MAT244 Homework 6

due: December 9, 2022
$\mathbf{1}$ (5 points). Determine the matrix $e^{J t}$ for $J=\left(\begin{array}{ccc}\lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda\end{array}\right)$ and λ arbitrary.
2 (5 points). Consider the $n^{\text {th }}$-order equation with constant coefficients

$$
y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{1} y^{\prime}+a_{0} y=0
$$

(a) Let $x_{i}=y^{(i-1)}$ for all $i=1, \ldots, n$. Find a matrix A such that $x^{\prime}=A x$.
(b) What is the characteristic polynomial of A ?
(c) Let λ be an eigenvalue of A. What is the geometric multiplicity of λ ?

3 (10 points). Find parametric equations $(x(t), y(t))$ of a curve satisfying

$$
\begin{aligned}
x^{\prime} & =2 x-y+\sin t \\
y^{\prime} & =x+\cos t
\end{aligned}
$$

which (at $t=0$) starts in the first quadrant and, after some time, leaves it forever. [Note: there are many answers - pick any one you like.]

4 (10 points). Consider the system

$$
\binom{x}{y}^{\prime}=\left(\begin{array}{cc}
-1 & 2 \\
-2 & -1
\end{array}\right)\binom{x}{y} .
$$

(a) Plot the solution curve passing through the point $\binom{x}{y}=\binom{1}{0}$.
(b) Express the curve in the form $y=F(x, y)$. [Hint: an integrating factor is $\left(x^{2}+y^{2}\right)^{p}$.]

5 (10 points). Find the general solution to

$$
x^{\prime}=-\kappa\left(\begin{array}{cccc}
1 & & & \\
-1 & 1 & & \\
& -1 & 1 & \\
& & \ddots & \ddots
\end{array}\right) x
$$

where κ is a real constant and the blank entries are all 0 . Your answer should involve infinitely many arbitrary constants $c_{0}, c_{1}, c_{2}, \ldots$

