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Assuming that numerical scores  a r e  available for  the perform- 
ance of each of n persons on each of n jobs, the "assignment problem" 
is the quest for an assignment of persons to jobs so that the sum of the 
n scores  so obtained is as large as possible. It is shown that ideas latent 
in the work of two Hungarian mathematicians may be exploited to yield 
a new method of solving this problem. 

1. INTRODUCTION 
Stated informally, the problem of personnel-assignment asks for the best assignment of 

a set of persons to a set of jobs, where the possible assignments are ranked by the total scores 
or  ratings of the workers in the jobs to which they are assigned. Variations of this problem, 
both mathematical and non-mathematical, have a long history (see the Bibliography appended). 
However, recent interest in the question, when posed in the terms of linear programming, 
seems to stem from the  independent work of Flood, J. Robinson, Votaw, and Orden. Flood's 
work [ 121, begun in 1949, regards the problem as the  most "degenerate" case of the transpor- 
tation problem. Robinson regarded it as a relative of the travelling salesman problem; her 
work i s  available only in the form of RAND Corporation memoranda. The problem was dis- 
cussed from various points of view in the work of Votaw and Orden (see [ 91 ) presented to the 
SCOOP Symposium on Linear Inequalities and Programming, June 14-16, 1951. The compu- 
tational advantages to be gained by considering the problem in combination with the dual linear 
program have been stressed by Dantzig, von Neumann and others (see [a], [lo], and [12] ). The 
purpose of this paper is to develop a computational method that uses this duality in a particu- 
larly effective manner. One interesting aspect of the algorithm is the fact that it is latent in 
work of D. Kanig and E. Egervby that predates the birth of linear programming by more than 
15 years  (hence the name, the "Hungarian Method"). 

The theoretical basis of the algorithm is laid in Sections 2 and 3. Section 2 (which is 
derived from the proof of Kbnig in "Theorie der Graphen" (1936) Chelsea, 1950, pp. 232-233) 
treats the problem of assignment when there are but two ratings, 1 and 0, indicating that a 
worker is qualified or not. Section 3 (which is derived from the work of Egervhry in [3]) shows 
that the general problem of assignment can be reduced to this special case by a procedure that 
is computationally trivial. 

Section 5 is devoted to a detailed example to illustrate its application. 
The algorithm is given an independent (and self-contained) statement in Section 4 and 

2. THE SIMPLE ASSIGNMENT PROBLEM 
The problem of Simple Assignment is illustrated by the following miniature example: 
Four individuals (denoted by i = 1, 2, 3, 4) are available for four - jobs (denoted by j = 1, 

2, 3, 4). They qualify as follows: 

lThe preparation of this report  w a s  supported, in part ,  by the ONR Logistics Project ,  
Department of Mathematics, Princeton University. 
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1, 2, and 3 
3 and 4 

This information can be presented effectively by a qualification matrix 

in which horizontal rows stand for individuals and vertical columns for jobs; a qualified individ- 
ual is marked by a 1 and an unqualified individual by a 0. Then the Simple Assignment Prob- 
lem asks: 

What is the largest number of jobs that can be assigned to qualified 
individuals (with not more than one job assigned to each individual)? 

This may be stated abstractly in t e rms  of the matrix Q: 
What is the largest number of 1's that can be chosen from Q with 

It is clear that we can start an assignment by placing unassigned individuals in any unassigned 
jobs for which they qualify. Thus, we might assign individuals 1 and 2 to jobs 3 and 4, respec- 
tively; this information is entered in the matrix below by asterisks. 

no two chosen from the same row or column? 

1 1  l * O  [a i ; i.J 

[;* i ;* 'j 

:g i 8';+ 

Since it is impossible to improve this assignment by placing an unassigned individual in an 
unassigned job for which he qualifies, th i s  assignment is said to be complete. If an assignment 
is complete, it is natural to attempt an improvement by means of a tranefer. For instance, the 
transfer: 

Move individual 1 from job 3 to  job 1 

2 " 4 'I  3 ,  11 

results in the following incomplete assignment: 

0 0 0 1 .  

Here we may assign either individual 3 or 4 to job 4 to complete the assignment. Either result, 
say 

1 * 1  1 0  

is optimal, since there all qualified pairs involve either individual 1 or job 3 or  job 4, and 
hence four assignments would involve one of these twice. Thus, although there is a transfer 
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possible in this optimal assignment (move 1 from job 1 to job 2), it leads to a complete assign- 
ment. The discussion to follow establishes that this situation holds in general, namely, that 
one can always construct an optimal assignment by a successsion of transfers followed by 
additional assignments until this is no longer possible. 

qualification matrix Q = (4. ) is given, where qil = 1 if individual i qualifies for job j and 
9.. = 0 otherwise. If an assignment (not necessarily optimal) of certain qualified individuals to 
jobs is given, then the easiest way to improve it is to assign any unassigned individual to an 
unassigned job for which he qualifies. If th i s  is possible, the given assignment is said to be 
incomplete; otherwise, it is complete. If the assignment is complete, then it is reasonable to 
attempt an improvement by means of a transfer. A transfer changes the assignment of r 
distinct individuals il, . . . , ir employed in jobs j,, . . . , 1,. It moves il into an unassigned job 
jo and ik into job jk-l for k = 2, . . . , r.  All of the new assignments (ik to jk-l) a r e  assumed to 
be qualified for k = 1, . . . , r. It is convenient to call the result of leaving all assignments 
unchanged a transfer also. A useful notation for transfers that change some assignment is 

Suppose n individuals (i = 1, . . . , n) a re  available for n - jobs (1 = 1, . . . , n) and that a 

11 

13 

We shall call every (assigned) individual involved in such a transfer an essential individual and 
every job assigned to an inessential individual an essential job. Thus: 

LEMMA 1. For a given assignment, if an individual is assigned 
to a job, then either the individual or the job is essential, and not both. 

COROLLARY 1. For all assignments, the number of individuals 
assigned to jobs equals the number of essential individuals and jobs. 

The motivation of the definition of essentiality is partially explained by the next two lemmas. 

LEMMA 2. For a given assignment, if  an individual is assigned 
to a job and qualifies for another, unassigned, job then the individual is 
essential. 

PROOF: The transfer of the individual to the unassigned job establishes him as 
essential. 

LEMMA 3. For a given assignment, if every transfer leaves a 
job assigned then the job is essential. 

PROOF. Assume the job j to be inessential. Then some individual ik is assigned to it 
and involved in a transfer that moves il, i2, . . . , ik in order. Symbolically, 

and j is unassigned. This proves the lemma. 
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These lemmas, in combination, establish the key result: 

THEOREM 1. For a given assignment, if every transfer leads to 
a complete assignment then, for every individual qualified for a job, either 
the individual or the job is essential, and possibly both. 

PROOF. Let individual i be qualified for job j. If i is assigned to j then Lemma 1 
asserts that one or the other is essential. If i is assigned to another job then j is unassigned 
and Lemma 2 asser ts  that the individual i is essential. If i is unassigned then every transfer 
leaves j assigned (otherwise the assignment is incomplete) and Lemma 3 asser ts  that j is 
essential. This proves the theorem. 

either every transfer leads to a complete assignment or at least one more individual can be 
assigned after some transfer. Since at  most n individuals can be assigned, this proves: 

Starting with any assignment (say, of one individual to a job for which he is qualified), 

THEOREM 2. There is an assignment which is complete after 
every possible transfer. 

The problem will now be viewed from another, dual, aspect. Consider a possible budget 
to account for the value of an individual assigned to a job for which he is qualifed. Such a 
budget will allot either one unit or nothing to each individual and to each job. A budget is said 
to be adequate i f ,  for every individual qualified for a job, either the individual o r  the  job is 
allotted one unit, and possibly both. 

THEOREM 3. The total allotment of any adequate budget is not 
less than the largest number of jobs that can be assigned to qualified 
individuals. 

PROOF. If the part of the adequate budget allotted to jobs assigned in an optimal assign- 
ment is counted, it is seen to be not less than the number of jobs assigned because these jobs 
a r e  all assigned to qualified individuals. Since the total budget is not less than this amount, this 
proves the theorem. 

Consider any assignment that is complete after every possible transfer (by Theorem 2, 
there a re  such) and consider the budget that allots one unit to each essential individual or job 
and zero otherwise. Theorem 1 asser ts  that t h i s  budget is adequate. Taking account of Corol- 
lary 1, we have proved: 

THEOREM 4. There is an adequate budget and an assignment 
such that the total allotment of the budget equals the number of jobs 
assigned to qualified individuals. 

Since Theorem 3 implies that the assignment of Theorem 4 is optimal, we have provided 
the following answer to the Simple Assignment Problem: 
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The largest number of jobs that can be assigned to qualified 
individuals is equal to the smallest total allotment of any adequate 
budget. Any assignment is optimal if and only if it is complete after 
every possible transfer. 

3. THE GENERAL ASSIGNMENT PROBLEM 
Suppose n individuals (i = 1, . . . , n) are available for n jobs (I = 1, . . . , n) and that a 

rating matrix R = (r ) is given, where the r 
ment consists of the choice of one job ji for each individual i such that no job is assigned to 
two different men. Thus, all of the jobs are assigned and an assignment is a permutation 

a r e  positive integers, for all i and j. An assign- il i j  
- 

(:1 ;2 : : : " )  jn 

of the integers 1, 2, . . . , n. The General Assignment Problem asks: 
For which assignments is the Bum 

"4 rljl + r2j2 + . . . + r 

of the ratings largest? 
The dual problem considers adequate budgets, that is, allotments of non-negative 

integral amounts of u. to each individual and v to each job in such a manner that the sum of 
the allotments to the 'ith individual and the j 
symbols, 

th job is not less than his rating in that job. In 

+ "J rij  
(i, j = 1, - - ., n). 

The problem dual t o  the General Assignment Problem is then: 
What is the smallest total allotment 

u l + .  . . + U n + V 1  + .  , . + 'n 

possible for an adequate budget? 
The following analogue of Theorem 3 is immediate. 

THEOREM 5. The total allotment of any adequate budget is 
not less than the rating sum of any assignment. 

PROOF. Since each individual and job occurs exactly once in an assignment the sum of 
the allotments to individuals and jobs in an assignment is exactly the total allotment. However, 
the budget is adequate and therefore this is not less than the sum of the rating8 of the individ- 
uals in their assigned jobs. In symbols, 

u l + v  2 r l j l , .  . . , u n + v  > r 11 j n =  "1, 

by the condition that the budget is adequate. Adding these inequalities, we have 
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U 1 +  . . . +  U n + V  + . . . +  v j n 2  rljl + . . . t - 4 "In 

However, the integers jl, . . . , jn appearing in the assignment 

are merely an arrangement of 1, . . . , n and the theorem is proved. 
It is an immediate consequence of this  theory that, if an adequate budget and an assign- 

ment can be exhibited such that the total allotment equals the rating sum, then they must be 
simultaneously a solution of the assignment problem and its dual. We shall now show that this 
is always possible and can be achieved by solving certain, related, Simple Assignment Problems. 

Problem by the following rule: 
Associate with each adequate budget for the rating matrix R = (r ) a Simple Assignment il 

The individual i i s  qualified for  the job j if ui + v. = r.: otherwise, 
I 11, 

he is not qualified. 
We see immediately that: 

THEOREM 6. If all n individuals can be assigned to  jobs for which 
they are qualified in the Simple Assignment Problem associated with an 
adequate budget, then the assignment and the budget solve the given General 
Assignment Problem and the rating sum equals the total allotment. 

PROCF. For the given budget and assignment, we have 

u1 + v j l =  rljl , . . . , u n + v  = r  . 1, njn 

Adding these equations, 

u 1 + .  . . +  U n + V 1 + .  . . + v n =  r l i l  + . . . + r 
"Jn 

and t$is proves the theorem. 
If not all individuals can be assigned to  jobs for which they are qualified in the Simple 

Assignment Problem associated with an adequate budget, then the budget can be improved by a 
simple procedure. Before this  procedure can be described, it must be noted that an adequate 
budget must allot either a positive amount to every individual or a positive amount to  every job 
since otherwise it would not be enough for the positive rating of some individual in some job. 
We shall assume, without loss  of generality since rows and columns enter symmetrically, that 
every individual i s  allotted a positive amount; in symbols 

U i '  0 ( i=  1, . . . , n ) .  

Assume that the largest number of individuals that can be assigned to jobs for which they a r e  
qualified is m n. Choose an optimal assignment and let the essential individuals be i= 1,. . . , r 
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and the essential jobs be j = 1, . . . , s (possibly renumbering individuals and jobs). Corollary 
1 asser ts  that 

r +  s = m .  

Then the rule for changing the budget is: 

U i  = u l ,  ...) u; = u r ,  u;+1= U r + l  - 1, ..., U; = un - 1 

s+l = vs+ l ,  . . ., v' = v n n '  v i  = v 1  + 1, ..., V ; = V ;  + 1, V' 

(The u; a r e  still non-negative because the ui were positive integers.) We must check that 
(a) the new budget is adequate, and 
(b) the total allotment has  been decreased. 

The adequacy is checked by inequalities (1) which can only fail where ui has been decreased and 
v has been left unchanged. But this means that both the individual i and the job j a r e  ines- 
sential. Theorem 1 then asser ts  that individual i is not qualified for job j and hence 

1 

by the rule for constructing the associated Simple Assignment Problem. Since all the numbers 
involved a r e  integers, 

u; + v; = (ui - 1) + v j  = (ui + v.) l - 1 2  rij 

and the new budget is adequate. 

decreased by n - (r + s) = n - m > 0. Summarizing: 
The total allotment has been decreased by n - r and increased by 6,  thus has been 

THEOREM 7. If at most m < n individuals can be assigned to jobs 
for which they are qualified in the Simple Assignment Problem associated 
with an adequate budget, then the total allotment of the budget can be 
decreased by a positive integral amount. 

Starting with any adequate budget (say, that which allots to every individual h i s  highest 
rating and nothing to the jobs), either it is optimal, and Theorem 6 applies, or it can be de- 
creased by Theorem 7. Since it can be improved at most a finite number of times, we have 
provided the following answer to the General Assignment Problem: 

The largest possible rating sum for any assignment is equal to 
the smallest total allotment of any adequate budget. It can be found by 
solving a finite sequence of associated Simple Assignment Problems. 

4. THE HUNGARIAN METHOD 

from the context of actual assignments, and state explicitly the algorithm implicit in the 
In this section we shall assemble the results of the two preceding sections, abstracted 
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arguments of those sections. In certain cases where it seems advisable to use a different 
terminology, the discrepancy will be noted parenthetically. 

matrix R = (r ) of positive integers, find the permutation jl, . . . , jn of the integers 1, . . . , n 
that maximizes the sum r + . . . + r . It is well known (see references [3] and [lo] in the 

l j 1  "jn 
Bibliography) that the linear program dual to this problem can be stated: Find non-negative 
integers ul, . . . , un and vl,.  . . , vn subject to 

As considered in this paper, the General Assignment Problems asks: Given an n by n 

il 

(i, j = 1, . . . , n) 

that minimize the sum u1 + . . . + un + v1 + , . . + vn. A set of non-negative integers satisfying 
(1) will be called a cover (or an adequate budget) and the positions (i, j) in the matrix for which 
equality holds are  said to be marked (or qualified in the associated Simple Assignment Prob- 
lem); otherwise (i, j)  is said to be blank. A set  of marks is called independent if no two marks 
from the set lie in the same line (the term "line" is used here to denote either a row or column). 
Then a fundamental result of Kdnig says: If the largest number of independent marks that can 
be chosen is m then m lines can be chosen that contain all of the marked positions. (This is 
precisely the conclusion of Section 1 with "jobs assigned to qualified individuals" playing the 
r61e of "independent marks.") 

The algorithm to be described in t h i s  report is based on these remarks in the  following 
manner. If a cover for R is given, a largest set  of independent marks is found; if this set 
contains n marks then obviously the marked (i, j) cgnstitute the desired assignment (Theorem 
6). If the set contains less than n marks then a set of less than n lines containing all of the 
marked (i, j) is used to improve the cover (Theorem 7). 

The construction of an initial cover and an initial set of independent marks can be made 
quite conveniently as follows: 

Let ai = max r for i = 1, . . . , n and b = miax rij for j = 1, . . . , n. Further let i j  1 
a = C  a and b = C  b 

i i  1 J '  

ui =ai for i =  1,. . . , n 

v j = O  for j = l ,  . . . ,  n .  
If a 2 b define 

ui = O  for i =  1,. . . , n c v j  = b j  for j = 1,. . . , n .  
If a > b define 

At this stage, as at all subsequent stages, there is associated with the matrix R and the 
cover {ui, v } a  matrix Q = (q ) where 1 il 

+ vf = rij 

0 otherwise. 

At each stage we shall also need a set of independent 1's from Q which will be distinguished 
by asterisks. To provide such a set at the first stage, in the first case ( a 2  b) the rows are 
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examined in order and the first 1 in each row without a 1* in its column is changed to a l*. In 
the second case (a > b), the same instructions a re  followed with rows and columns exchanging 

The two basic routines of the algorithm will be called Routine I and Routine II. A 
r 6 h .  

schematic description of the order of their repetition is given in Figure 1. 

Prob 1 em 
I 

Overy occurrenc 

7 4  
Routine I1 

p l  q 
Routine I 

Ib 

Routine I1 

Solu t ion 

Figure 1 

of Ia will increase the number of assignment 

1Ia 

(i.e., of asterisks in Q )  by one 
and every Occurrence of IIa will decrease the current covering sum (C ui + C v ) by at least 

one. Since the number of assignments is bounded from above by n and the covering sums are  
bounded from below by zero, this insures the termination of the combined algorithm. 

1 i 1 

Routine I 
Routine I works with a fixed matrix Q associated with a fixed cover { ui, vj}* The input 

The computation begins with the search of each column of Q in turn for a 1*. If a l*  is 
also includes a certain set of asterisks marking 1's in Q. 

found, we proceed to the next column (no columns left = Alternative Ib). If a 1* is - not found in 
the column, then the column is called eligible and is searched for a 1. If a 1 is not found, we 
proceed to the next column (no columns left = Alternative Ib). If a 1 is found in (il, jo), we 
record il and jo and start a process that constructs a sequence of the following form: 

. . . . . . . . . 

The routine then divides into two cases according to the parity of the number of terms currently 
in the sequence. In Case 1, we have just found a 1 in (ik, jk-1) and have recorded ik and jk-l .  
We then search the row ik for a l*. If a 1* is not found then we change each 1 in the sequence 
to 1* and each 1* in the sequence (if any) to a 1. This is Alternative Ia and means that we start 
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Routine I again. In Case 2, we have just found a 1* in (ik, jk). We then search column j, for a 
1. If a 1 is not found, then row ik is recorded as essential, ik and jk-l a r e  deleted from the 
record and we go back to Case 2 with the last two terms of the sequence deleted and searching 
for a 1 in column jk-l from row ik t 1 on. Note that, if k = 1, then we go back to our pre- 
liminary search for a 1 in the eligible column jo from row il + 1 on. Completing Case 2, if 
a 1 is found in (ik+ it is distinct 
then we record ik+l and jk and a r e  back in Case 1. If it is not distinct, we go on searching 
for a 1 in column jk from row ik+l + 1 on. 

(This routine is connected with Section 2 in the following way. Given an assignment, we 
enumerate all possible transfers. Such a transfer starts at an eligible column. If there a re  no 
eligible columns, there are no transfers and the given assignment is complete. The occurrence 
of Alternative Ia means that we have found a transfer that frees a column that contains a 1 that 
is unassigned. In this event, we carry out the transfer: 

jk) we test whether ik+ is distinct from il, . . . , i k .  

J'1/'2 ' * ' i k - 7 i k - l  

1, il j2 . . . jk-2 jk-1 

and assign (ik, jk-l). If a transfer is developed that cannot be continued and which yields a 
complete assignment, the last row involved is recorded as essential, following which the 
enumeration of the transfers is continued. If the enumeration of the transfers is completed 
without the  occurrence of Alternative Ia, this is Alternative Ib and we have an assignment in 
which all transfers yield complete assignments.) 

The output of Routine I in Alternative Ib is an optimal assignment for Q and a set of 
essential rows. Every 1 lies either in an essential row or in the column of a 1* in an essential 
row (Theorem 1). 

A tentative flow diagram for Routine I is given in Figure 2. For this arrangement of the 
routine, we use the following notation: 

Symbol U s e  in Routine 
Index of rows of Q. 
Index of columns of Q. 
Tally of length of sequence of 1's and l*'s. 
Tally to clear essential rows in Alternative Ia. 
Tally to test distinctness of ik+ from il, . . . , ik , 

Record of rows in sequence of 1's and 1*'s. 

Record of columns in sequence of 1's and 1*'s. 

Record of essential rows. 

i 

j 

k 

4 

'1, '2, * * * 9 in 

j0, j1, * 9 1,-1 
€1, €2, * * - 9  'n 

The values of these quantities for the input of Routine I are: 

i =  j =  k = C =  1 ,  i = E V =  0 for u =  1,. . . , n .  U 
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The values of these quantities for the output of Alternative Ib are: 

i = j = k = 4 = 1 ,  i = j  = O f o r  v = 1 ,  . . . ,  n .  v u-1 

and 
essential 

inessential. 

1 
if row i is 

The symbol "A e~ B" is to be read "replace the value of A by the value of B". 

Input 

1 i n  ( i ,  j ) ?  i < n ?  

Figure 2 
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Routine II 
The input of Routine II consists of a cover {u v 1 and a set  of essential rows and col- 

i' 1 
umns (a column is essential if it contains a I* in an inessential row). We first compute d, 

taken over all inessential rows i and columns j. If there a r e  no the minimum of ui + v 
such (i, j) then the set of l* in Q constitutes a solution to the General Assignment Problem 
('Theorem 6). Otherwise, d > 0 and there are two mutually exclusive cases to be considered. 

taken over all inessential i. Then 

1 - rij 

Case 1. For all inessential rows i, ui > 0. Compute m, the minimum of d and ui 

ui -+ ui - m for all inessential rows i, and 

v -+ v + m for all essential columns j. 1 1 

1 Case 2. For some inessential row i, ui = 0. Compute m, the minimum of d and v 
taken Over all inessential j. Then 

ui + ui + m for all essential rows i, and 

v ----, v - m for all inessential columns j. J 1 

After these changes have been made in the cover, we are in Alternative LIa and should return to 
Routine I. 

5. AN EXAMPLE 

routines (except Case 2 of Routine II): 
The foIlowing example, although small in size, illustrates all of the possibilities of the 

8 7 9 9  

R =  [ i  J ; i] 
Sum of row maxima = 9 + 8 + 9 + 6 = 32. 
Sum of column maxima = 8 + 7 + 9 + 9 = 33. 
Hence, the initial cover is provided by the row maxima. The next table shows the successive 
covers obtained from the algorithm (reading out from the matrix): 

1 0 2 3  
0 0 1 2  
0 0 1 1  
0 0 0 0  

Stages: 

I I 

~2 5 ' 6  7 8 

~ 3 6 7 8 9  
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The following tables explain the construction of the successive covers and of the corresponding 
assignments: 

Stage 1. 

0 0  

stage 2. 

0 0 1  

Stage 3. 

El 

Remarks 

This matrix marks (with 1) those positions for which ui + v1 = rij 
in the first  cover. 

Assign in each row the first 1, if any, not in the column of a pre- 
vious assignment. Assignments are marked by asterisks. No transfers a r e  
possible and hence all assigned columns and no assigned rows are essential. 

Thus, the algorithm decreases &l ui and increases v3 and v4 by 
on the part of the matrix shown at left. The 1 - ril the minimum of ui + v  

second cover is: 
u1 = 8, u2 = 7, u3 = 8, u4 = 5 and v1 = v2 = 0, v3 = v4 = 1. 

The change in the cover has introduced a new 1 at (1,l) and there is 
one possible transfer, indicated by an arrow. Thus, row 1 and column 4 
a r e  essential. 

Thus, the algorithm decreases u2, u3, and u4 and increases v4 by 
the minimum of ui + v - r on the part of the matrix shown at left. The 
third cover is: 

~ ~ = 8 , ~ ~ = 6 , ~ ~ = 7 , u ~ = 4 a n d v ~ = ~ ~ = 0 , ~ ~ = 1 , ~ ~ = 2 .  

1 i1 

The change in the cover has introduced a new 1 at (2,3) and elimi- 
nated the 1 at (1,4). The possible transfers are indicated by arrows. 

The transfer 1 
ld#4 

2 leads to an incomplete assignment (column 4 

is unassigned and (3,4) is qualified). The matrix at left completes it. All 
assigned columns and no assigned rows are essential because there are no 
transf ere. 
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0 
Thus, the algorithm decreases. all ui and increases vl, v3, and v4 

on the part of the matrix shown at left. 1 - ril by the minimum of ui + v  
The fourth cover is: 

u 1 = 7 , u 2 = 5 , u 3 = 6 , u 4 = 3  a n d v l = l , v  2 -  - 0 , v 3 = 2 , v 4 = 3 .  

Stage 4. 

The change in the cover has introduced new 1's at (1,2) and (4,2). 
Thus the assignment is incomplete and is completed by assigning (4,2). 

The assignment shown is optimal. 
for all i, j .  ui + v 2 r El Check: f iI 

r l l  + r23 + r34 + r42 = 8 + 7 + 9 + 3 = 27. 

u 1 +  . . . + ~4 + ~ 1 +  . . . + ~4 = 7 + 5 + 6 + 3 + 1 + 0 + 2 + 3 = 2 7 .  
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