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Abstract
This is a report on the author’s explorations in arithmetic dynamics

which were motivated by various conjectures regarding the preperiodic
point sets of polynomials. One goal was to classify (by sagittal graph
isomorphism) a large amount of data relating to cubics; to better un-
derstand graph isomorphism, functions on finite sets were studied and
a formula to count endofunctions was found. We also present a product
identity involving the map z 7→ z2 + c, an elementary proof of a cru-
cial divisibility property, and a classification of some cubic polynomial
pictures.

Contents

1 Introduction 3

2 Dynamics 4
2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Graph isomorphism . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Functions on finite sets . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Counting endofunctions . . . . . . . . . . . . . . . . . . . . . 16

3 On to polynomials 21
3.1 A fundamental identity . . . . . . . . . . . . . . . . . . . . . 21
3.2 A curious identity . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 A note on conjugation . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Linear classification . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Lagrange interpolation polynomials . . . . . . . . . . . . . . . 28
3.6 Quadratic 2-cycle . . . . . . . . . . . . . . . . . . . . . . . . . 30

1



4 Cubic pictures: narrated equation-solving 31
4.1 Cubic with two fixed points and one preperiodic point . . . . 31
4.2 Cubic with a 2-cycle and antipodal preimages . . . . . . . . . 32
4.3 Cubic with a fixed point and a Y tree above it . . . . . . . . 34
4.4 Cubic with a point of type 11 and another of type n1 . . . . . 34
4.5 Cubics with a point of type 31 . . . . . . . . . . . . . . . . . 36
4.6 Other cubics . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Further questions 39

6 Acknowledgements 39

List of Figures

1 The anatomy of a finite orbit . . . . . . . . . . . . . . . . . . 8
2 The sagittal graph of z 7→ −1

60 (z3−49z−300) restricted to its
preperiodic point set over Q . . . . . . . . . . . . . . . . . . . 10

3 Picture for 1
30z

3 − 79
30z + 1 . . . . . . . . . . . . . . . . . . . . 12

4 Lattice of orbits of 1
30z

3 − 79
30z + 1 . . . . . . . . . . . . . . . 12

5 There are four functions on the set {1, 2}... . . . . . . . . . . 13
6 ...but only three “types” of functions. . . . . . . . . . . . . . 13
7 If τ exists, then f and g have the same picture. . . . . . . . . 14
8 A single fixed point . . . . . . . . . . . . . . . . . . . . . . . . 26
9 The identity map’s picture . . . . . . . . . . . . . . . . . . . . 26
10 The most interesting case: z 7→ β − z . . . . . . . . . . . . . . 27
11 Can a quadratic have this as its picture? . . . . . . . . . . . . 30
12 A quadratic 2-cycle can never occur alone. . . . . . . . . . . . 31
13 1→ 0→ 0, ε→ ε . . . . . . . . . . . . . . . . . . . . . . . . . 31
14 ε→ 0→ 1→ 0, δ → 1 . . . . . . . . . . . . . . . . . . . . . . 32
15 There are only two cubics with this picture. . . . . . . . . . . 34
16 A graph not among the data . . . . . . . . . . . . . . . . . . 36
17 Another graph not among the data . . . . . . . . . . . . . . . 38
18 Only one of these was found among the data . . . . . . . . . 38
19 −6z3 + 9

2z + 1 and 3
2z

3 − 9
2z + 1 . . . . . . . . . . . . . . . . 38

20 −289
16 z

3 + 27
4 z + 1 and − 49

250z
3 + 27

10z + 1 . . . . . . . . . . . . 38
21 Is this picture possible? . . . . . . . . . . . . . . . . . . . . . 39
22 What about this one? . . . . . . . . . . . . . . . . . . . . . . 39

2



1 Introduction

Polynomials under iteration exhibit a wealth of interesting and mysterious
structures. The orbit of a point under a polynomial map may escape to
infinity, wander aimlessly, or become trapped in a cycle. It is this latter
case which is most curious, especially when all the concerned quantities are
rational. There are many examples of degree d maps with (d+1)-cycles; for
every β, the map z 7→ β − z has a 2-cycle, and there are infinitely many
quadratic maps with a 3-cycle.

Question. For what values of n can we find a quadratic polynomial over Q
with a rational n-cycle?

In [8], Patrick Morton answered that it was impossible for n = 4, and in
[4], E. V. Flynn, Bjorn Poonen, and Edward Schaefer proved it was impossi-
ble for n = 5. Recently, Micheal Stoll showed it was impossible for n = 6, but
the proof is conditional on the Birch and Swinnerton-Dyer conjecture.[14]
Assuming that it was impossible for all n > 3, Poonen proved that quadratic
maps have at most 9 rational preperiodic points, and classified all possible
pictures of quadratics; there are 12 of them.[12, p. 12]

Less work has been done on cubic maps. In 2007 a team of mathemati-
cians led by Rob Benedetto analyzed over twelve billion cubic polynomials,
determined all the preperiodic points for each one, and tabulated the results
in [2]. In the accompanying paper [3] they defined a normal form for cubic
polynomials, and proved that every cubic can be put into this form via a
sequence of conjugations. We reproduce their definition here.

Definition 1.1. Let K be a field, and let f in K[z] be a cubic polynomial.
We will say that f is in normal form if either

f(z) = az3 + bz + 1
or

f(z) = az3 + bz

If two cubics of the first form are conjugate to each other, then they are
equal, whereas if two cubics of the second form are conjugate to each other,
then the linear terms are equal and the quotient of their leading terms is a
square.

Their search algorithm tested one cubic per class with coefficients less
than 300. It found 781019 cubic polynomials with a nonempty set of prepe-
riodic points (plus over two billion cubics of the second form which only
fixed zero).
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Each entry in the data includes the cubic f(z) and its preperiodic points
{xi}. Drawing arrows from xi to f(xi) results in a directed graph, which
we call the picture of f . We grouped the cubics by picture and found 102
distinct structures, a great leap from Poonen’s 12 for quadratics. Among
them was an example of a cubic with a 5-cycle. These are not all the possible
pictures, however; we prove the existence of at least 3 more in Section 4. A
table of all the diagrams will soon be available on the author’s webpage [11].

In general, graph isomorphism is hard, but picture isomorphism is not.
In Section 2 we introduce the language of dynamics and apply it to the
characterization and visualization of functions on finite sets. The results of
that section were motivated by the need for an algorithm that would, given
two finite sets S and T and two maps f : S → S and g : T → T , determine
if they have the same picture.

In Section 3 we introduce the arithmetic dynamics of polynomials, pro-
vide an elementary proof of the implication m | n⇒ φm(z)− z | φn(z)− z,
prove a curious identity also stumbled upon by Benedetto, show that linear
maps admit exactly 4 possible pictures, and introduce Lagrange polynomi-
als as a tool for generating examples. Section 4 we devote to various proofs
involving cubics and their pictures, guided by the classified data. We end
in Section 5 with some questions whose answers are unknown to us, and
suggest other paths of research.

2 Dynamics

2.1 Basics

We begin with a few fundamental definitions, readily available from any
standard text, like Silverman’s [13]. Throughout the following, we assume
S to be a nonempty set.

Definition 2.1. An endofunction on S is a map f : S → S (which sends S
to itself). Such a self-map can be iterated ; the n-fold composition of f with
itself,

fn = f ◦ · · · ◦ f︸ ︷︷ ︸
n times

,

is called the nth iterate of f . By convention, we let f0 be the identity map.

Example 2.1. The cubic polynomial f(z) = z3 over Q has a nice closed-
form expression for its nth iterate: fn(z) = z3n

. However, it is generally
difficult to write down a closed-form expression for the nth iterate of an
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arbitrary polynomial map; even g(z) = z3 + 1 becomes very complicated
after a few iterations.

Definition 2.2. Let a be a point in S. The orbit of a under f is the set

Of (a) = {fn(a) : n ≥ 0}
= {a, f(a), f(f(a)), f(f(f(a))), . . . }.

Example 2.2. The orbit of 0 under g(z) = z3+1 isOg(0) = {0, 1, 2, 9, 730, . . . }.

The principal goal of dynamics is “to classify the points a in the set
S according to the behavior of their orbits Of (a)”[13]. Orbits are useful
because they capture everything we need to know about f on S. As a
demonstration of their utility, we shall characterize all subsets of S which
are not quitted by f .

Definition 2.3. A subset U of S is said to be f -invariant if f(U) ⊆ U—that
is, if f(u) is in U for all u in U .

Proposition 2.1. Every f -invariant subset of S is of the form⋃
a∈V
Of (a)

for some subset V of S.

Proof. First of all, for any V ⊆ S, we have⋃
a∈V
Of (a) =

⋃
a∈V
{a, f(a), f2(a), . . . }

= {a1, f(a1), f2(a1), . . . }
∪ {a2, f(a2), f2(a2), . . . }
∪ {a3, f(a3), f2(a3), . . . }
...

= V ∪ f(V ) ∪ f2(V ) ∪ · · ·

(where the numbering of a few elements of V is not intended to assert any
sort of countability of V , but merely serves to clarify the rearrangement of

5



the union). Since function application distributes over union, we have

f

(⋃
a∈V
Of (a)

)
= f

(
V ∪ f(V ) ∪ f2(V ) ∪ · · ·

)
= f(V ) ∪ f2(V ) ∪ · · ·
⊆ V ∪ f(V ) ∪ f2(V ) ∪ · · ·

=
⋃
a∈V
Of (a)

so that any union of orbits of f is f -invariant.
On the other hand, for any f -invariant subset U of S we clearly have

U ⊆
⋃
a∈U
Of (a) = U ∪ f(U) ∪ · · · .

Notice that f(U) ⊆ U implies f2(U) ⊆ f(U) ⊆ U , so that, by transitivity,
f2(U) ⊆ U . In fact, fk(U) ⊆ U for all k ≥ 0 and hence⋃

a∈U
Of (a) = U ∪ f(U) ∪ f2(U) ∪ · · · ⊆ U.

Sometimes, the orbit of a point is finite. This happens when there are
integers n1 < n2 such that fn1(a) = fn2(a). When n1 = 0 we see that
successive iterates will periodically jump back to a. We have special names
for such points (Northcott called them “exceptional” in [10]).

Definition 2.4. The point a is periodic if fn(a) = a for some n > 0; the
least such n is called the period of a, and a is called n-periodic or n-cyclic,
and f is said to have an n-cycle. If n = 1, a is said to be fixed, and f is said
to have a fixed point. The point a is preperiodic if some iterate fm(a) of a is
periodic. We collect these exceptional points as follows: for any f -invariant
subset U of S, let

Per(f, U) = {a ∈ U : fn(a) = a for some n > 0}
and

PrePer(f, U) = {a ∈ U : fn(a) = fm(a) for some n > m ≥ 0}.

We often omit U when it equals the domain of f and simply write (Pre)Per(f)
for the set of (pre)periodic points of f on S.
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Example 2.3. The map z 7→ e2iπ/nz over C fixes 0; the orbit of any nonzero
point z0 is z0 → e2iπ/nz0 → e4iπ/nz0 → · · · → e2niπ/nz0 = z0. Therefore, 0
is a fixed point and every other point is n-cyclic.

Example 2.4. The point −2 when iterated under the cubic map z 7→
−1

2z
3 + 3

2z + 1 behaves as follows: −2→ 2→ 0→ 1→ 2→ · · · . Therefore
−2 is preperiodic, 0, 1, 2 are periodic, and the cubic has a 3-cycle.

For any f -invariant subset U of S, we have, by definition, that Per(f, U)
is a subset of PrePer(f, U). A corollary of the following proposition is that
if Per(f, U) is empty then so is PrePer(f, U).

Proposition 2.2. Let f : S → S be a map and let a be a point in S. Then

∞⋂
n=0

Of (fn(a)) ⊆ Per(f)

and
∞⋂
n=0

Of (fn(a)) 6= ∅ ⇐⇒ a ∈ PrePer(f).

Proof. If

x ∈
∞⋂
n=0

Of (fn(a))

then, in particular,
x ∈ Of (a)

so that we may write x = fm(a) for some nonnegative integer m. But
because x is in all the orbits,

x ∈ Of (fm+1(a)) = {f(fm(a)), f2(fm(a)), f3(fm(a)), . . . }

so that x = fn(fm(a)) = fn(x) for some positive integer n. Therefore
x ∈ Per(f) and a ∈ PrePer(f).

On the other hand, if a ∈ PrePer(f), then Of (a) is finite, so that

Of (a) ⊇ Of (f(a)) ⊇ Of (f2(a)) ⊇ · · ·

is a descending chain of finite, nonempty sets, so it must eventually stabilize:
Of (fk(a)) = Of (fk+1(a)). Therefore

∞⋂
n=0

Of (fn(a)) = Of (fk(a)) 6= ∅.
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If the m and the n in the above proposition are picked to be the least
integers of their kind, then we may describe the orbit of a under f with the
following picture:

a f(a) f2(a) . . . fm(a)

fm+1(a)

. . .

fm+n−1(a)

Figure 1: The anatomy of a finite orbit

Hence we arrive at another piece of useful terminology.

Definition 2.5. Given a map f on a set S, a point a in S is said to be of
type nm if it enters an n-cycle after m applications of f . Periodic points are
of type n0.

It is not hard to see that the orbit of a point of type nm has cardinality
n+m.

Next we prove a small lemma which reveals when two points are periodic,
and which will be useful when dealing with hooks.

Lemma 2.3. If Of (a) = Of (b) then either a = b or a and b are both
periodic.

Proof. If a 6= b, then since a ∈ Of (b), there exists some n ≥ 1 such that
a = fn(b); similarly, since b ∈ Of (a), b = fm(a) for some m ≥ 1. Then fn+m

fixes both a and b: fn(fm(a)) = fn(b) = a and fm(fn(b)) = fm(a) = b.

The following few facts are given as exercises in [13].

1. If S is finite, then so is every orbit. But points with finite orbits are
preperiodic. Hence, PrePer(f) = S.

2. If f is injective, then fn(a) = fm(a) ⇒ fn−1(a) = fm−1(a) ⇒ · · · ⇒
fn−m(a) = fm−m(a) = a so that PrePer(f) = Per(f).

3. It follows from (1) and (2) that if S is finite and f is injective, surjec-
tive, or bijective, then Per(f) = PrePer(f) = S.

4. Conversely, if Per(f) = S then f is bijective; for every x in S there
exists some positive integer nx such that fnx(x) = x; a commuting
inverse g for f can be constructed by letting g(x) = fnx−1(x) for each
x in S.
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Example 2.5. Consider the map q(a, b) = (a + 1, ab) on Z × Z. Each ap-
plication of q increments the abscissa, so that Per(q) (and hence PrePer(q))
is empty. Iterating q reveals a pattern:

(a, b) 7→ (a+ 1, ab) 7→ (a+ 2, (a+ 1)ab) 7→ (a+ 3, (a+ 2)(a+ 1)ab) 7→ · · ·

so that qn(a, b) = (a+n, (a)nb) (where (x)n = x(x+ 1)(x+ 2) · · · (x+n− 1)
is the Pochhammer symbol).

This formula tells us that starting with a < 0 and any b value yields
an orbit which inexorably advances toward the y-axis while the ordinate
jumps above, jumps below the x-axis with each step (unless it is stuck to
it). Having arrived at the y-axis—we are at (0, b′), say—we get sent to (1, 0),
and from then on we may never leave the x-axis.

Starting with a > 0 and b 6= 0 tells a different story. The ordinate,
having seen its friends sucked into the x-axis, never once crosses it, and
instead goes off to ±∞ faster and faster.

2.2 Pictures

Every function f on a set S has a special type of directed graph associated to
it, called its sagittal graph [5, p. 174] or its functional digraph. It is defined
as follows: the vertices are the points in S, and the arrows are drawn from
x to f(x).

Conversely, every directed graph (V,E) with the property that each ver-
tex has out-degree 1 corresponds to a function f : V → V as follows: for
(x, y) in E, define f(x) = y.

The sagittal graphs of functions on infinite sets can be quite complicated.
For a polynomial p of degree d > 1 defined over C every point x has up to d
pre-images, so that the sagittal graph of p is an uncountable directed graph
where every vertex has positive in-degree at most d.

However, there is a well known result due to Northcott[10] which implies
that a polynomial over Q of degree at least two has finitely many ratio-
nal preperiodic points. Therefore, we can restrict our attention (and our
polynomials) to preperiodic point sets.

Definition 2.6. Let f : Q → Q be a polynomial map of degree at least
two. We shall call the sagittal graph of f |PrePer(f,Q) the picture of f .
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-5 3 7 5 0

-3

8

-8

-7

Figure 2: The sagittal graph of z 7→ −1
60 (z3 − 49z − 300) restricted to its

preperiodic point set over Q

We borrow a term from graph theory and say that the sources of f are
the points of in-degree 0; they are precisely the elements of S \ f(S). In
the above figure, the sources are -8, -7, -5, -3, 0, and 8. Sources are closely
related to the main topic of the next section.

2.3 Hooks

The domain of an endofunction f is always f -invariant, so by Proposition
2.1 it can be written as a union of orbits. The set V from that proposition
need not be all of S, and in fact can be much smaller.

Definition 2.7. We shall call a subset H of S a hook-set for f if⋃
h∈H
Of (h) = S

and if for all k in H, ⋃
h∈H\{k}

Of (h) 6= S.

The elements of a hook-set are called hooks.

The motivation for hooks came from the realization that with a polyno-
mial expression for f , and relatively few points preperiodic points h1, . . . , hd,
one could ‘discover’ the entirety of PrePer(f) by computing forward orbits
of the hi under f . The second requirement ensures that such a description of
the full picture does not have any redundancies—every hi contributes some
new information.

We will now see that hooks map to maximal orbits in the partially or-
dered set {Of (a) : a ∈ S}.

Lemma 2.4. Let H be a hook-set for f : S → S. If a ∈ H then O(a) is
maximal.
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Proof. Suppose O(b) ⊇ O(a). Then

b ∈ S =
⋃
h∈H
O(h)

so b ∈ O(k) for some hook k. Now if k 6= a we have O(k) ⊇ O(b) ⊇ O(a)
and

S =
⋃
h∈H
O(h) =

⋃
h∈H\{a}

O(h) 6= S,

a contradiction. So k = a and O(b) = O(a).

For finite S, hooks always exist, but for infinite S anything can happen.

Example 2.6. Consider the map s(n) = n + 1 over the integers. Then
Os(n) ( Os(n − 1), so s has no hooks. Looking at its restriction to the
naturals, we see that N = Os(0).

If hooks map to maximal orbits, what maps to minimal orbits?

Lemma 2.5. The point a is periodic if and only if Of (a) is minimal.

Proof. Let a be a periodic point of order n for f and suppose Of (a) ⊇ Of (b)
for some b in S. Then b = fm(a) for some m ≥ 0; pick k large enough that
kn > m. Then fkn−m(b) = fkn−m(fm(a)) = fkn(a) = fkn(a) = a, so that
a and hence Of (a) are contained in Of (b).

Conversely, if a is not periodic, then no forward iterate of a returns to
a. Therefore a 6∈ Of (f(a)) and Of (a) ) Of (f(a)).

It turns out that hook-sets are quite simple to characterize.

Theorem 2.6. Let f : S → S be a map and let H ⊆ S be a hook-set for
it. Then H comprises the sources of f and one periodic point per isolated
cycle.

Proof. First we prove that S \ f(S) ⊆ H. Let v be in S \ f(S). Then
v 6= f(u) for any u in S. But since the union of the orbits of the elements
of H is all of S, there must be some hook k such that

v ∈ Of (k) = {k} ∪ {f(fn(k)) : n ≥ 0};

the fact that v is a source forbids its membership in the second set. Thus
v = k is in H.

Now we demonstrate that H need not comprise only sources. Let h be in
H and suppose f(a) = h (where a need not be a hook). Then O(a) ⊇ O(h),
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but since the latter is maximal, we have O(a) = O(h). Hence either a = h,
so that h is a fixed point, or a, h ∈ Per(f), in which case h is periodic.

This shows that if anything points to Of (h) then it’s actually an element
of Of (h). Therefore, Of (h) is isolated.

Example 2.7. Consider the set of rational preperiodic points for the cubic
polynomial f(z) = 1

30z
3 − 79

30z + 1. Its picture looks like this:

-5 10

-7

8 -3 -8 5

Figure 3: Picture for 1
30z

3 − 79
30z + 1

The orbits form a lattice, whose maximal elements are readily seen to
be generated by −5, −7, and either 5 or −8. In this case, there are two
possible hook-sets: {−7,−5, 5} and {−7,−5,−8}.

{5,−8} {8,−3}

{−7, 8,−3} {10, 8,−3}

{−5, 10, 8,−3}

Figure 4: Lattice of orbits of 1
30z

3 − 79
30z + 1

Example 2.8. Consider the map r(a, b) = (a− b, a+ b) on Z×Z. Writing
it as

r(a, b) =
√

2
(

cos(π4 ) − sin(π4 )
sin(π4 ) cos(π4 )

)(
a
b

)
we see that it is injective and fixes the origin. That it fixes nothing else is
clear from the inequality ||r(a, b)||2 = (a − b)2 + (a + b)2 = 2(a2 + b2) >
||(a, b)||2. Points are sent spiralling outward, performing an eighth of a
rotation with each iteration. What are the hooks of r?

The previous theorem comes in handy. If some point (x, y) is mapped
to by r, then

a− b = x

a+ b = y.
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Adding the two equations gives x+ y = 2a; subtracting gives x− y = −2b.
Since x + y ≡ x − y (mod 2) (i.e. they have the same parity), the point
(x, y) has a preimage if and only if 2 | x+ y. Therefore the hook-set of r is
{(0, 0)} ∪ {(x, y) ∈ Z× Z : 2 - x+ y}.

The compression afforded by storing only hooks and f is, in general,
ineffective. On a set of size n, a constant map has n − 1 hooks, and the
identity map has n. On the other hand, an n-cycle has 1 hook. In practise,
because are dealing with polynomial f , the in-degree of a given vertex is
bounded by the degree of f .

2.4 Graph isomorphism

1

2

1

2

1

2

1

2

Figure 5: There are four functions on the set {1, 2}...

Figure 6: ...but only three “types” of functions.

Two directed graphs are said to share an isomorphism when there exists
an arrow-preserving bijection between their vertex sets. Thus, two maps
f : S → S and g : T → T have the same picture if and only if there exists
an isomorphism τ : S → T between their sagittal graphs.

Let’s look closely at what such a map τ is really doing. In S, we have
x → f(x). Therefore, in T , we must have τ(x) → τ(f(x)). But in T , we
also have τ(x) → g(τ(x)). Since the arrow out of τ(x) only points to one
thing, we see that τ(f(x)) must equal g(τ(x)).

This equality precisely captures what it means for two functions to have
the same picture. Hence our algorithm, given f : S → S and g : T → T as
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input, should assert or disprove the existence of a bijection τ : S → T which
satisfies the functional equation τ ◦ f = g ◦ τ .

S S

T T

f

τ τ

g

Figure 7: If τ exists, then f and g have the same picture.

From the commutative diagram it is clear that if two functions f and g,
defined on a field K, are linearly conjugate (that is, g = fϕ = ϕ ◦ f ◦ ϕ−1

for some ϕ = αz + β) then they have the same picture. However, there is
no requirement that τ be a linear homeomorphism.

We remind the reader that the restriction of a cubic polynomial f to
PrePer(f,Q) is quite clearly a function on a finite set. The vertex-set of
the sagittal graph was defined to be the domain of f |PrePer(f,Q), which is
PrePer(f,Q).

2.5 Functions on finite sets

A good algorithm is designed to take advantage of all the available structure
of its input, so we intend now to fully describe functions on finite sets.

Given f : S → S we may partition S into components which are con-
nected with respect to f . Write x ∼ y if and only if Of (x) ∩ Of (y) 6= ∅.
Reflexivity and symmetry are clear; to see that this relation is transitive,
suppose x ∼ y and y ∼ z. Then fn(y) ∈ Of (x) and fm(y) ∈ Of (z) for some
n,m ≥ 0, so

fm+n(y) = fm(fn(y))
= fn(fm(y)) ∈ Of (x) ∩ Of (z)

In some sense orbits are like rivers: once x and y meet, they do not flow
apart, so if y also meets z, then x and z will eventually meet as well.

Definition 2.8. The equivalence classes of ∼ on S are called the (connected)
components of f . When there is only one class—when no two orbits are
disjoint—then f is said to be connected.
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It is not hard to see that if two functions have the same picture, then
they have the same number of components, and each component of one
function is isomorphic to a component of the other. Conversely, if C1, . . . , Ck
are the components of f , and D1, . . . , Dk are the components of g, and
σ : {1, . . . , k} → {1, . . . , k} is a bijection such that Ci is isomorphic to Dσ(i)

for all 1 ≤ i ≤ k, then in fact f and g are isomorphic.
What does a connected function f on a finite set S look like? All the

orbits intersect nontrivially, so let C =
⋂
a∈S O(a). Now, because S is finite,

C is nonempty, and because the set {O(a) : a ∈ S} is a meet-semilattice
under set intersection, C is equal to some orbit O(c). In fact, it is the unique
minimal orbit (for it is contained in every other orbit), so it is equal to O(a)
for every a in Per(f) (since periodic points have minimal orbits). Finally,
since the set of f ’s periodic points is f -invariant,

Per(f) =
⋃

a∈Per(f)

O(a) = C.

Definition 2.9. Let f be a connected function on a set S. We call Per(f)
the central cycle of f on S, and we call its cardinality the cycle number of
f .

The cycle number can be used to discern graphs of small size, because
while there are, say, 9 connected graphs of size 4, only 3 have cycle number
2.

For a connected function f : S → S with cycle number N , every point
in S is of type Nm, so we can define m = h(x) to equal the height of x—a
natural name, for h(x) is distance (measured in applications of f) between
x and the central cycle.

What happens around the central cycle? If we define a ≈ b if and only
if fh(a)(a) = fh(b)(b), then the equivalence classes of ≈ (which are just
elements of the coimage of the map S 3 x ∆7−→ fh(x)(x) ∈ Per(f)) partition
S into regions of points, all of which enter the central cycle at the same
spot. If orbits are rivers, then these regions are drainage basins, and within
these watersheds, the intersection O(a) ∩O(b) equals O(c) for some unique
c, which we affectionately call the conflux of a and b.

Unfortunately, this train of thought does not hold water. The correct
approach is to appropriately ‘invert’ f and realize that the points on the
central cycle are the roots of trees.

Definition 2.10. Let f : S → S be connected. Then the arborification of
f is the map Arb(f) : S → P (S) defined by Arb(f)(x) = (f−1(x)) \Per(f).
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What does this map do? It regards every point on S as a tree node
whose child nodes are exactly its non-periodic preimages. The childless
nodes (those for which Arb(f) returns ∅) are precisely the sources of f and
the periodic points with in-degree 1.

Tree isomorphism is very simple: two childless trees are isomorphic, and
two trees T1, T2 with subtrees S1,1, . . . , S1,j and S2,1, . . . , S2,j are isomorphic
if and only if there exists a bijection σ : {1, . . . , j} → {1 . . . , j} such that
S1,i is tree-isomorphic to S2,σ(i) for all 1 ≤ i ≤ j.

We conclude that two connected functions f and g have the same picture
if and only if there is a bijection κ : Per(f) → Per(g) such that κ(f(c)) =
g(κ(c)) and the tree above c is isomorphic to the tree above κ(c) for all c in
Per(f).

With this complete understanding of functions on finite sets, it is not so
hard to implement an algorithm for determining whether two maps f and g
have the same picture.

2.6 Counting endofunctions

To learn more about functions on finite sets we seek to count how many
possible pictures there are of size n. Of course, there are nn functions on
an n-element set, but, as we have already seen, many of them are indistin-
guishable when viewed as unlabelled directed graphs.

Let us define γ : N → N to be the number of graphs of size n. Im-
mediately we have the crude upper bound γ(n) ≤ nn, and the following
proposition gives us a lower one.

Proposition 2.7. For all n ∈ N, γ(n) ≥ n.

Proof. Fix n and for each 1 ≤ m ≤ n define

fm(k) =
{
k + 1 if k < n
m if k = n

Then 1 is a point of type (n − m + 1)m−1 for fm, and thus fm1 and fm2

cannot have isomorphic sagittal graphs for m1 6= m2 (e.g. f1 is a bijection
and fm>1 is not). Hence there are at least n pictures of size n, and a concrete
example of each is given by fm.

Let us now employ the theory of group actions to find an exact formula
for γ(n). Let X = SS , the set of all functions from S to itself, and let Sn
(the symmetric group on n letters) act on X by

σ · f = σ ◦ f ◦ σ−1
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so that the orbits [f ] = {g ∈ X : σ◦f = g◦σ} correspond exactly to pictures
of size n. Therefore, to count to number of possible pictures of size n, we
can use the Cauchy-Frobenius lemma from group theory. The number of
orbits is given by

γ(n) =
1
n!

∑
σ∈Sn

|Xσ|

where |Xσ| = {f ∈ X : σ · f = f} is the set of points in X fixed by σ.
Now for a simple lemma which greatly reduces the number of terms in

the summation.

Lemma 2.8. If σ is conjugate to τ (in Sn) then |Xσ| = |Xτ |.

Proof. Suppose πσπ−1 = τ and let f be fixed by σ. Then πfπ−1 is fixed
by τ , for τπfπ−1τ = πσπ−1πfπ−1πσπ−1 = πσfσπ−1 = πfπ−1. Hence
|Xσ| ≤ |Xτ |; by symmetry, we have equality.

The conjugacy classes of Sn are well understood: there are as many of
them as there are partitions of n, and, if α = (α1, ..., αn) is one such partition
(where αk ≥ 0 and

∑n
k=1 kαk = n) the number of permutations in Sn whose

cycle structures are of the form

(·) . . . (·)︸ ︷︷ ︸
α1

(· ·) . . . (· ·)︸ ︷︷ ︸
α2

. . .

is given by
n!∏n

k=1 k
αkαk!

.

Hence, if α(σ) denotes the cycle structure of a permutation σ, the number
of orbits is given by

γ(n) =
1
n!

∑
one σ per class

n!∏n
k=1 k

α(σ)kα(σ)k!
|Xσ|.

Can we find an expression for |Xσ| in terms of the cycle structure of σ?
Let’s look at two examples.

Example 2.9. Suppose n = 7 and σ = (1 2 3 4)(6 7). How many possible
f can σ fix? The relation f = σ · f = σ ◦ f ◦ σ−1 yields a system of seven
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equations:

f(1) = σ(f(4))
f(2) = σ(f(1))
f(3) = σ(f(2))
f(4) = σ(f(3))
f(5) = σ(f(5))
f(6) = σ(f(7))
f(7) = σ(f(6))

First of all, notice that f(5) is fixed by σ, and since the only fixed point of σ
is 5, we must have f(5) = 5. Also, f(7) is determined by f(6), and each of
f(2), f(3), f(4) is determined by f(1). Where can f send 6? It can be fixed
(in which case f(7) = σ(6) = 7), sent to 7 (in which case f(7) = σ(7) = 6),
or sent to 5 (in which case f(7) = σ(5) = 5). Note that the equations imply
f(6) = σ(f(7)) = σ(σ(f(6))) = σ2(f(6)), so that f(6) cannot equal any of
1, 2, 3, 4, because none of those is fixed by σ2. Finally, we consider f(1).
The only restriction on where f sends 1 is that f(1) be fixed by σ4, but since
4 = o(σ), f(1) can be anything it wants to be. Thus there are 3 · 7 = 21
functions fixed by (1 2 3 4)(6 7) in S7.

Example 2.10. Suppose n = 5 and σ = (1 2 3)(4 5). To count how many
possible functions σ can fix, let’s look at the five equations

f(1) = σ(f(3))
f(2) = σ(f(1))
f(3) = σ(f(2))
f(4) = σ(f(5))
f(5) = σ(f(4))

f(2) and f(3) are determined by f(1), and f(5) is determined by f(4).
Where can f send 1? Any of 1, 2, 3 will work, but f(1) = 4 yields a
contradiction when we realize that σ3(f(1)) = f(1) but σ3(4) = 5 6= 4.
Similarly, f(4) can only be 4 or 5. Thus there are 3 · 2 = 6 functions fixed
by (1 2 3)(4 5) in S5.

With these observations noted we are ready to prove two lemmata.

Lemma 2.9 (Division lemma). Let f be fixed by σ. If i is a period-k point
for σ, then f(i) is a period-d point for σ for some d dividing k.
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Proof. We can expand k-fold the equation f = σ · f to get f = σ ◦ f ◦σ−1 =
σ2 ◦ f ◦ σ−2 = . . . = σk ◦ f ◦ σ−k. Using the fact that σk(i) = i we can
evaluate the expansion at i to get f(i) = σk(f(σ−k(i))) = σk(f(i)), which
implies that f(i) is a period-d point for σ for some d dividing k.

Lemma 2.10. If α = (α1, . . . , αn) is the cycle structure of some permuta-
tion σ, then |Xσ| =

∏n
k=1(

∑
d|k d αd)

αk .

Proof. For each 1 ≤ k ≤ n, σ has αk k-cycles. A given k-cycle can be
written as (l1 l2 l3 . . . lk) for some letters 1 ≤ li ≤ n. Thus f = σ · f implies

f(li) = σ(f(σ−1(li))) =
{
σ(f(lk)) if i = 1
σ(f(li−1)) if i > 1

so that whither f sends l2 through lk is determined by whither f sends l1.
Now, l1 is a period-k point for σ. By the division lemma, f(l1) must be

a period-d point for σ for some d dividing k. But for any d dividing k, σ has
αd d-cycles, each with d points. Hence σ has d αd period-d points. Thus σ
provides f with

∑
d|k d αd possible targets for l1.

Whither f sends one cycle of σ does not depend on whither f sends
another (cycle of σ), so we can count independently:

|Xσ| =
∏

cycles of σ

 ∑
d | cycle length

d αd


=

n∏
k=1

 ∏
k-cycles of σ

(∑
d|k

d αd

)
=

n∏
k=1

(∑
d|k

d αd

)αk

We summarize this chain of deductions in the following

Theorem 2.11. The number of endofunctions (up to sagittal graph isomor-
phism) on a set of size n is given by

γ(n) =
∑
α

n∏
k=1

(
∑

d|k d αd)
αk

kαkαk!

where the sum is taken over all partitions α of n.

19



Since αk = 0 implies (
∑

d|k dαd)
αk = 1, and since

∑n
k=1 kαk = n implies

not all αk can be zero, the product may be taken over all αk 6= 0.

Corollary. For all n ∈ N, γ(n) ≥ nn

n! .

Proof. This improvement on the previous lower bound can be derived by
noting that α = (n, 0, . . . , 0) is a partition of n for every n ≥ 1. Thus

γ(n) ≥
∏
αk 6=0

(
∑

d|k d αd)
αk

kαkαk!

=
(
∑

d|1 d αd)
α1

1α1(α1)!

=
(1 · n)n

1n · n!

=
nn

n!
Example 2.11. If n = 4 then the partitions of n are given by

4 = 3 + 1
= 2 + 2
= 2 + 1 + 1
= 1 + 1 + 1 + 1

which correspond to 4-tuples (0, 0, 0, 1), (1, 0, 1, 0), (0, 2, 0, 0), (2, 1, 0,
0), and (4, 0, 0, 0). Thus

γ(4) =
(1 · 0 + 2 · 0 + 4 · 1)1

41 · 1!

+
(1 · 1)1

11 · 1!
· (1 · 1 + 3 · 1)1

31 · 1!

+
(1 · 0 + 2 · 2)2

22 · 2!

+
(1 · 2)2

12 · 2!
· (1 · 2 + 2 · 1)1

21 · 1!

+
(1 · 4)4

14 · 4!

= 1 +
4
3

+ 2 + 4 +
32
3

= 19

The first few values of γ are γ(1) = 1, 3, 7, 19, 47, 130; this is sequence
A001372 in [7].
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3 On to polynomials

We turn our attention now to polynomial maps over fields.

3.1 A fundamental identity

The main goal of this section is to prove the following

Theorem 3.1. Let φ be a polynomial over a commutative unital ring R.
Then for all nonnegative integers m and n,

m | n⇒ (φm(z)− z) | (φn(z)− z).

This result is often used in the literature (and is crucial in the definition
of dynatomic polynomials, which are the dynamical analogues of cyclotomic
polynomials; see [13, p. 148]) where it is accompanied by a parenthetical
proof sketch which advises readers to consider roots on both sides of the
bar. There exists an elementary, ring-theoretic proof of this fact, and we
present it here.

First, we need to establish a few useful lemmata.

Lemma 3.2. Let R be a commutative unital ring and let n ≥ 0 be an integer.
Then a− b | an − bn.

Proof. The result follows by induction: certainly we have a − b | 0, and
an+1 − bn+1 = a(an − bn) + abn − bn+1 = a(an − bn) + (a− b)bn.

Lemma 3.3. Let R be a commutative unital ring. For a, b, f in R[x], we
have that a− b | f(a)− f(b).

Proof. Letting c0, . . . , cn be the coefficients of f , we observe that

f(a)− f(b) = cna
n + cn−1a

n−1 + · · ·+ c1a+ c0

− cnbn − cn−1b
n−1 − · · · − c1b− c0

= cn(an − bn) + cn−1(an−1 − bn−1) + · · ·+ c1(a− b)

which, by the previous lemma (R[x] is certainly commutative and unital if
R is), is clearly divisible by a− b.

As a corollary we have a proof of the factor theorem which does not
require R to be a field nor R[x] to be a Euclidean domain: if f(λ) = 0 then
x− λ | f(x)− f(λ) = f(x).

Now we are ready to prove the main theorem of this section.
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Proof. Let φ in R[x] be any polynomial. We may evaluate φ at φ and receive
another polynomial in R[x]; repeating this process gives us the forward
iterates of φ. Repeatedly applying the preceding lemma with f = φ, we see
that

φ(z)− z | φ(φ(z))− φ(z) = φ2(z)− φ(z)

φ2(z)− φ(z) | φ(φ2(z))− φ(φ(z)) = φ3(z)− φ2(z)

φ3(z)− φ2(z) | φ(φ3(z))− φ(φ2(z)) = φ4(z)− φ3(z)
...

so that by transitivity of divisibility, φ(z)− z divides φk(z)−φk−1(z) for all
positive integers k.

Now suppose n = ml. Adding φk(z)− φk−1(z) from k = 1 to l, the sum
telescopes:

φ(z)− z |
l∑

k=1

φk(z)− φk−1(z) = φl(z)− z.

Finally, replacing φ with φm and noting that the lth iterate of φm is just
φlm = φn, we get the desired result:

φm(z)− z | φn(z)− z.

3.2 A curious identity

While reading Walde’s and Russo’s parametrization of those values of c for
which Qc(z) = z2 +c has a 3-cycle, we noticed that the three given identities
[15, p. 323]

x1 + x2 = τ, x2 + x3 = −τ + 1
τ

, x3 + x1 = − 1
τ + 1

multiply to 1. Was this a coincidence?

Proposition 3.4. Let x1, x2, . . . , xn be an n-cycle for Qc(z) = z2 + c (not
necessarily over Q). Then

n∏
i=1

xi +Qc(xi) = 1.
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Proof. Since Qc(xi) = xi+1 (where xn+1 is taken to be x1) and xi 6= xi+1,

we may divide and multiply by 1 =
xi − xi+1

xi − xi+1
:

xi +Qc(xi) = xi + xi+1

= (xi + xi+1) · xi − xi+1

xi − xi+1

=
x2
i − x2

i+1

xi − xi+1

and add 0 = c− c:

x2
i − x2

i+1

xi − xi+1
=
x2
i + c− x2

i+1 − c
xi − xi+1

=
Qc(xi)−Qc(xi+1)

xi − xi+1

=
xi+1 − xi+2

xi − xi+1

so that the product telescopes:

n∏
i=1

xi +Qc(xi) =
n∏
i=1

xi+1 − xi+2

xi − xi+1

=
x2 − x3

x1 − x2
· x3 − x4

x2 − x3
· · · xn − x1

xn−1 − xn
· x1 − x2

xn − x1

= 1

Benedetto observed this result as well and generalized it in [1].

3.3 A note on conjugation

As we move toward some classification theorems, we must take note of an
essential device for simplifying our task. To classify the general nth-degree
polynomial f(z) = cnz

n + · · ·+ c1z+ c0 is to grapple with the n+ 1 degrees
of freedom provided by its coefficients. Linear conjugacy is a special type of
equivalence which preserves all the dynamical properties of a map, including
its picture. It allows us to “label” two dots on the picture, so to speak, and
this reduces the number of unknown coefficients of f .
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To put it concretely, if f(a) = b 6= a then conjugating by ϕ(z) = αz + β
where

α =
c− d
a− b

and

β =
ad− bc
a− b

will yield a new map fϕ = ϕ ◦ f ◦ϕ−1 that sends c to d. These values for α
and β are obtained by solving the system of equations

ϕ(a) = c, ϕ(b) = d.

If, further, f sends b back to a, then so will fϕ send d back to c:

ϕ(f(ϕ−1(d))) = ϕ(f(b)) = ϕ(a) = c.

If f(a) = a and then we may conjugate by ψ(z) = α(z − a) + c (for any
α) so that fψ fixes c. If f has another fixed point, b, we may conjugate by
the ϕ above so that fϕ fixes c and d. Note that this time a 6= b so α is well
defined. If, instead of another fixed point, we choose to relabel a preimage
b of a to d then conjugating by ϕ above will do the trick: fϕ will map d to
c to c.

When seeking to conjugate a polynomial into a form with fewer coef-
ficients, it’s useful to have an expression for the the conjugate in terms of
the original. Unfortunately, the convention we adopted earlier in this paper
for the order of conjugation is a little messier than conjugating “the other
way”; if ϕ(z) = αz + β, compare

fϕ(z) = ϕ(f(ϕ−1(z))) = α(f(
1
α
z − β

α
)) + β

to

fϕ
−1

(z) = ϕ−1(f(ϕ(z))) =
1
α

(f(αz + β)− β).

In the following we opt for the latter, more aesthetic of the two formulae.

Proposition 3.5. If ϕ(z) = αz + β and

f(z) =
n∑
k=0

ckz
k

is a general nth-degree polynomial, then

fϕ
−1

(z) =
n∑

m=0

(
αm−1

n∑
k=m

ck

(
k

m

)
βk−m

)
zm − β

α
.
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Proof. First we evaluate f at ϕ(z):

f(αz + β) =
n∑
k=0

ck(αz + β)k

=
n∑
k=0

ck

k∑
j=0

(
k

j

)
αjβk−jzj

=c0

[(
0
0

)
α0β0z0

]
+ c1

[(
1
0

)
α0β1z0 +

(
1
1

)
α1β0z1

]
+ c2

[(
2
0

)
α0β2z0 +

(
2
1

)
α1β1z1 +

(
2
2

)
α2β0z2

]
...

Suppose we want the zm coefficient (for some m between 0 and n). Each
inner sum features some j equal to m if and only if k allows it (by being at
least m). Adding vertically (down those k ≥ m and j = m) we get that the
zm coefficient is

n∑
k=m

ck

(
k

m

)
αmβk−m

so that

f(αz + β) =
n∑

m=0

(
αm

n∑
k=m

ck

(
k

m

)
βk−m

)
zm.

Subtracting β and dividing by α yields the desired result.

Corollary.

• The leading term of fϕ
−1

is αn−1cn.

• The next term is αn−2(cn−1 + cnnβ), which vanishes if and only of
β = − cn−1

ncn
; this is a Tschirnhaus transformation.

• The linear term is unaffected by α and hence by pure scalings z 7→ αz.

3.4 Linear classification

The maps z 7→ αz+β where α and β are rational are very simple to classify
because iteration does not increase the degree of the map. If f(z) = αz + β
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then fn(z) = αnz + (αn−1 + · · · + α + 1)β. The n-cyclic points are among
the solutions to

0 = fn(z)− z = (αn − 1)z +
αn − 1
α− 1

β.

If αn 6= 1 then this equation reduces to

0 = z +
1

α− 1
β

β

1− α
= z

but f( β
1−α) = αβ

1−α + β = αβ+β−αβ
1−α = β

1−α so that f ’s “n-cycle” is actually
fixed. Thus for α not a root of unity, z 7→ αz + β has a single fixed point.

Figure 8: A single fixed point

If, on the other hand, αn = 1, then α = ±1 (over Q). In the first case,
f(z) = z + β, which is of no dynamical interest unless β = 0, in which case
f is the identity map and it fixes everything.

. . .

Figure 9: The identity map’s picture

In the second case, f(z) = −z+β, so that the n-cyclic points are among
the solutions to

0 = fn(z)− z

= ((−1)n − 1)z +
(−1)n − 1
−2

β

β

2
((−1)n − 1)z = ((−1)n − 1)z

If n is odd, we get β
2 (−2) = (−2)z; the solution, z = β

2 , is actually a fixed
point. If n is even, we get 0 = 0z so that all rational z are solutions; indeed,
f(f(z)) = f(−z + β) = −(−z + β) + β = z − β + β = z. Hence for α = −1,
the picture consists of a fixed point and infinitely many 2-cycles.
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. . .

Figure 10: The most interesting case: z 7→ β − z

It is of pedagogical interest to note that these linear maps provide a
natural example of a semidirect product. Given a commutative unital ring
R, the subset G of R[z] consisting of invertible linear maps

G = {z 7→ αz + β : α ∈ R×, β ∈ R}

forms a group under composition(
z 7→ αz + β

)
◦
(
z 7→ γz + δ

)
= z 7→ (αγ)z + (αδ + β).

We may identify two intuitive subgroups of G: the translations

T = {z 7→ z + β : β ∈ R}
and the scalings

S = {z 7→ αz : α ∈ R×}.

It is clear that both are indeed subgroups and that T is further a normal
subgroup. The only translation that is also a scaling is the identity map, so
S and T intersect trivially. Finally, every element z 7→ αz+ β in G actually
decomposes uniquely as (

z 7→ z + β
)
◦
(
z 7→ αz

)
so that G is the semidirect product of T and S.

A closer look into the structure of T reveals an obvious isomorphism
with (R,+): (

z 7→ z + β1

)
◦
(
z 7→ z + β2

)
= z 7→ z + (β1 + β2),

whereas composition in S looks like(
z 7→ α1z

)
◦
(
z 7→ α2z

)
= z 7→ (α1α2)z

so that S is isomorphic to (R×, · ). Therefore G = T o S ∼= R+ oR×. The
homomorphism from R× into Aut(R+) is given by r 7→ (z 7→ rz).
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3.5 Lagrange interpolation polynomials

We enrich this section with a useful method to generate examples.
Let K be a field. Given a finite set of distinct indeterminates x1, . . . , xn

we may define

fi(x) =
n∏
j=1
j 6=i

x− xj
xi − xj

∈ K(x1, . . . , xn)[x]

so that

fi(xk) =
∏
j 6=i

xk − xj
xi − xj

=
{

1 if k = i
0 if k 6= i

= δik

(the Kronecker delta). For a permutation σ in Sn (or, generally, for any
self-map on {1, . . . , n}) we may define an interpolant polynomial through
the points (xi, xσ(i)) by

fσ(x) =
n∑
i=1

xσ(i)fi(x) ∈ K(x1, . . . , xn)[x].

When restricted to the indeterminates, fσ “implements” σ. Choosing ac-
tual, pairwise distinct constants ci in the ground field K we get a concrete
polynomial. For example, if σ is an n-cycle, then fσ is a degree-(n − 1)
polynomial with an n-cycle. Of particular interest is the leading term

Lσ(x1, . . . , xn) =
n∑
i=1

xσ(i)

∏
j 6=i

1
xi − xj

which, if made to vanish by appropriate choice of (pairwise distinct) xi, will
yield a degree-(n− 2) polynomial which implements σ.

For n = 1, L(1)(x1) = x1 which also equals f(1)(x).
For n = 2,

Lσ(x1, x2) =
xσ(1) − xσ(2)

x1 − x2
.

This simplifies to L(1)(x1, x2) = 1 if σ is the identity (indeed, f(1)(x) = x); if
σ is a transposition, then L(1 2)(x1, x2) = −1 (indeed, f(1 2)(x) = x1+x2−x).
Leaving Sn, we see that if σ is constant, then Lσ(x1, x2) = 0, and fσ(x) =
xσ(1) is of degree 2− 2 = 0.
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For n ≥ 3, the equations get pretty hairy; we can take advantage of
conjugation and choose x1 = 0 and x2 = 1. Since we are interested in
periodic points, we pick σ to be some 3-cycle, say, σ = (1 2 3):

L(1 2 3)(0, 1, x3) =
1

(0− 1)(0− x3)
+

x3

(1− 0)(1− x3)

=
1
x3

+
x3

1− x3

=
x2

3 − x3 + 1
x3(1− x3).

Note that the numerator x2
3−x3+1 does not vanish over Q so that a rational

3-cycle cannot be exhibited by anything smaller than a quadratic.
Less trivial is the fact that L(1 2 3 4 5)(0, 1, x3, x4, x5) vanishes for x3 = −1,

x4 = 2, and x5 = −2, corresponding to our only known example (up to
conjugacy) of a cubic with a 5-cycle: x3

3 −
x2

2 −
11x
6 +1, conjugate to x3

12−
25x
12 +1

in normal form.
We can use Lagrange polynomials to show that the existence of a quadratic

with a rational 4-cycle is equivalent to the existence of non-trivial rational
points on a certain curve. Let σ = (1 2 3 4) and suppose (x1, x2, x3, x4) =
(0, 1, a, b), where a and b are distinct from each other and from 0 and 1.
Then the interpolant is of degree at most 3, with leading term

Lσ(0, 1, a, b) =
1

(0− 1)(0− a)(0− b)

+
a

(1− 0)(1− a)(1− b)

+
b

(a− 0)(a− 1)(a− b)

=
a3b− a2b2 − a2b+ a2 + ab2 − a+ b3 − 2b2 + b

ab(a− 1)(b− 1)(a− b)
,

which vanishes if and only if the numerator does. A plot of the numerator
set to zero reveals (a, b) = (0, 1) to be a critical point. The pencil of lines
through (0, 1) is given by b = at + 1 as t ranges; making the substitution
and dividing by −a2 (remember, a 6= 0) yields the following quadratic in a:

a2(t2 − t) + a(−t3 − t2 + 3t− 1) + (−t2 − 2t+ 1).

Its solutions are given by

a =
(t− 1)(t2 + 2t− 1)±

√
(t− 1)(t+ 1)(t2 + 1)(t2 + 2t− 1)
2(t− 1)t
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so that a rational 4-cycle exists if and only if the radicand is a square, which
is to say the curve

s2 = t6 + 2t5 − t4 − t2 − 2t+ 1

has non-trivial rational points.
Of course there are some obvious solutions, namely the roots of the

radicand, but t = 1 is forbidden lest our “quadratic in a” simplify to −2
(which is never 0); and t = −1 is forbidden because then a = 1.

If we decide to venture beyond Q and into Q(i), then t = ±i corresponds
to interpolant polynomials z 7→ ±iz + 1, which aren’t even quadratics (but
they do get the job done: 0 7→ 1 7→ 1± i 7→ ±i 7→ 0). Finally, we cannot use
the roots of t2 + 2t− 1 (which live in Q(

√
2) because they will cause a itself

to vanish.
A disadvantage of Lagrange polynomials is that we have no control over

the other preperiodic points of the interpolant. For example, the linear map
which implements a 2-cycle also happens to have infinitely many other 2-
cycles and a fixed point (see figure 10 on page 27), and the quadratic which
implements a 3-cycle always has purely preperiodic preimages of that cycle
(this is a consequence of part (1) of Theorem 3 in [12, p. 16]).

3.6 Quadratic 2-cycle

As a warm up to the analyses which follow, let’s see if a general quadratic
can have only a 2-cycle as its picture.

Figure 11: Can a quadratic have this as its picture?

Without loss of generality, let’s assume f(z) = az2 + bz + c sends 0 to 1
and 1 to 0, so that c = 1 and a+b+1 = 0. Therefore, f(z) = az2−(a+1)z+1.
The pre-images of 0 are easy to find, because we already know one: z = 1.
The other is the solution to

0 =
f(z)
z − 1

= az − 1;

thus we have f(1/a) = 0. The pre-images of 1 are likewise easily found:

0 =
f(z)− 1

z
= az − (1 + a);
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thus we have f(1 + 1/a) = 1. In order for this quadratic’s picture to be
exactly a 2-cycle, we need a value of a for which 1/a = 1 and 1 + 1/a = 0—
this is impossible, because the first equation implies the second equation
reduces to 2 = 0, which is absurd.

1

a

0 1
1 +

1

a

Figure 12: A quadratic 2-cycle can never occur alone.

4 Cubic pictures: narrated equation-solving

Our analysis of Benedetto’s data has revealed over 102 possible pictures that
cubics can yield, a number which shatters any hopes of a complete classi-
fication. Nonetheless, certain statements can be made. Having classified
the cubic data, we were able to observe the frequency with which certain
pictures occurred—some very often, some quite rarely. By computing all
possible pictures of a certain size (using the results from the previous sec-
tion) we were able to note that some pictures did not occur at all in the data.
These observations motivated us to try to prove whether these pictures really
are abundant, rare, unique, or non-existent.

4.1 Cubic with two fixed points and one preperiodic point

1 0 ε

Figure 13: 1→ 0→ 0, ε→ ε

This is the only size-3 graph which does not occur in the classified data. We
endeavoured to see if it was possible for a cubic to have this as its picture.

If a general cubic f(z) = az3 +bz2 +cz+d sends 1 to 0, fixes 0, and fixes
some other point, then f(0) = 0 ⇒ d = 0 and f(1) = 0 ⇒ c = −(a + b).
(Recall that we have the freedom of relabeling two points in PrePer(f)
because of conjugation.)

Notice that f(z) has two known roots—0 and 1—so that it splits com-
pletely over Q. This third root cannot be anything new, because we are
supposing that f have one point of type 11. Hence this third root must

31



actually be 0 or 1, and so f(z) has a double root. This means that its dis-
criminant, (a+ b)2(2a+ b)2, vanishes. Case 1 below deals with b = −a; Case
2 with b = −2a.

Another restriction is given by looking at f(z)−z. This polynomial also
has two known roots—0 and some other point—so that it likewise splits
completely over Q. Now, because f(z)− z has two “pictorial” fixed points
but three roots counting multiplicity, the polynomial f(z)−z must also have
a double root. This means that its discriminant, (a + b + 1)2(4a2 + 4ab +
4a+ b2), also vanishes.

There are very few cubic polynomials for which both f(z) and f(z)− z
have a double root. The two simultaneously vanishing discriminants provide
enough information to solve for a and b exactly.

Case 1: b = −a. The discriminant of f(z) − z simplifies to (a − a +
1)2(4a2 + 4a(−a) + 4a + (−a)2) = 4a − a2 = a(4 − a) so that a = −4, in
which case b = 4 and c = 0. Indeed, f(z) = −4z3 + 4z2 has the desired
picture; the other fixed point is 1

2 .
Case 2: b = −2a. The discriminant of f(z) − z simplifies to (a − 2a +

1)2(4a2 + 4a(−2a) + 4a+ (−2a)2) = (1−a)2(4a) = 4a(a− 1)2 so that a = 1,
in which case b = −2 and c = 1. Indeed, f(z) = z3− 2z2 + z has the desired
picture; the other fixed point is 2.

These two polynomials do not appear in the data because when conju-
gated into normal form the denominators of their leading terms are both
729, which exceeds the bound of 300 used in the search.

4.2 Cubic with a 2-cycle and antipodal preimages

ε 0 1 δ

Figure 14: ε→ 0→ 1→ 0, δ → 1

This small and symmetric picture occurs only once in the classified data.
We sought to determine if its existence is unique.

If a general cubic sends 0 to 1 and 1 to 0, then it must be of the form
f(z) = az3 + bz2 − (1 + a + b)z + 1. If we further require that both 0 and
1 have only one non-periodic preimage each (say f(ε) = 0 and f(δ) = 1),
then, because the equations

f(z)− 0
(z − 1)(z − ε)

,
f(z)− 1

(z − 0)(z − δ)
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are both linear, the points 0 and 1 actually have three rational preimages.
But we don’t want these preimages to be anything new, so f−1(0) must equal
{0, ε} and f−1(1) must equal {1, δ}. Therefore, both f(z) and f(z)−1 have
double roots.

The discriminant of f(z) is (2a + b − 1)2(a2 + 4a + 2ab + b2), and the
discriminant of f(z) − 1 is (a + b + 1)2(4a2 + 4a + 4ab + b2). These must
simultaneously vanish; the case analysis follows.

Case 1: b = 1 − 2a. The discriminant of f(z) − 1 simplifies to (2 −
a)2(1 + 4a). If a = 2, then f(z) = 2z3 − 3z2 + 1. If a = −1

4 , then f(z) =
−1

4z
3 + 3

2z
2 − 9

4z + 1.
Case 2: b = −1−a. The discriminant of f(z) simplifies to (a−2)2(4a+1).

If a = 2, then b happens to equal −3 again. On the other hand, if a = −1
4 ,

then f(z) = −1
4z

3− 3
4z

2 + 1, which is conjugate to the second thing in Case
1 via z 7→ 1− z.

Case 3: a2 + 4a+ 2ab+ b2 = 0 and 4a2 + 4a+ 4ab+ b2 = 0. This system
of equations actually has a swift solution; setting them equal immediately
yields a2 + 2ab = 4a2 + 4ab. Recalling that a 6= 0, we get that

b = −3
2
a.

With this restriction, both discriminants simplify to constant multiples of
a(a− 2)(a+ 16). If a = 2 then b = −3

2(2) = −3 and we have found nothing
new. The other solution, a = −16, yields f(z) = −16z3 + 24z2 − 9z + 1.

In summary, the algebra has revealed three possible candidate cubics,
but only −1

4z
3 + 3

2z
2 − 9

4z + 1 has precisely the desired picture. The fact
that

fn(z)− z
f(z)− z

has no unforeseen rational roots for n = 2, 3, 4, 5 (verified with a computer)
makes us highly confident this picture is unique.

The other two maps each have a fixed point at z = 1
2 , but no other

(pre)periodic points. They are not conjugate to each other, because 0’s
double-preimage under 2z3− 3z2 + 1 is 1 (the other period-2 point) whereas
0’s double-preimage under −16z3 + 24z2 − 9z + 1 is 1

4 (a purely preperiodic
point). Since nothing in our above analysis precluded figure 15 being the
target picture, we conclude that these two cubics are the only two cubics
with this picture.
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Figure 15: There are only two cubics with this picture.

4.3 Cubic with a fixed point and a Y tree above it

If a general cubic f(z) = az3 + bz2 + cz + d sends 1 to 0 and fixes 0,
then f(z) = az3 + bz2 − (a + b)z. If it further has the property that both
f(z) and f(z) − 1 have double roots, then both their discriminants must
vanish. Initially, discz(f(z)−1) does not factor, but after setting disczf(z) =
(a+ b)2(2a+ b)2 to zero and getting b in terms of a, it does.

Case 1: b = −a. The discriminant of f(z)−1 simplifies to −a2(4a+ 27),
which implies a = −27

4 and f(z) = −27
4 z

3 + 27
4 z

2. The preimages of 1 are 2
3

and −1
3 .

Case 2: b = −2a. The discriminant of f(z)− 1 simplifies to a2(4a− 27),
which implies a = 27

4 and f(z) = 27
4 z

3− 27
2 z

2 + 27
4 z. The preimages of 1 are

4
3 and 1

3 .
Neither of these cubics has any fixed points, 2-cycles, or 3-cycles, nor

do any of their points have more preimages—their pictures are exactly as
desired.

4.4 Cubic with a point of type 11 and another of type n1

1 0 ε

We will begin with an assumption on f(z) = az3 + bz2 + cz + d which gives
some freedom in the possible pictures for f . A cubic with a graph as above
must satisfy the following two conditions:

1. f(z) has a double root

2. f(z)− ε has a double root
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but what’s happening around ε 6= 0, 1 is a little uncertain; we only ask that
it be part of an n-cycle for some small n and that it have exactly two distinct
preimages.

First, the equations f(1) = 0 and f(0) = 0 imply (as before) that f(z) =
az3+bz2−(a+b)z. Condition 1 tells us that f ’s discriminant, (a+b)2(a+2b)2,
equals zero, so that our cubic is of one of the following two forms:

f1(z) = az3 − az2 = az2(z − 1)

f2(z) = az3 − 2az2 + az = az(z − 1)2.

Case 1: discz(f1(z)− ε) = −a2ε(4a+ 27ε). The only interesting solution
is ε = −4a

27 , whence f1(z)− (−4a
27 ) = a

27(3z − 2)2(3z + 1).
Since we are assuming that ε is part of some cycle, some forward iterate

of it must map to one of its preimages: 2
3 or −1

3 . The first few iterates of ε
are

f0
1

(
−4a

27

)
= −4a

27
,

f1
1

(
−4a

27

)
= −16a3(4a+ 27)

273
,

and

f2
1

(
−4a

27

)
= −256a7(4a+ 27)2(64a4 + 432a3 + 19683)

279

after which the equations become unmanageable.
It turns out that the only rational solution to be found among the three

equations f i1(ε) = 2
3 for i = 0, 1, 2 (not simultaneously, just whatsoever) is

a = −9
2 , yielding the cubic −9

2z
3 + 9

2z
2, conjugate to −2z3 + 3

2z in normal
form. This map fixes 1

3 .
The only rational solution among all the three equations f i1(ε) = −1

3 is
a = 9

4 , which yields a cubic conjugate to 9
16z

3− 3
4z+ 1 in normal form. This

map fixes 4
3 .

Both these cubics have the following picture:

Case 2: discz(f2(z)−ε) = a2ε(4a−27ε); this time, ε = 4a
27 . The multiplic-

ities of its preimages are readily seen from the factorization f2(z) − (4a
27 ) =

a
27(3z − 4)(3z − 1)2. Again, we assume ε is trapped in some n-cycle, so
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compute the forward iterates of ε:

f0
2

(
4a
27

)
=

4a
27
,

f1
2

(
4a
27

)
=

4(4a2 − 27a)2

273
,

and

f2
2

(
4a
27

)
=

4a3(4a− 27)2(64a4 − 864a3 + 2916a2 − 19683)2

279
.

This case is much more fruitful. f0
2 (ε) = 4

3 implies a = 9, which yields
9z3− 18z2 + 9z, conjugate to z3− 3z. f0

2 (ε) = 1
3 implies a = 9

4 , which yields
a cubic conjugate to 9

16z
3 − 3

4z + 1, seen before.
At this point, we have exactly three cubics with two double-rooted fixed

points.
The equation f2(ε) = 4

3 has a new rational solution: a = −9
4 , which

corresponds to a 2-cycle between ε = −1
3 and 4

3 . This map is conjugate to
−25

16z
3 + 3

4z + 1.
The equation f2(ε) = 1

3 has a new rational solution as well: a = −9
2 ,

which corresponds to a 2-cycle between ε = 2
3 and its double-preimage 1

3 .
This map is conjugate to 1

2z
3 − 3

2z + 1.
Both these cubics have the following picture:

Finally, neither of the equations f2
2 (ε) = 1

3 ,
4
3 has novel rational solutions,

which proves that no cubic with a fixed point with one preimage and a
periodic point with one non-cyclic preimage can have a 3-cycle. Further,
only two can have a 2-cycle, and only three can have another fixed point.

4.5 Cubics with a point of type 31

Figure 16: A graph not among the data

This picture is one of the few size-4 graphs which does not occur in the
classified data, although there is no obvious reason why it shouldn’t.
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If a general cubic f sends 1 to 0, the linear coefficient may be eliminated
so that f(z) = az3+bz2−(a+b+d)z+d. Since we want 0 to have exactly two
preimages, we can use discriminants again. Setting discz(f(z)) = (2a+ b−
d)2(a2 +2ab+4ad+b2) to zero yields two cases. We only analyze the simpler
one (equation-wise): d = 2a+b. Here, f(z) = az3+bz2−(3a+2b)z+2a+b =
(z − 1)2(az + 2a+ b).

The equation f(2a+ b) = 1 can be solved by parametrizing the constant
term using t (despite it already equalling d—perhaps the author prefers
unvoiced variables in his notes). Trudging through much more arithmetic
than in the above cases, we come to

f(z) =
(z − 1)2((−t3 + 2t2 − t+ 1)z + t4 − 2t3 + t2)

t(t− 1)2

where t ∈ Q \ {0, 1}.
Though we are unable to prove anything about this general form, a few

concrete examples reveal pictures not found in the data.
Letting t = 1

3 yields 23
4 z

3 − 67
6 z

2 + 61
12z + 1

3 , which has − 4
69 as a point

of type 31 and (as far as we can tell) no other preperiodic points. It is
conjugate to

12158811289
103456682352

z3 − 5329
2484

z + 1.

Letting t = 2
3 yields 25

2 z
3 − 73

3 z
2 + 67

6 z + 2
3 , which has − 4

75 as a point of
type 31 and no other preperiodic points. It is conjugate to

38962417321
16607531250

z3 − 6241
1350

z + 1.

Both these cubics have figure 16 as their picture; both were missed by
Benedetto’s cubic search because their coefficients have denominators quite
larger than 300.

The equation f(2a + b) = −2 − b
a is a little trickier, but can be solved

with the same substitution t = 2a+ b. What results is a quadratic in a with
the discriminant equal to (t− 3)(t+ 1).

With t = 3 we get a = −1
2 and f(z) = −1

2z
3 +4z2− 13

2 z+3, which sends
1→ 0→ 3→ 6→ 0 and fixes 2. It is conjugate to

−2809
1458

z3 +
25
6
z + 1

and has the following picture
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Figure 17: Another graph not among the data

With t = 1 we get a = −1
2 again (of course) and f(z) = −1

2z
3 + 3

2z − 1;
conjugating by z 7→ −z flips the sign on the constant term and puts it into
normal form. This cubic was found among the data, and there was only one
instance of it. The points −1 and −2 are of type 31; it has the following
picture:

Figure 18: Only one of these was found among the data

We need not only evaluate t at roots of the discriminant; it appears
under a radical in the formula for a, so we seek values of t for which it is
a rational square. The equation s2 = (t− 3)(t+ 1) determines a hyperbola
in the plane, which has infinitely many rational points. A pencil of lines
through either (−1, 0) or (3, 0) does the trick. One of the cubics churned
out (t = 7

2) is conjugate to

−1442401
2000

z3 +
363
20

z + 1

and has figure 16 as its picture (the hook is − 110
1201).

4.6 Other cubics

Some simple pictures with relatively few instances eluded proof of unique-
ness; some simple pictures which did not appear in the data eluded proof of
existence. We leave them here for future reference.

Figure 19: −6z3 + 9
2z + 1 and 3

2z
3 − 9

2z + 1

Figure 20: −289
16 z

3 + 27
4 z + 1 and − 49

250z
3 + 27

10z + 1
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Figure 21: Is this picture possible?

Figure 22: What about this one?

5 Further questions

A natural step is to proceed toward quartics. What is the longest cycle a
quartic can have? Lagrange polynomials guarantee this number is at least
5, though we have found no examples of a quartic with a 6- or 7-cycle. A
search like Benedetto’s could be done for quartic polynomials; it is not hard
to see that the general quartic belongs to one of the following three classes
of conjugacy classes:

az4 + cz2 + dz + 1, az4 + z2 + dz, az4 + dz.

Instead of increasing the degree of the polynomial, one can increase the
degree of the field extension over Q. For example, in [14] it is shown that
z2− 71

48 has a 6-cycle over Q(
√

33); one point in the cycle is z = −1+ 1
12

√
33.

What is the longest cycle a polynomial over a quadratic extension can have?
Another direction one can take is to follow Narkiewicz in [9] where he

investigates cycles of polynomials over certain rings, in particular over Z[ 1
N ].

One may also study polynomial maps over finite fields, where every point
is preperiodic; in [6], Gilbert et al. conjecture that there are exactly p
possible pictures modulo p, except for p = 17.
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1999.

[6] Christie L. Gilbert, Joseph D. Kolesar, Clifford A. Reiter, and John D.
Storey. Function digraphs of quadratic maps modulo p. Fibonacci
Quarterly, 39:32–49, 2001.

[7] OEIS Foundation Inc. The on-line encyclopedia of integer sequences.
http://oeis.org/A123456, 2011.

[8] Patrick Morton. Arithmetic properties of periodic points of quadratic
maps, II. Acta Arithmetica, 87(2):89–102, 1998.

[9] W ladys law Narkiewicz. Polynomial cycles in certain rings of rationals.
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