MAT244 Homework 2

due: October 7, 2022

1 (5 points). Consider the equation $y^{\prime \prime}=-y$. Let s be a solution with $s(0)=0$ and $s^{\prime}(0)=1$, and let $c=s^{\prime}$. Without referring to trigonometry, show that $s^{2}+c^{2}=1$.
2 (5 points). Recall that the determinant of a 3 -by- 3 matrix is

$$
\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=a e i-a f h-b d i+b f g+c d h-c e g
$$

(a) If $a, b, c, d, e, f, g, h, i$ are differentiable functions of the same variable, show that

$$
\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|^{\prime}=\left|\begin{array}{ccc}
a^{\prime} & b^{\prime} & c^{\prime} \\
d & e & f \\
g & h & i
\end{array}\right|+\left|\begin{array}{ccc}
a & b & c \\
d^{\prime} & e^{\prime} & f^{\prime} \\
g & h & i
\end{array}\right|+\left|\begin{array}{ccc}
a & b & c \\
d & e & f \\
g^{\prime} & h^{\prime} & i^{\prime}
\end{array}\right| .
$$

(b) Suppose u, v, and w satisfy the equation $y^{\prime \prime \prime}=p y^{\prime \prime}+q y^{\prime}+r y$ and let $x=$ $\left|\begin{array}{ccc}u & v & w \\ u^{\prime} & v^{\prime} & w^{\prime} \\ u^{\prime \prime} & v^{\prime \prime} & w^{\prime \prime}\end{array}\right|$. Using the above, or otherwise, show that $x^{\prime}=p x$.
3 (5 points). For which p and q is $x^{p} y^{q}$ an integrating factor for the equation

$$
y^{2} d x+\left(x y-x^{3}\right) d y=0 ?
$$

4 (10 points). Consider the equation

$$
\begin{equation*}
\left(x^{2}+y^{2}+y\right) d x-x d y=0 \tag{1}
\end{equation*}
$$

(a) Show that (1) is not exact, but becomes exact upon dividing by $x^{2}+y^{2}$.
(b) Solve (1) implicitly. That is, find U such that the level curves $U(x, y)=c$ are solutions to (1).
(c) Solve (1) explicitly. That is, isolate y by rearranging your answer in (b).
(d) Check that your solution in (c) satisfies $x y^{\prime}=x^{2}+y^{2}+y$.

5 (12 points). Torricelli's principle says that the speed at which fluid exits a punctured vessel is proportional to the square root of the distance between the surface and the hole. Suppose a hemispherical bowl is filled to the brim with 21 L of Five Alive ${ }^{\mathrm{TM}}$ and then pierced at the bottom by a 1 cm thick rusty nail. Let V and y be the volume and depth, respectively, of the juice in the bowl at time t.
(a) Find a formula for $d V / d y$ using slices.
(b) Find a formula for $d V / d t$ using Torricelli's principle.
(c) Using (a) and (b), write a first-order differential equation for y in terms of t.
(d) Assuming the constant of proportionality is $4.4 \mathrm{~m}^{1 / 2} \mathrm{~s}^{-1}$, when will the juice run out? Round your answer to the nearest minute.

