MAT244 Homework 4

due: November 4, 2022

1 (5 points). Which solutions of $y^{(5)}=y$ vanish as $x \rightarrow \infty$?
2 (10 points). Recall that $\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)$. Solve

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+5 y^{\prime}-2 y=4 x \cosh ^{2} x
$$

by the method of undetermined coefficients.
3 (10 points). Solve

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}+y=x^{\alpha} \ln x
$$

for each real number α.
4 (10 points). Let $g(x)$ be a continuous function in a neighbourhood of $x=0$. Find a particular solution of

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=g(x)
$$

in the form $y_{p}=\int_{0}^{x} f(x-t) g(t) d t$ for some continuous function f.
5 (5 points). Consider the equation

$$
\begin{equation*}
\left(D^{2}-D+1\right) y=g(x)=x^{3}-3 x^{2}+1 \tag{1}
\end{equation*}
$$

where D is the derivative operator.
(a) What is the least power of D that annihilates g ?
(b) Formally expand

$$
\frac{1}{1-D+D^{2}}
$$

as a power series in D, up to order equal to your answer to (a).
(c) Rearrange (1) and use your answer to (b) to obtain a candidate for y.
(d) Show that your answer to (c) really is a solution to (1).

