MAT244 Homework 1

due: September 23, 2022

1 (5 points). Solutions to DEs come in all sorts of shapes and sizes. Show that if f is a continuous function, then

$$
y=\sin x \int_{0}^{x} f(t) \cos t d t-\cos x \int_{0}^{x} f(t) \sin t d t
$$

satisfies $y^{\prime \prime}+y=f(x)$.
2 (5 points). Recall that the determinant of a 2 -by- 2 matrix is

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

(a) If a, b, c, d are differentiable functions of the same variable, show that

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|^{\prime}=\left|\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c & d
\end{array}\right|+\left|\begin{array}{cc}
a & b \\
c^{\prime} & d^{\prime}
\end{array}\right|
$$

(b) Suppose u and v satisfy the equation $y^{\prime \prime}=p y^{\prime}+q y$ and let $w=\left|\begin{array}{cc}u & v \\ u^{\prime} & v^{\prime}\end{array}\right|$. Using the above, or otherwise, show that $w^{\prime}=p w$.
$\mathbf{3}$ (10 points). Let f be a positive continuous function and let F be an antiderivative of $1 / f$.
(a) Explain why F is invertible.
(b) Let F^{-1} be the inverse function of F and let c be an arbitrary constant. Show that $y=F^{-1}(x+c)$ satisfies $y^{\prime}=f(y)$.
(c) Using the above, or otherwise, solve the following initial value problems:
(i) $y^{\prime}=1 / y$ with $y(0)=1$.
(ii) $y^{\prime}=y+1$ with $y(0)=2$.
(iii) $y^{\prime}=e^{y}$ with $y(0)=3$.

4 (10 points). Let N be the number of atoms in a radioactive substance. By the universal law of radioactive decay, N decreases over time at a rate proportional to N 。
(a) Write a first-order linear ODE for N, denoting the (positive!) constant of proportionality by λ.
(b) Solve your ODE in terms of $N_{0}=N(0)$.
(C) 2022 University of Toronto
(c) The half-life of a radioactive substance is the time it takes for half of it to decay. What is the product of the half-life $t_{1 / 2}$ and the decay constant λ ?
(d) 0.0117% of all naturally occurring potassium is radioactive with a half-life of 1.25 billion years. Given that a standard banana contains 358 mg of potassium, if you kept one in your freezer til the sun burns out (about 5 billion years from now), how much potassium would be lost? Answer in $\mu \mathrm{g}$.

5 (12 points). A spherical raindrop evaporates at a rate proportional to its surface area.
(a) Write a first-order nonlinear ODE for the volume V of the raindrop as a function of time.
(b) Solve your ODE in terms of $V(0)=V_{0}$.
(c) Check that your answer to part (b) satisfies your equation in part (a).
(d) How does your solution behave as $t \rightarrow \infty$? Is this realistic?

