MAT244 Homework 5

due: November 25, 2022

1 (5 points). Which first-order homogeneous system of linear differential equations has fundamental solutions

$$
u(t)=\binom{t}{1} \quad \text { and } \quad v(t)=\binom{t^{2}}{3 t} ?
$$

2 (5 points). Let A and B be matrices whose entries are differentiable functions of the same real variable. Suppose the number of columns in A is equal to the number of rows in B. Show that

$$
(A B)^{\prime}=A^{\prime} B+A B^{\prime} .
$$

3 (10 points). Consider the matrices

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] .
$$

(a) Show that each matrix is singular.
(b) For each matrix, what are the algebraic and geometric multiplicities of 0 ?
(c) For each matrix A, find the general solution to

$$
\binom{x}{y}^{\prime}=A\binom{x}{y} .
$$

(d) Draw all three phase portraits. What do you notice?

4 (12 points). Find the general solution of

$$
\begin{align*}
& t x^{\prime}=x-2 y \\
& t y^{\prime}=3 x+y \tag{t>0}
\end{align*}
$$

by guessing solutions of the form $v t^{p}$ for some number p and vector v. What is the Wronskian?

5 (10 points). Consider the family of systems

$$
\binom{x}{y}^{\prime}=\left(\begin{array}{cc}
-1 & -1 \\
\alpha & -1
\end{array}\right)\binom{x}{y}, \quad \alpha \in \mathbb{R}
$$

Classify all solutions by their asymptotic behaviour in terms of α, with reference to stability and the nature of equilibria.

