the optimal transport

problem studied in Chapter 6. This chapter is based on joint work with Soumik Pal [82].

Throughout this chapter we use the notations of Section 6.4.

10.1 Introduction

10.1.1 Motivation: Optimal frequency of rebalancing

We motivate this topic by a question of great practical interest: the optimal rebalancing

frequency of portfolios. Consider a portfolio π generated by an exponentially concave function

ϕ on ∆n. By Fernholz’s decomposition, we have

log Vπ(t) = (ϕ(µ(t))− ϕ(µ(0))) +
t−1∑
s=0

T (µ(t+ 1) | µ(t)) .

In this formula it is assumed that the portfolio rebalances every period (say every week).

In practice, due to transaction costs and other considerations, we may want to rebalance at

other frequencies. To begin with a simple case, let 0 = t0 < t1 < t2 be three time points

and consider two ways of implementing the portfolio π: (i) rebalance at times t0 and t1 (ii)

rebalance at time t0 only. The relative values of the two implementations at time t2 are given

by

log V (1)
π (t2) = (ϕ(µ(t2))− ϕ(µ(t0))) + T (µ(t1) | µ(t0)) + T (µ(t2) | µ(t1)) ,

log V (2)
π (t2) = (ϕ(µ(t2))− ϕ(µ(t0))) + T (µ(t2) | µ(t0)) .
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Figure 10.1: Plots of the region {q ∈ ∆n : T (q | p) + T (r | q) ≤ T (r | p)} for the equal-

weighted portfolio π =
(

1
3
, 1

3
, 1

3

)
, for several values of p and r. Each point q on the boundary

gives a ‘right-angled geodesic triangle’ in the sense of Theorem 10.1.1.

Letting µ(t0) = p, µ(t1) = q and µ(t2) = r, the difference between the two values is

log V (1)
π (t2)− log V (2)

π (t2) = T (q | p) + T (r | q)− T (r | p) .

This motivates the following question:

Given p, q, r ∈ ∆n, when is T (q | p) + T (r | q) ≤ T (r | p)?

In Figure 10.1 we illustrate the idea using the equal-weighted portfolio of 3 stocks. In

the figure, rebalancing at time t1 creates extra profit if and only if q lies outside the region.

This shows convincingly that rebalancing more frequently is not always better, even in the

absence of transaction costs.

10.1.2 Generalized Pythagorean theorem

It turns out that the answer to the above question is given by a ‘generalized Pythagorean

theorem’. Let us describe the main ideas and leave the details for later. Consider the
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p

q

r

dual geodesic

primal geodesic

Figure 10.2: Generalized Pythagorean theorem for L-divergence.

L-divergence of the portfolio π. By Proposition 4.5.1, we have

T (q | p) = log (1 +∇ϕ(p) · (q − p))− (ϕ(q)− ϕ(p))

for p, q ∈ ∆n. We only require that ϕ (the log generating function) is smooth and the

Euclidean Hessian of eϕ is strictly positive definite everywhere (Assumption 6.4.3). The

derivatives of this divergence defines a geometric structure on ∆n consisting of a Riemannian

metric g and a pair (∇,∇∗) of dually coupled affine connections. These connections define

via parallel transport to kinds of geodesics on ∆n; we call them primal and dual geodesics.

With these concepts (to be made precise later) we can state the generalized Pythagorean

theorem.

Theorem 10.1.1 (Generalized Pythagorean theorem). Given p, q, r ∈ ∆n, consider the dual

geodesic joining q and p and the primal geodesic joining q and r. Then the difference

T (q | p) + T (r | q)− T (r | p) (10.1.1)

is positive, zero or negative depending on whether the Riemannian angle between the geodesics

at q is less than, equal to, or greater than π/2 (see Figure 10.2).

The Pythagorean theorem is not the only application of this geometric structure. As we

will see, this framework has deep connections with the optimal transport problem studied
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in Chapter 6. In particular, the difference (10.1.1) can also be given an optimal transport

interpretation (Section 10.2.1). Moreover, the dual geodesics can be used to construct a

‘displacement interpolation’ for the transport problem.

10.1.3 Information geometry

Instead of the L-divergence, we may ask the same question for other divergences. In par-

ticular, we can consider the Bregman divergence (defined by (4.5.2)). Indeed, for Bregman

divergences such questions have been studied thoroughly in information geometry. Among

various divergences (such as α-divergence and f -divergence and others, see [93]), Bregman

divergence plays a special role because it induces a dually flat geometry on the underlying

space. First studied in the context of exponential families in statistical inference [77], it gave

rise to information geometry – the geometric study of manifolds of probability distributions.

Furthermore, Bregman divergence enjoys properties such as the generalized Pythagorean

theorem and projection theorem which led to numerous applications. See [2, 3, 19, 62, 76]

for introductions to this beautiful theory. The related concept of dual affine connection is

also useful in affine differential geometry (see [34, 65, 92]).

10.1.4 Other results

We also prove other remarkable properties of the geodesics. (i) There exist explicit coordinate

systems under which the primal and dual geodesics are time changes of Euclidean straight

lines (Theorem 10.4.1). In other words, the new geometry is dually projectively flat. In

particular, the primal geodesics are Euclidean straight lines up to time reparameterization.

Moreover, the primal and dual connections have constant sectional curvature −1 with respect

to the Riemannian metric, and thus satisfy an Einstein condition (Corollary 10.3.10). The

primal and dual geodesics can also be constructed as time changes of Riemannian gradient

flows for the functions T (r | ·) and T (· | p) (Theorem 10.4.3). This is remarkable because

while the geodesic equations depend only on the local properties of T (ξ | ξ′) near ξ = ξ′, the

gradient flows are global as they involve the derivatives of T (r | ·) and T (· | p). Indeed, this
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relation is known only for limited families of divergence including Bregman divergence and

α-divergence [5].

(ii) We extend the static transport problem with cost c(θ, φ) = ψ(θ − φ) to a time-

dependent transport problem with a corresponding convex Lagrangian action. In Theorem

10.5.2 we show that the action minimizing curves are the (reparametrized) dual geodesics

which, moreover, satisfy the intermediate time optimality condition. This allows for a con-

sistent displacement interpolation formulation between probability measures on the unit

simplex. Previously, such studies focused almost exclusively on the Wasserstein spaces cor-

responding to the cost functions c(x, y) = d(x, y)α (here d is a metric on a Polish space

with suitable properties and α ≥ 1). This is an immensely important topic in classical

Wasserstein transport with fundamental implications in geometry, physics, probability and

PDE. See [101, Chapter 7]. Our Lagrangian, although convex, is not superlinear, and, there-

fore, is not covered by the standard theory. However, we expect it to lead to many equally

remarkable properties.

These results suggest plenty of problems for further research. Generalizing Theorem

10.1.1 to more than three points is of interest in stochastic portfolio theory. Displacement

interpolation has become an extremely important topic in optimal transport theory. In

particular, [68] defines Ricci curvatures on metric measure spaces in terms of displacement

interpolation and displacement convexity. We expect that the displacement interpolation in

this chapter will lead to a new Otto calculus ([101, Chapter 15]) and related PDEs (such

as Hamilton-Jacobi equations). It appears that the Bregman divergence and L-divergence

are only two of an entire family of divergences with special properties and corresponding

Monge-Kantarovich optimal transport problems. In forthcoming papers we plan to study

this general class. We also believe that this new information geometry will be useful in

dynamic optimization problems where the cost function is multiplicative in time. Finally, it

is naturally of interest to study exponential concavity on general convex domains.
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10.1.5 Notation

Throughout this chapter, we assume we are given an exponentially concave function ϕ on ∆n

satisfying the regularity conditions in Assumption 6.4.3. We let π be the portfolio generated

by ϕ and let f = ϕ+ ψ (in exponential coordinates). Recall that f is a c-concave function.

10.2 c-divergence

In this section we interpret the L-divergence from the point of view of optimal transport.

Recall the notations and conventions in Section 6.4. In particular, recall the cost function

c(θ, φ) = ψ(θ − φ) = log

(
1 +

n−1∑
i=1

eθi−φi

)

defined for θ, φ ∈ Rn−1. By duality, we show that a pair of natural divergences on ∆n can

be defined for the c-concave functions f and f ∗. Moreover, they coincide with L-divergence.

It is clear that we may replace c by other cost functions. When c is the negative Euclidean

inner product, we obtain the classical Bregman divergence. This covers both L-divergence

and Bregman divergence under the same framework. To the best of our knowledge these

definitions have not appeared in the literature. We will use the triple representation (p, θ, φ)

for each point in ∆n.

Definition 10.2.1 (c-divergence). Consider the c-concave function f defined by (6.4.5) and

its c-transform f ∗.

(i) The c-divergence of f is defined by

D (p | p′) = c(θ, φ′)− c(θ′, φ′)− (f(θ)− f(θ′)), p, p′ ∈ ∆n. (10.2.1)

(ii) The c-divergence of f ∗ is defined by

D∗ (p | p′) = c(θ′, φ)− c(θ′, φ′)− (f ∗(φ)− f ∗(φ′)), p, p′ ∈ ∆n. (10.2.2)
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From Fenchel’s identity (6.4.3) we see that D and D∗ are non-degnereate, i.e., they vanish

only on the diagonal of ∆n×∆n. The following is a generalization of the self-dual expression

of Bregman divergence (see [2, Theorem 1.1]).

Proposition 10.2.2 (Self-dual expressions). We have

D (p | p′) = c(θ, φ′)− f(θ)− f ∗(φ′), (10.2.3)

D∗ (p | p′) = c(θ′, φ)− f ∗(φ)− f(θ′). (10.2.4)

In particular, for p, p′ ∈ ∆n, we have D (p | p′) = D∗ (p′ | p).

Proof. To prove (10.2.4), we use the Fenchel identity f(θ′) + f ∗(φ′) = c(θ′, φ′). It follows

that

D (p | p′) = c(θ, φ′)− c(θ′, φ′)− (f(θ)− f(θ′))

= c(θ, φ′)− f(θ)− f ∗(φ′).

The proof of (10.2.4) is similar.

Now we show that L-divergence is a special case of c-divergence when c(θ, φ) is given by

ψ(θ − φ).

Proposition 10.2.3 (L-divergence as c-divergence). For p, p′ ∈ ∆n we have

D (p | p′) = T (p | p′) .

Proof. Using the primal-dual relation (6.4.6), we have

ψ(θ − φ′) = log

(
n∑
i=1

e
θi−θ′i+log

πi(θ
′)

πn(θ′)

)
= log

(
π(p′) · p

p′

)
− log

(
πn(p′)

pn
p′n

)
.

Next, by Fenchel’s identity, we have

f ∗(φ′) = ψ(θ′ − φ′ − f(θ′) = ψ(θ′ − φ′)− ϕ(θ′)− ψ(θ′).
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Using these identities, we compute

D (p | p′) = ψ(θ − φ′)− f(θ)− f ∗(φ′)

= log

(
π(p′) · p

p′

)
− log

(
πn(p′)

pn
p′n

)
− (ϕ(θ) + ψ(θ))− (ψ(θ′ − φ′)− ϕ(θ′)− ψ(θ′))

= log

(
π(p′) · p

p′

)
− (ϕ(θ)− ϕ(θ′))

= T (p | p′) .

For computations it is convenient to express T (p | p′) solely in terms of either the primal

or dual coordinates. We omit the details of the computations.

Lemma 10.2.4 (Coordinate representations). For p, p′ ∈ ∆n we have

T (p | p′) = log

(
n∑
`=1

π`(θ
′)eθ`−θ

′
`

)
− (f(θ)− f(θ′)) ,

T (p | p′) = log

(
n∑
`=1

π`(φ)eφ`−φ
′
`

)
− (f ∗(φ′)− f ∗(φ)) .

10.2.1 Transport interpretation of the generalized Pythagorean theorem

Using Proposition 10.2.3 we can give a transport interpretation of the expression (10.1.1)

in the generalized Pythagorean theorem (Theorem 10.1.1). Let p, q, r ∈ ∆n be given. Let

(θ(j), φ(j))1≤j≤3 be the primal and dual coordinates of p, q and r respectively. Given the

exponentially concave function ϕ, the coupling (θ, φ = ∇f c(θ)) is c-cyclical monotone. Hence

coupling θ(j) with φ(j) is optimal.

Consider two (suboptimal) perturbations of the optimal coupling:

(i) (Cyclical perturbation) Couple θ(1) with φ(3), θ(2) with φ(1), and θ(3) with φ(2). The

associated cost is

c(θ(1), φ(3)) + c(θ(2), φ(1)) + c(θ(3), φ(2)).
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(ii) (Transposition) Couple θ(1) with φ(3), θ(3) with φ(1), and keep the coupling (θ(2), φ(2)).

The associated cost is

c(θ(1), φ(3)) + c(θ(3), φ(1)) + c(θ(2), φ(2)).

Now we ask which perturbation has lower cost. The difference (i) − (ii) is

c(θ(2), φ(1)) + c(θ(3), φ(2))− c(θ(3), φ(1))− c(θ(2), φ(2)).

By Proposition 10.2.3, this is nothing but the difference T (q | p) +T (r | q)−T (r | p). Thus

the generalized Pythagorean theorem gives an information geometric characterization of the

relative costs of the two perturbations.

10.3 Geometry of L-divergence

In this section we derive the geometric structure induced by a given L-divergence T (· | ·).

As always we impose the regularity conditions in Assumption 6.4.3. Using the primal and

dual coordinate systems, we compute explicitly the Riemannian metric g, the primal con-

nection ∇ and the dual connection ∇∗. We call (g,∇,∇∗) the induced geometric structure.

An important fact in information geometry is that the Levi-Civita connection ∇(0) is not

necessarily the right one to use. Nevertheless, by duality we always have ∇(0) = 1
2

(∇+∇∗).

10.3.1 Preliminaries

For differential geometric concepts such as Riemannian metric and affine connection we refer

the reader to [2, Chapters 5] whose notations are consistent with ours. For computational

convenience we define the geometric structure in terms of coordinate representations. It can

be shown that the geometric structure does not depend on the choice of coordinates, and we

refer the reader to [19, Chapter 11] for intrinsic definitions. The following definition (which

holds for a general divergence on a manifold) is taken from [2, Section 6.2].

Definition 10.3.1 (Induced geometric structure). Given a coordinate system ξ = (ξ1, . . . , ξn−1)

of ∆n, the coefficients of the geometric structure (g,∇,∇∗) are given as follows.
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(i) The Riemannian metric is given by

gij(ξ) = − ∂

∂ξi

∂

∂ξ′j
T (ξ | ξ′)

∣∣∣∣
ξ=ξ′

, i, j = 1, . . . , n− 1. (10.3.1)

By Assumption 6.4.3 the matrix (gij(ξ)) is strictly positive definite. The Riemannian

inner product and length are denoted by 〈·, ·〉 and ‖ · ‖ respectively.

(ii) The primal connection is given by

Γijk(ξ) = − ∂

∂ξi

∂

∂ξj

∂

∂ξ′k
T (ξ | ξ′)

∣∣∣∣
ξ=ξ′

, i, j, k = 1, . . . , n− 1. (10.3.2)

(iii) The dual connection is given by

Γ∗ijk(ξ) = − ∂

∂ξk

∂

∂ξ′i

∂

∂ξ′j
T (ξ | ξ′)

∣∣∣∣
ξ=ξ′

, i, j, k = 1, . . . , n− 1. (10.3.3)

For a general divergence the above definitions were first introduced by Eguchi in [35, 36].

If we define the dual divergence by T ∗ (p | p′) = T (p′ | p), the dual connection of T is the

primal connection of T ∗. The primal and dual connections are defined in such a way that

they are dual to each other [2, Theorem 6.2]. While any divergence induces a geometric

structure (g,∇,∇∗), it may not enjoy nice properties. For the geometric structure induced

by any Bregman divergence, it can be shown that the Riemann-Christoffel curvatures of

∇ and ∇∗ both vanish. Thus we say that the induced geometry is dually flat [2, Chapter

1]. We will show that L-divergence gives rise to a different geometry with many interesting

properties.

10.3.2 Notations

We begin by clarifying the notations. Following our convention, we write T (p | p′) =

T (θ | θ′) = T (φ | φ′) depending on the coordinate system used. The primal and dual coor-

dinate representations have been computed in Lemma 10.2.4.
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The Riemannian metric will be computed using both the primal and dual coordinate

systems. To be explicit about the coordinate system we use gij(θ) to denote its coefficients

in primal coordinates, and g∗ij(φ) for its coefficients in dual coordinates:

gij(θ) := − ∂2

∂θi∂θ′j
T (θ | θ′)

∣∣∣∣
θ=θ′

, g∗ij(φ) := − ∂2

∂φi∂φ′j
T (φ | φ′)

∣∣∣∣
φ=φ′

.

The inverses of the matrices (gij(θ)) and
(
g∗ij(φ)

)
are denoted by (gij(θ)) and (g∗ij(φ)) re-

spectively.

The primal connection ∇ will be computed using the primal coordinate system:

Γijk(θ) := − ∂3

∂θi∂θj∂θ′k
T (θ | θ′)

∣∣∣∣
θ=θ′

, Γkij(θ) :=
n−1∑
m=1

Γijm(θ)gmk(θ).

The dual connection ∇∗ will be computed using the dual coordinate system:

Γ∗ijk(φ) := − ∂3

∂φk∂φ′i∂φ
′
j

T (φ | φ′)
∣∣∣∣
φ=φ′

, Γ∗kij (φ) :=
n−1∑
m=1

Γ∗ijm(φ)g∗mk(φ).

The following notations are useful. For 1 ≤ i ≤ n we define

Πi(θ, θ
′) :=

πi(θ
′)eθi−θ

′
i∑n

`=1 π`(θ
′)eθ`−θ

′
`

, Π∗i (φ, φ
′) :=

πi(φ)eφi−φ
′
i∑n

`=1 π`(φ)eφ`−φ
′
`

. (10.3.4)

As always we adopt the convention θn = θ′n = φn = φ′n = 0. Note that Πi(θ, θ
′) involves

the portfolio at θ′ (the second variable) while Π∗i (φ, φ
′) involves the portfolio at φ (the first

variable). The partial derivatives of Πi and Π∗i are given in the next lemma and can be

verified by direct differentiation. We let δij be the Kronecker delta and δijk = δijδjk.

Lemma 10.3.2 (Derivatives of Πi and Π∗i ).

(i) For 1 ≤ i ≤ n and 1 ≤ j ≤ n− 1, we have

∂Πi(θ, θ
′)

∂θj
= Πi(θ, θ

′) (δij − Πj(θ, θ
′)) ,

∂Πi(θ, θ
′)

∂θ′j
= −Πi(θ, θ

′) (δij − Πj(θ, θ
′))

+ Πi(θ, θ
′)

(
1

πi(θ′)

∂πi
∂θ′j

(θ′)−
n∑
`=1

Π`(θ, θ
′)

1

π`(θ′)

∂π`
∂θ′j

(θ′)

)
.
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(ii) For 1 ≤ i ≤ n and 1 ≤ j ≤ n− 1, we have

∂Π∗i (φ, φ
′)

∂φj
= Πi(φ, φ

′)(δij − Πj(φ, φ
′))

+ Πi(φ, φ
′)

(
1

πi(φ)

∂πi
∂φj

(φ)−
n∑
`=1

Π`(φ, φ
′)

1

π`(φ)

∂π`
∂φj

(φ)

)
,

∂Πi(φ, φ
′)

∂φ′j
= −Πi(φ, φ

′)(δij − Πj(φ, φ
′)).

Lemma 10.3.3 (Derviatives of π(·)). For 1 ≤ i ≤ n and 1 ≤ j ≤ n− 1, we have

∂πi
∂θj

(θ) = πi(θ)(δij − πj(θ))− πi(θ)

(
∂φi
∂θj

(θ)−
n−1∑
`=1

π`(θ)
∂φ`
∂θj

(θ)

)
,

∂πi
∂φj

(φ) = −πi(φ)(δij − πj(φ)) + πi(φ)

(
∂θi
∂φj

(φ)−
n−1∑
`=1

π`(φ)
∂θ`
∂φj

(φ)

)
.

(10.3.5)

Proof. We prove the second formula and the proof of the first is similar. Using (6.2.5), we

write

πi(φ) =
eθi−φi∑n
`=1 e

θ`−φ`

and regard θ is a function of φ (recall that θn = φn = 0). Then

∂πi
∂φj

(φ) =
eθi−φi

(
∂θi
∂φj

(φ)− δij
)

∑n
`=1 e

θ`−φ`
− eθi−φi

(
∑n

`=1 e
θ`−φ`)

2

n∑
`=1

eθ`−φ`
(
∂θ`
∂φj

(φ)− δ`j
)

= −πi(φ)(δij − πj(φ)) + πi(φ)

(
∂θi
∂φj

(φ)−
n−1∑
`=1

π`(φ)
∂θ`
∂φj

(φ)

)
.

Note that the nth term of the sum is omitted because θn = 0.

Thanks to these formulas, computations in the primal and dual coordinates are very

similar except for a change of sign. In the following we will often give details for one

coordinate system and leave the other one to the reader.

Last but not least, let ∂φ
∂θ

(θ) =
(
∂φi
∂θj

(θ)
)

be the Jacobian of the change of coordinate map

θ 7→ φ. Similarly, we let ∂θ
∂φ

(φ) =
(
∂θi
∂φj

(φ)
)

be the Jacobian of the inverse map φ 7→ θ. The

two Jacobians are inverses of each other, i.e.,

∂φ

∂θ
(θ)

∂θ

∂φ
(φ) = I. (10.3.6)
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10.3.3 Riemannian metric

For intuition, we first compute the Riemannian inner product using Euclidean coordinates.

We let Tp∆n be the tangent space at p.

Proposition 10.3.4. Let u, v ∈ Tp∆n be represented in Euclidean coordinates, i.e., u =

(u1, . . . , un) ∈ Rn and u1 + · · ·+ un = 0, and similarly for v. Then

〈u, v〉 = uT
(
−Hessϕ(p)−∇ϕ(p)∇ϕ(p)T

)
v

= uT
(
−1

Φ(p)
Hess Φ(p)

)
v.

(10.3.7)

Proof. By [19, Proposition 11.3.1] we have ‖v‖2 = d2

dt2
T (p+ tv | p)

∣∣∣
t=0

, where

T (p+ tv | p) = log (1 + t∇ϕ(p) · v)− (ϕ(p+ tv)− ϕ(p)) .

Differentiating two times and setting t = 0 give the first equality in (10.3.7) when u = v,1

and polarizing gives the general case. The second equality follows from the chain rule.

Theorem 10.3.5 (Riemannian metric).

(i) Under the primal coordinate system, the Riemannian metric is given by

gij(θ) = πi(θ)(δij − πj(θ))−
∂πi
∂θj

(θ). (10.3.8)

Its inverse is given by

gij(θ) =
1

πj(θ)

∂θi
∂φj

(φ) +
1

πn(θ)

n−1∑
`=1

∂θi
∂φ`

(φ). (10.3.9)

(ii) Under the dual coordinate system, the Riemannian metric is given by

g∗ij(φ) = πi(φ)(δij − πj(φ)) +
∂πi
∂φj

(φ). (10.3.10)

Its inverse is given by

g∗ij(φ) =
1

πj(φ)

∂φi
∂θj

(φ) +
1

πn(φ)

n−1∑
`=1

∂φi
∂θ`

(φ). (10.3.11)

1Note that this is two times the drift quadratic form (see Definition 7.2.2).
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Proof. (i) By Lemma 10.2.4 and Lemma 10.3.2, we compute

∂

∂θi
T (θ | θ′) = Πi(θ, θ

′)− πi(θ), (10.3.12)

∂

∂θ′i
T (θ | θ′) = −Πi(θ, θ

′) + πi(θ) +
n∑
`=1

Π`(θ, θ
′)

1

π`(θ′)

∂π`
∂θ′i

(θ′). (10.3.13)

Differentiating (10.3.12) with respect to θ′j, we have

∂2

∂θi∂θ′j
T (θ | θ′) = −Πi(θ, θ

′) (δij − Πj(θ, θ
′))

+ Πi(θ, θ
′)

(
1

πi(θ′)

∂πi
∂θ′j

(θ′)−
n∑
`=1

Π`(θ, θ
′)

1

π`(θ′)

∂π`
∂θ′j

(θ′)

)
.

(10.3.14)

Setting θ = θ′, we get gij(θ) = πi(θ)(δij − πj(θ))− ∂πi
∂θj

(θ).

By Lemma 10.3.3, we have the alternative expression

gij(θ) = πi(θ)

(
∂φi
∂θj

(θ)−
n−1∑
`=1

π`(θ)
∂φ`
∂θj

(θ)

)
. (10.3.15)

Expressing (10.3.15) in matrix form, we have

(gij(θ)) = diag (π(θ))(I − 1π′(θ))
∂φ

∂θ
(θ), (10.3.16)

where π(θ) = (π1(θ), . . . , πn−1(θ))′, 1 = 1n−1 = (1, . . . , 1)′ and I = In−1 is the identity

matrix.

To invert (10.3.16) we use the fact that

(I − 1π′(θ))−1 = I +
1π′(θ)

πn(θ)
.

This can be verified directly or seen as a special case of the Sherman-Morrison formula. Thus

(
gij(θ)

)
=
∂θ

∂φ
(φ)

(
I +

1π′(θ)

πn(θ)

)
diag

(
1

π(θ)

)
.

Now (10.3.9) follows by expanding the matrix product.
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(ii) The proofs of (10.3.10) and (10.3.11) follow the same lines. For later use we record

the following formulas:

∂

∂φi
T (φ | φ′) = Π∗i (φ, φ

′)− πi(φ) +
n∑
`=1

1

π`(φ)

∂π`
∂φi

(φ)Π∗`(φ, φ
′), (10.3.17)

∂

∂φ′i
T (φ | φ′) = −Π∗i (φ, φ

′) + πi(φ
′), (10.3.18)

∂2

∂φi∂φ′j
T (φ | φ′) = −Π∗j(φ, φ

′)(δij − Π∗i (φ, φ
′))

− Πj(φ, φ
′)

(
1

πj(φ)

∂πj
∂φi

(φ)−
n∑
`=1

1

π`(φ)

∂π`
∂φi

(φ)Π`(φ, φ
′)

)
.

(10.3.19)

Remark 10.3.6. By Lemma 6.4.7 we have

∂πi
∂θj

(θ) =
∂2

∂θi∂θj
f(θ) =

∂πj
∂θi

(θ). (10.3.20)

Thus the right hand side of (10.3.8) is symmetric in i and j. Similarly, we have ∂πi
∂φj

=
∂πj
∂φi

.

10.3.4 Primal and dual connections

Theorem 10.3.7 (Primal and dual connections).

(i) Under the primal coordinate system, the coefficients of the primal connection ∇ is given

by

Γijk(θ) = δijgik(θ)− πi(θ)gjk(θ)− πj(θ)gik(θ), (10.3.21)

Γkij(θ) = δijk − δikπj(θ)− δjkπi(θ). (10.3.22)

(ii) Under the dual coordinate system, the coefficients of the dual connection ∇∗ is given

by

Γ∗ijk(φ) = −δijg∗ik(φ) + πi(φ)g∗jk(φ) + πj(φ)g∗ik(φ), (10.3.23)

Γ∗kij (φ) = −δijk + δikπj(φ) + δjkπi(φ). (10.3.24)
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Proof. We prove (ii) and leave (i) to the reader. By (10.3.19), we have

∂2

∂φk∂φ′i
T (φ | φ′) = −Π∗i (φ, φ

′)(δik − Π∗k(φ, φ
′))

− Π∗i (φ, φ
′)

(
1

πi(φ)

∂πi
∂φk

(φ)−
n∑
`=1

1

π`(φ)

∂π`
∂φk

(φ)Π`(φ, φ
′)

)
.

For notational convenience we momentarily suppress φ and φ′ in the computation (later we

will do so without comment). Differentiating one more time, we have

∂3

∂φk∂φ′i∂φ
′
j

T (φ | φ′)

= −δik
∂Π∗i
∂φ′j

+ Π∗i
∂Π∗k
∂φ′j

+ Π∗k
∂Π∗i
∂φ′j
− ∂Π∗i
∂φ′j

(
1

πi

∂πi
∂φk
−

n∑
`=1

1

π`

∂π`
∂φk

Π∗`

)
+ Πi

n∑
`=1

1

π`

∂π`
∂φk

∂Π∗`
∂φ′j

= δikΠ
∗
i (δij − Π∗j)− Π∗iΠ

∗
k(δjk − Π∗j)− Π∗kΠ

∗
i (δij − Π∗j)

+ Π∗i (δij − Π∗j)

(
1

πi

∂πi
∂φk
−

n∑
`=1

1

π`

∂π`
∂φk

Π∗`

)
− Π∗i

n∑
`=1

1

π`

∂π`
∂φk

Π∗`(δ`j − Π∗j).

Evaluating at φ = φ′ and simplifying, we get

Γ∗ijk(φ) = −δijkπi − 2πiπjπk + δijπiπk + δjkπjπi + δkiπkπj

− δij
∂πi
∂φk

+ πj
∂πi
∂φk

+ πi
∂πj
∂φk

.
(10.3.25)

By (10.3.10), we have ∂πi
∂φj

= g∗ij − πi(δij − πj). Plugging this into (10.3.25) and simplifying,

we have Γ∗ijk(φ) = −δijg∗ik(φ) + πi(φ)g∗jk(φ) + πj(φ)g∗ik(φ). Finally,

Γ∗kij (φ) =
n−1∑
m=0

(
−δijg∗im(φ) + πi(φ)g∗jm(φ) + πj(φ)g∗im(φ)

)
gmk(φ)

= −δijk + δikπj(φ) + δjkπi(φ).

Remark 10.3.8. It is interesting to note that although the connections are defined in terms

of third order derivative of T (· | ·), the coefficients Γkij(θ) and Γ∗kij (φ) are given in terms of

the portfolio π which is a normalized gradient of ϕ.
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10.3.5 Curvatures

It is well known that the induced geometry of any Bregman divergence is dually flat. This is

not the case for the geometry of L-divergence whenever n ≥ 3 (when n = 2 the simplex ∆2

is one-dimensional). To verify this we compute the Riemann-Christoffel curvature tensors of

the primal and dual connections. In this (and only this) subsection we adopt the Einstein

summation notation (see [2, p.20]).

The Riemann-Christoffel (RC) curvature tensor of a connection ∇ is defined for smooth

vector fields X, Y and Z by

R(X, Y )Z = ∇X(∇YZ)−∇Y (∇XZ)−∇[X,Y ]Z,

where [X, Y ] is the Lie bracket. Its coordinate representation is defined in terms of the

coefficients R`
ijk by R

(
∂
∂θi
, ∂
∂θj

)
∂
∂θk

= R`
ijk

∂
∂θ`

. By [2, (5.66)], we have

R`
ijk =

∂

∂θi
Γ`jk −

∂

∂θj
Γ`ik + Γ`imΓmjk − Γ`jmΓmik.

Theorem 10.3.9 (Primal and dual Riemann-Christoffel curvatures). Let R and R∗ be the

RC curvature tensors of the primal and dual connections respectively.

(i) In primal coordinates, the coefficients of R are given by

R`
ijk(θ) = δ`jgik(θ)− δ`igjk(θ). (10.3.26)

(ii) In dual coordinates, the coefficients of R∗ are given by

R∗`ijk(φ) = δ`jg
∗
ik(φ)− δ`ig∗jk(φ). (10.3.27)

In particular, for n ≥ 3 both R and R∗ do not vanish anywhere on ∆n.

Proof. We prove the statements for R. Using (10.3.21) and suppressing the argument, we

have
∂

∂θi
Γ`jk = −δ`j

∂πk
∂θi
− δ`k

∂πj
∂θi

,
∂

∂θj
Γ`ik = −δ`i

∂πk
∂θj
− δ`k

∂πi
∂θj

.
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From (10.3.20) it follows that

∂

∂θi
Γ`jk −

∂

∂θj
Γ`ik = −δ`j

∂πk
∂θi

+ δ`i
∂πk
∂θj

. (10.3.28)

Next we compute (with some work)

Γ`imΓmjk − Γ`jmΓmik = −δ`iδjkπj + δ`jδikπi + δ`iπjπk − δ`jπiπk. (10.3.29)

Combining (10.3.28) and (10.3.29), we have

R`
ijk(θ) = −δ`j

∂πk
∂θi

+ δ`i
∂πk
∂θj
− δ`iδjkπj + δ`jδikπi + δ`iπjπk − δ`jπiπk

= δ`j

(
δikπi − πiπk −

∂πk
∂θi

)
− δ`i

(
δjkπj − πjπk −

∂πk
∂θj

)
= δ`jgik − δ`igjk.

To see that R does not vanish for n ≥ 3, suppose on the contrary that R(θ) = 0. Then

R`
ijk(θ) = δ`jgik(θ) − δ`igjk(θ) = 0 for all values of i, j, k, `. Fix i and k. Letting ` = j, we

have gik(θ) = δijgjk(θ). Next let j 6= i (here we need dim ∆n = n − 1 ≥ 2). Then we get

gik(θ) = 0. Since i and k are arbitrary, we have g(θ) = 0 which is a contradiction.

We end this section by showing that the primal and dual connections have constant

sectional curvature −1. For the definitions of sectional and Ricci curvatures we refer the

reader to [66, Chapter 7] (these are compatible with the notations in [2]). Note that the

sectional and Ricci curvatures can be defined with respect to any given affine connection and

Riemannian metric.

Corollary 10.3.10 (Primal and dual sectional curvatures). The primal and dual connections

have constant sectional curvature −1 with respect to g. In particular, the primal and dual

Ricci curvatures satisfy the Einstein condition

Ric = Ric∗ = −(n− 2)g.

Proof. Recall that ∇ has constant sectional curvature k with respect to g if

R(X, Y )Z ≡ k(〈Y, Z〉X − 〈X,Z〉Y )
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for all X, Y and Z. For the primal Riemann-Christoffel curvature tensor we have

R

(
∂

∂θi
,
∂

∂θj

)
∂

∂θk
= R`

ijk

∂

∂θ`
= −

(〈
∂

∂θj
,
∂

∂θk

〉
∂

∂θi
−
〈
∂

∂θi
,
∂

∂θk

〉
∂

∂θj

)
,

which implies that the sectional curvature is k = −1. The claim for Ricci curvature follows

immediately by taking trace (see for example [94, (4.31)]). The proof for the dual curvatures

is the same.

10.4 Geodesics and generalized Pythagorean theorem

Armed with the primal and dual connections we can formulate the primal and dual geodesic

equations. Their solutions are the primal and dual geodesics which will be studied in this

section. The highlight of this section is the generalized Pythagorean theorem (Theorem

10.1.1). Along the way we will prove some remarkable properties of the geometric structure

(g,∇,∇∗).

10.4.1 Primal and dual geodesics

Note that in Figure 10.2 the primal geodesic is drawn as a straight line in ∆n. We now

prove that this is indeed the case. The same is true for the dual geodesic in dual Euclidean

coordinates.

Let γ : [0, 1] → ∆n be a smooth curve. We denote time derivatives by γ̇(t). Let θ(t)

and φ(t) be the primal and dual coordinate representations of γ. We say that γ is a primal

geodesic if its satisfies the primal geodesic equation

θ̈k(t) +
n−1∑
i,j=1

Γij(θ(t))θ̇i(t)θ̇j(t) = 0, k = 1, . . . , n− 1.

It is a dual geodesic if its satisfies the dual geodesic equation

φ̈k(t) +
n−1∑
i,j=1

Γ∗ij(φ(t))φ̇i(t)φ̇j(t) = 0, k = 1, . . . , n− 1.
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By Theorem 10.3.7, the primal geodesic equation in primal coordinates is

θ̈k(t) + 2θ̇k(t)
n−1∑
`=1

π`(θ(t))θ̇`(t) = 0, k = 1, . . . , n− 1. (10.4.1)

The dual geodesic equation in dual coordinates is

φ̈k(t)− 2φ̇k(t)
n−1∑
`=1

π`(φ(t))φ̇`(t) = 0, k = 1, . . . , n− 1. (10.4.2)

Theorem 10.4.1 (Primal and dual geodesics).

(i) Let γ : [0, 1] → ∆n be a primal geodesic. Then the trace of γ in ∆n is the Euclidean

straight line in ∆n joining γ(0) and γ(1).

(ii) Let γ∗ : [0, 1] → ∆n be a dual geodesic. For each t, let p∗(t) be the dual Euclidean

coordinate of γ(t). Then the trace of p∗ in ∆n is the Euclidean straight line in ∆n

joining p∗(0) and p∗(1).

Proof. (i) Let q, r ∈ ∆n be fixed. Let their primal coordinates be θq and θr respectively.

Consider the curve γ : [0, 1]→ ∆n defined in terms of the primal coordinate system by

θk(t) = log
(

(1− h(t))eθ
q
k + h(t)eθ

r
k

)
, k = 1, . . . , n− 1, (10.4.3)

where h(t) is a time parameterization to be chosen. Suppose that h is a solution to the

one-dimensional dfferential equation

h′′(t)− 2(h′(t))2

n−1∑
`=1

π`(θ(t))
θr` − θ

q
`

(1− h(t))eθ
q
` + h(t)eθ

r
`

= 0, (10.4.4)

where θ(t) is given by (10.4.3). Plugging (10.4.3) into the primal geodesic equation (10.4.1),

it can be shown after some computation that γ is a primal geodesic.

It remains to show that there exists a solution h such that h(0) = 0, h′(t) > 0 for all

t ∈ [0, 1] and h(1) = 1. With this choice of h the curve (10.4.3) is a primal geodesic from q

to r.
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First we note that if h(t) is a solution, then h(ct) is a solution for any c > 0. Also, if

h′(t0) = 0 then h(t) = h(t0) for all t ≥ t0. Let h0(t) be a maximal solution to (10.4.4) defined

on an interval [0, tmax) with h0(0) = 0 and h′0(0) > 0. By the previous remark, h0 is strictly

increasing on [0, tmax). If h0(t) hits 1 at some t = t0 < tmax, the function h(t) = h0(t/t0) is a

solution with the desired properties. In fact, we claim that

lim
t↑tmax

h0(t) = sup
t<tmax

h0(t) = M := min
1≤`≤n−1

(
eθ
q
`

eθ
q
` − eθr`

1{θq`>θr` } +∞ · 1{θq`≤θr` }
)
> 1.

Suppose on the contrary that

M ′ := sup
t<tmax

h(t) = lim
t↑tmax

h(t) < M.

Let h1(t), t ∈ (−ε, ε) be a solution to (10.4.4) satisfying h1(0) = M ′ and h′1(0) > 0. Note that

h1 exists because by construction the fractions in (10.4.4) are well-defined near M ′. Then

the range of h1 contains an open interval containing M ′. Thus there exists t0 < tmax, c > 0

and t1 < 0 such that ct1 > −ε, h0(t0) = h1(ct1) and h′0(t0) = d
dt
h1(ct)

∣∣
t=t1

. This allows us

to extend the range of h0 beyond M ′ which contradicts the maximality of M ′. Thus there

is a primal geodesic γ : [0, 1] → ∆n from q to r. By the uniqueness of the solution of the

primal geodesic equation with given initial position and velocity (note that γ(t) is a solution

if and only if γ(ct) is a solution where c > 0), we see that γ is the unique primal geodesic

beginning at q at time 0 and reaching r at time 1.

To see that the trace of γ is a Euclidean straight line in ∆n, consider its Euclidean

representation p(t) = (p1(t), . . . , pn(t)). By (10.4.3) we have

eψ(θ(t)) =
1

pn(t)
= (1− h(t))eψ(θq) + h(t)eψ(θr).

Solving for ψ(θ(t)) gives

h(t) =
eψ(θ(t)) − eψ(θq)

eψ(θr) − eψ(θq)
. (10.4.5)

Expressing (10.4.3) in Euclidean coordinates and using (10.4.5), we get after some algebra

that

pk(t) = eθ
q
kpn(t) +

(
1− eψ(θq)pn(t)

) eθ
r
k − eθ

q
k

eψ(θr) − eψ(θq)
, k = 1, . . . , n− 1.
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Hence there exists ak, bk such that

pk(t) = ak + bkpn(t), k = 1, . . . , n− 1. (10.4.6)

Together with the identity p1(t) + · · · + pn(t) ≡ 1, (10.4.6) shows that γ is the time change

of the Euclidean straight line from q to r.

Using the dual coordinate system φ and dual Euclidean coordinate system p∗ (ii) can be

proved in a similar way by considering the curve defined by

φk(t) = log

(
1

(1− h(t))e−φ
q
k + h(t)e−φ

p
k

)
, k = 1, . . . , n− 1. (10.4.7)

A manifold is said to be projectively flat (with respect to a given connection) if there is a

coordinate system under which the geodesics are straight lines up to time reparameterization.

In view of Theorem 10.4.1 we have the following corollary.

Corollary 10.4.2. The manifold ∆n equipped with the geometric structure (g,∇,∇∗) is

dually projectively flat, but is not flat for n ≥ 3.

10.4.2 Gradient flows and inverse exponential maps

Motivated by the recent paper [5] we relate the primal and dual geodesics with gradient flows

under the L-divergence. Fix p, q, r ∈ ∆n. Consider the following gradient flows starting at

q: γ̇(t) = −grad T (r | ·) (γ(t))

γ(0) = q

(primal flow) (10.4.8)

and γ̇
∗(t) = −grad T (· | p) (γ∗(t))

γ∗(0) = q

(dual flow) (10.4.9)

Here grad denotes the Riemannian gradient with respect to the metric g. We call (10.4.8)

the primal flow and (10.4.9) the dual flow.
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It can be verified easily that

d

dt
T (r | γ(t)) = −‖γ̇(t)‖2 and

d

dt
T (γ∗(t) | p) = −‖γ̇∗(t)‖2.

Since T (q | p) = 0 if and only if p = q, by standard ODE theory it can be shown that the

solutions γ(t) and γ∗(t) are defined for t ∈ [0,∞) and

lim
t→∞

γ(t) = r, lim
t→∞

γ∗(t) = p.

In other words, both gradient flows converge to the unique minimizers.

Theorem 10.4.3 (Gradient flows).

(i) The primal flow γ(t) is a time change of the primal geodesic from q to r.

(ii) The the dual flow γ∗(t) is a time change of the dual geodesic from q to p.

Recall the concept of exponential map. For q ∈ ∆n and v ∈ Tq∆n, consider the primal

geodesic γ starting at q with initial velocity v. If γ is defined up to time 1, we define

expq(v) = γ(1). The dual exponential map exp∗ is defined analogously. As a corollary of

Theorems 10.4.1 and 10.4.3 we have the following characterization of the primal and dual

inverse exponential maps.

Corollary 10.4.4 (Inverse exponential maps). Let exp and exp∗ be the exponential maps

with respect to the primal and dual connections respectively. For p, q ∈ ∆n we have

(i) exp−1
q (p) ∝ −grad T (p | ·) (q).

(ii)
(
exp∗q

)−1
(p) ∝ −grad T (· | p) (q).

To prove Theorem 10.4.3 we begin by computing the Riemannian gradients of T (r | ·)

and T (· | p).

Lemma 10.4.5 (Riemannian gradients). Let p, q, r ∈ ∆n.



161

(i) Under the primal coordinate system, we have

grad T (r | ·) (q) =
n−1∑
i=1

(
−Πi(θ

r, θq)

πi(θq)
+

Πn(θr, θq)

πn(θq)

)
∂

∂θqi

=
1∑n

`=1 π`(θ
q)eθ

r
`−θ

q
`

n−1∑
i=1

(
−eθri−θ

q
i + 1

) ∂

∂θqi
.

(10.4.10)

(ii) Under the dual coordinate system, we have

grad T (· | p) (q) =
n−1∑
i=1

(
Π∗i (φ

q, φp)

πi(φq)
− Π∗n(φq, φp)

πn(φq)

)
∂

∂φqi

=
1∑n

`=1 π`(φ
q)eφ

q
`−φ

p
`

n−1∑
i=1

(
eφ

q
i−φ

p
i − 1

) ∂

∂φqi
.

(10.4.11)

Proof. (i) To prove the first formula in (10.4.10), we compute, using (10.3.9) and (10.3.12),

(grad T (· | θp) (θq))i =
n−1∑
j=1

gij(θq)
∂

∂θqj
T (· | θp) (θq)

=
n−1∑
j=1

(
1

πj(θq)

∂θi
∂φj

(θq) +
1

πn(θq)

n−1∑
k=1

∂θi
∂φk

(θq)

)
(Πj(θ

q, θp)− πj(θq))

=
n−1∑
j=1

(
Πj(θ

q, θp)

πj(θq)
− Πn(θq, θp)

πn(θq)

)
∂θi
∂φj

(θq).

For the second formula, we first prove a

Claim. We have
∂

∂θqj
T (θr | θq) =

n−1∑
`=1

∂φ`
∂θqj

(θq)(π`(θ
q)− Π`(θ

r, θq)). (10.4.12)

To see this, we use (10.3.13), (10.3.5) and compute as follows:

∂

∂θqj
T (θr | θq)

= −Πj(θ
r, θq) + πj(θ

q) +
n∑
`=1

1

π`(θq)

∂π`
∂θqj

(θq)Π`(θ
r, θq)

= −Πj(θ
r, θq) + πj(θ

q) +
n∑
`=1

(
δ`j − πj(θq)−

(
∂φ`
∂θqj

(θq)−
n−1∑
m=1

πm(θq)
∂φm
∂θqj

(θq)

)
Π`(θ

r, θq)

)

=
n−1∑
`=1

∂φ`
∂θqj

(θq)(π`(θ
q)− Π`(θ

r, θq)).
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Now we compute, using Theorem 10.3.5,

(grad T (r | ·) (q))i

=
n−1∑
j=1

gij(θq)
∂

∂θqj
T (θr | ·) (θq)

=
n−1∑
j=1

(
1

πi(θq)

∂θj
∂φi

(φq) +
1

πn(θq)

n−1∑
k=1

∂θj
∂φk

(φq)

)
·
n−1∑
`=1

∂φ`
∂θqj

(θq)(π`(θ
q)− Π`(θ

r, θq))

=
n−1∑
`=1

(π`(θ
q)− Π`(θ

r, θq)) ·
n−1∑
j=1

(
1

πi(θq)

∂φ`
∂θqj

(φq)
∂θj
∂φi

(φq) +
1

πn(θq)

n−1∑
k=1

∂φ`
∂θqj

(φq)
∂θj
∂φk

(φq)

)

=
n−1∑
`=1

(π`(θ
q)− Π`(θ

r, θq))

(
1

πi(θq)
δ`i +

1

πn(θq)

)
= −Πi(θ

r, θq)

πi(θq)
+

Πn(θr, θq)

πn(θq)
.

In the second last equality we used (10.3.6). The proof of (ii) is similar.

Proof of Theorem 10.4.3. We prove (i) and leave (ii) to the reader. Let θ(t) be the primal

representation of the primal flow starting at q. By Lemma 10.4.5, at any time t we have

θ̇k(t) ∝ eθ
r
k−θk(t) − 1 =

1

eθk(t)

(
eθ
r
k − eθk(t)

)
,

where the constant of proportionality depends on θ(t) but is independent of k. It follows

that
d

dt
eθk(t) ∝ eθ

r
k − eθk(t), k = 1, . . . , n− 1. (10.4.13)

Comparing (10.4.13) and (10.4.3) we see that the primal flow is a time change of the primal

geodesic.

10.4.3 Generalized Pythagorean theorem

Having characterized the primal and dual geodesics, we are ready to prove the generalized

Pythagorean theorem. Our proof makes use of the Riemannian gradients given in Lemma

10.4.5. The reason is that these gradients appear to have the correct scaling which is easier

to handle, as can be seen in the proof (see (10.4.16)).
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Proof of Theorem 10.1.1. Given p, q, r ∈ ∆n, consider the primal geodesic from q to r and

the dual geodesic from q to p. Let

u = −grad T (· | p) (q) and v = −grad T (r | ·) (q). (10.4.14)

By Theorem 10.4.3 u and v are proportional to the initial velocities of the two geodesics.

Thus, it suffices to prove that the sign of (10.1.1) is the same as that of 〈u, v〉. This claim

will be established by the following two lemmas.

Lemma 10.4.6. The sign of T (q | p) + T (r | q)− T (r | p) is the same as that of

1−
n∑
k=1

Πk(q, p)Πk(r, q)

πk(q)
. (10.4.15)

Proof. By Lemma 10.2.4, the sign of T (q | p) + T (r | q)− T (r | p) is the same as that of(
n∑
i=1

πi(θ
p)eθ

q
i−θ

p
i

)(
n∑
j=1

πj(θ
q)eθ

r
j−θ

q
j

)
−

n∑
i=1

πi(θ
p)eθ

r
i−θ

p
i .

Rearranging, we have

−
n∑

i,j=1

πi(θ
p)(δij − πj(θq))eθ

r
j−θ

q
j eθ

q
i−θ

p
i .

Since scaling does not change sign, we may consider instead the quantity

−
n∑

i,j=1

πi(θ
p)(δij − πj(θq))

Πj(θ
r, θq)

πj(θq)

Πi(θ
q, θp)

πi(θp)
.

We get (10.4.15) by expanding.

Lemma 10.4.7. Consider the tangent vectors u and v defined by (10.4.14). Then

〈u, v〉 = 1−
n∑
k=1

Πk(θ
q, θp)Πk(θ

r, θq)

πk(θq)
. (10.4.16)

Proof. For this computation we use the primal coordinate system. We have

u = −grad T (· | p) (q) = −
n−1∑
i,k=1

gik(q)
∂

∂θqk
T (· | p) (θq)

∂

∂θqi

v = −grad T (r | ·) (q) = −
n−1∑
j,`=1

gj`(q)
∂

∂θq`
T (r | ·) (θq)

∂

∂θqj
.
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Using the definition of the Riemannian inner product, we compute

〈u, v〉 =
n−1∑
i,j=1

gij(q)
n−1∑
k,`=1

gik(q)gj`(q)
∂

∂θqk
T (· | p) (θq)

∂

∂θq`
T (r | ·) (θq)

=
n−1∑
k,`=1

gk`(θq)
∂

∂θqk
T (· | p) (θq)

∂

∂θq`
T (r | ·) (θq).

By (10.3.9), (10.3.18) and (10.4.12), we have

gk`(q) =
1

πk(q)

∂θ`
∂φk

(φq) +
1

πn(θq)

n−1∑
α=1

∂θ`
∂φα

(φq),

∂

∂θqk
T (· | p) (θq) = Πk(θ

q, θp)− πk(θq),

∂

∂θq`
T (r | ·) (θq) =

n−1∑
β=1

∂φβ
∂θq`

(θq) (πβ(θq)− Πβ(θr, θq)) .

Claim. We have

〈u, v〉 =
n−1∑
k,`=1

(Πk(θ
q, θp)− πk(θq))(π`(θq)− Π`(θ

r, θq))

(
δk`

πk(θq)
+

1

πn(θq)

)
. (10.4.17)

To see this, write

〈u, v〉 =
n−1∑
k,β=1

(Πk(θ
q, θp)− πk(θq))(πβ(θq)− Πβ(θr, θq))

·
n−1∑
`=1

(
1

πk(q)

∂φβ
∂θq`

(θq)
∂θ`
∂θk

(φq) +
1

πn(q)

n−1∑
α=1

∂φβ
∂θq`

(θq)
∂θ`
∂φα

(φq)

)
.

The last expression can be simplified using the identities

∂φβ
∂θq`

(θq)
∂θ`
∂θk

(φq) = δβk,
∂φβ
∂θq`

(θq)
∂θ`
∂φα

(φq) = δαβ,

and this gives the claim.

Finally, expanding and simplifying (10.4.17), we obtain the desired identity(10.4.16).
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10.5 Displacement interpolation

In this section we consider displacement interpolation for the optimal transport problem. We

refer the reader to [100, Chapter 5] and [101, Chapter 7] for introductions to displacement

interpolation.

10.5.1 Time dependent transport problem

Let P (0) and P (1) be Borel probability measures on Rn−1. Consider the transport problem

with cost c(θ, φ) = ψ(θ − φ). Suppose the transport problem is solved in terms of the

exponentially concave function ϕ on ∆n. Letting f = ϕ + ψ, the optimal transport map

is given by the c-supergradient of f . In particular, P (1) is the pushforward of P (0) under

F := ∇cf :

P (1) = F#P
(0).

The idea of displacement interpolation is to introduce an additional time structure. We

want to define an ‘action’ A(·) on curves such that the cost function is given by

c(θ, φ) = min
γ
A(γ),

where the minimum is taken over smooth curves γ : [0, 1] → Rn−1 satisfying γ(0) = θ and

γ(1) = φ. For each pair (θ, φ), a minimizing curve γ gives a time-dependent map transporting

θ to φ along a continuous path. Let F (t) : Rn−1 → Rn−1 be defined by F (t)(θ) = γ(t), where

γ is the minimizing curve for the pair (θ, F (θ)). We want to define A in such a way that

F (t) is an optimal transport map for the probability measures P (0) and P (t) where

P (t) =
(
F (t)

)
#
P0.

For the classical Euclidean case with cost |x − y|2 the action is A(γ) =
∫ 1

0
|γ̇(t)|2dt and

the optimal transport map has the form F (x) = x−∇h(x) where h is an ordinary concave

function. The displacement interpolations are linear interpolations:

F (t) = (1− t)Id + tF



166

(See [100, Theorem 5.5, Theorem 5.6].) In particular, the individual trajectories (minimizing

curves) are Euclidean straight lines which can be regarded as the geodesics of a flat geometry.

In this section we formulate and prove an analogous statement for our transport problem.

10.5.2 Lagrangian action and portfolio interpolation

We begin by defining an appropriate action. Let γ : [0, 1] → Rn−1 be a smooth curve with

γ(0) = θ. For each t, define q(t) ∈ ∆n such that its exponential coordinate is θ − γ(t), i.e.,

qi(t)

qn(t)
= eθi−γi(t), 1 ≤ i ≤ n− 1. (10.5.1)

Equivalently, we have qi(t) = eθi−γi(t)−ψ(θ−γ(t)), for 1 ≤ i ≤ n − 1. Intuitively, we think of

q(t) as the portfolio at time t (in the sense of interpolation). Note that q(0) =
(

1
n
, . . . , 1

n

)
.

We define the Lagrangian action by

A(γ) =

∫ 1

0

− log

(
1

n
+ q̇n(t)

)
dt. (10.5.2)

We take − log(·) =∞ if the argument is not in (0,∞). An alternative representation of the

action is

A(γ) =

∫ 1

0

− log

(
1

n
+
d

dt
e−ψ(γ(0)−γ(t))

)
dt. (10.5.3)

Lemma 10.5.1. For any θ, φ ∈ Rn−1 we have

c(θ, φ) = ψ(θ − φ) = min {A(γ) : γ(0) = θ, γ(1) = φ} . (10.5.4)

The action is minimized by the curve

γi(t) = θi − log
(1− t) 1

n
+ tqi(1)

(1− t) 1
n

+ tqn(1)
, 1 ≤ i ≤ n− 1. (10.5.5)

In particular, for this minimizing curve we have

q(t) = (1− t)
(

1

n
, . . . ,

1

n

)
+ tq(1). (10.5.6)
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P (0)

P (t)

P (1)

φ(0)

φ(t)

φ(1)

Figure 10.3: Displacement interpolation

Proof. Fix a smooth curve γ : [0, 1]→ Rn−1 from θ to φ. Since − log is convex, by Jensen’s

inequality we have∫ 1

0

− log

(
1

n
+ q̇n(t)

)
dt ≥ − log

(
1

n
+

∫ 1

0

q̇n(t)dt

)
= − log

(
1

n
+ qn(1)− qn(0)

)
= − log qn(1) = ψ(θ − φ).

(10.5.7)

For the curve defined by (10.5.5), q̇(t) = q(1)− 1
n

is constant and so equality holds in (1.3.3).

Finally (10.5.6) follows by a direct calculation.

10.5.3 Displacement interpolation

We work under the following setting. Let P (0) and P (1) be Borel probability measures on

Rn−1. Let ϕ : ∆n → R be an exponentially concave function, satisfying Assumption 6.4.3,

such that F (1) := ∇cf is an optimal transport map (here f is the c-concave function ϕ+ψ).

Let π(1) : ∆n → ∆n be the portfolio map generated by ϕ(1) = ϕ.

Consider the flow (t, θ) 7→ φ(t)(θ) defined by the minimizing curves (10.5.5), i.e.,

φ
(t)
i (θ) = θi − log

π
(t)
i (θ)

π
(t)
n (θ)

, 1 ≤ i ≤ n− 1, t ∈ [0, 1], (10.5.8)
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where each π(t) : ∆n → ∆n is the portfolio map defined by

π(t) = (1− t)
(

1

n
, . . . ,

1

n

)
+ tπ(1), t ∈ [0, 1]. (10.5.9)

See Figure 10.3 for an illustration.

The following is the main result of this section. It is interesting to note that the dis-

placement interpolation can be interpreted naturally as the linear interpolation between the

equal-weighted portfolio and the terminal portfolio.

Theorem 10.5.2 (Displacement interpolation). Consider the setting of Section 10.5.3.

(i) For each t ∈ [0, 1], the portfolio map π(t) is generated by the exponentially concave

function ϕ(t) on ∆n defined by

ϕ(t)(p) = (1− t)
n∑
i=1

1

n
log pi + tϕ(p), p ∈ ∆n. (10.5.10)

(ii) For each t ∈ [0, 1], let f (t) = ϕ(t) +ψ and let F (t) = ∇cf (t). If θ is distributed according

to P (0), then θ(t) is distributed according to P (t) where

P (t) =
(
F (t)

)
#
P (0).

Moreover, F (t) is an optimal transport map for the transport problem for (P (0), P (t)).

(iii) Endow ∆n with the geometric structure induced by the L-divergence of ϕ. We further

assume that the c-gradient F (1) = ∇cf : Rn−1 → Rn−1 is surjective. For each θ ∈ Rn−1

fixed, consider the curve t 7→ ϕ(t)(θ) in dual coordinates. Then the trace of the curve

is the dual geodesic joining θ and ϕ(1)(θ).

Proof. (i) Follows directly from Proposition 4.3.3.

(ii) It is clear that (θ, F (t)(θ)) is a coupling of (P (0), P (t)). By Theorem 6.3.1, the graph

of the map F (t) is c-cyclical monotone. This proves that F (t) is an optimal transport map.
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(iii) We write (10.5.8) in the form

e−φ
(t)
i = e−θi

(1− t) 1
n

+ tπi(θ)

(1− t) 1
n

+ tπn(θ)

=
(1− t) 1

n

(1− t) 1
n

+ tπn(θ)
e−θi +

tπn(θ)

(1− t) 1
n

+ tπn(θ)
e−θi−log πn(θ)

=: (1− h(t))e−θi + h(t)e−φ
(1)
i (θ).

By (10.4.7) we see that t 7→ φ(t) is a time change of a dual geodesic. The surjectivity

assumption guarantees that the curve lies within Y ′, the range of the dual coordinate system.

10.5.4 Another interpolation

From the financial perspective there is another natural interpolation, namely the linear

interpolation between the market portfolio µ and the portfolio π:

π(t) = (1− t)π + tµ. (10.5.11)

The corresponding log generating function is ϕ(t) = (1−t)ϕ. From the transport perspective,

the market portfolio corresponds to the trivial transport map F (θ) ≡ 0 (recall in Theorem

6.3.1(iii) that the portfolio has exponential coordinate given by θ−F (θ)). By the argument

of Theorem 10.5.2 we have the following result.

Proposition 10.5.3. Consider the geometric structure induced by ϕ and assume that the

range of the dual coordinate system is Rn−1. Consider the flow (t, θ) 7→ φ(t)(θ) in (10.5.8)

where π(t) is given by the interpolation (10.5.11). Then for each θ, in dual coordinates, the

trace of the curve t 7→ φ(t)(θ) is a time change of the dual geodesic from φ(0)(θ) to 0.



170

BIBLIOGRAPHY

[1] Paul H Algoet and Thomas M Cover. Asymptotic optimality and asymptotic equipar-
tition properties of log-optimum investment. The Annals of Probability, pages 876–898,
1988.

[2] Shun-ichi Amari. Information Geometry and Its Applications. Springer, 2016.

[3] Shun-ichi Amari and Hiroshi Nagaoka. Methods of information geometry. American
Mathematical Soc., 2007.

[4] Luigi Ambrosio and Nicola Gigli. A users guide to optimal transport. In Modelling
and optimisation of flows on networks, pages 1–155. Springer, 2013.

[5] Nihat Ay and Shun-ichi Amari. A novel approach to canonical divergences within
information geometry. Entropy, 17(12):8111–8129, 2015.

[6] Kerry Back. Asset pricing and portfolio choice theory. Oxford University Press, 2010.

[7] Adrian D. Banner and Daniel Fernholz. Short-term relative arbitrage in volatility-
stabilized markets. Annals of Finance, 4(4):445–454, 2008.

[8] Adrian D Banner, Robert Fernholz, and Ioannis Karatzas. Atlas models of equity
markets. The Annals of Applied Probability, 15(4):2296–2330, 2005.

[9] Erhan Bayraktar, Yu-Jui Huang, and Qingshuo Song. Outperforming the market port-
folio with a given probability. The Annals of Applied Probability, pages 1465–1494,
2012.

[10] Jean-David Benamou, Brittany D. Froese, and Adam M. Oberman. Numerical solution
of the optimal transportation problem using the Monge–Ampère equation. Journal of
Computational Physics, 260:107–126, 2014.

[11] Peter L Bernstein. Capital ideas: the improbable origins of modern Wall Street. Simon
and Schuster, 1993.

[12] Peter L Bernstein. Capital ideas evolving. John Wiley & Sons, 2011.



171

[13] Paul Bouchey, Vassilii Nemtchinov, Alex Paulsen, and David M Stein. Volatility har-
vesting: Why does diversifying and rebalancing create portfolio growth? The Journal
of Wealth Management, 15(2):26, 2012.

[14] Paul Bouchey, Vassilii Nemtchinov, and Ting-Kam Leonard Wong. Volatility harvest-
ing in theory and practice. The Journal of Wealth Management, 18(3):89–100, 2015.

[15] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[16] Lev M Bregman. The relaxation method of finding the common point of convex sets
and its application to the solution of problems in convex programming. USSR compu-
tational mathematics and mathematical physics, 7(3):200–217, 1967.

[17] L. Breiman. Optimal gambling systems for favorable games. In Proc. 4th Berkeley
Sympos. Math. Statist. and Prob., Vol. I, pages 65–78. Univ. California Press, Berkeley,
Calif., 1961.

[18] Marcel R. Brod. Generating the Universal Portfolio. Master’s thesis, ETH, Switzerland,
2014.
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