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Purpose & Main Theorems



Geometric quantization

Geometric quantization · · · a procedure to construct a representation of the
Poisson algebra of certain functions on (M, ω) to a Hilbert space, called a
quantum Hilbert space Q(M, ω) from the given symplectic manifold (M, ω) in
the geometric way

Classical mechanics Quantum mechanics

(M, ω) // Q(M, ω) : Hilbert space

f ∈ C∞(M) // Q(f ) : operator on Q(M, ω)

Q satisfies Q({f , g}) = 2π
√
−1

h {Q(f )Q(g)−Q(g)Q(f )}

Example (Canonical quantization)

(
R2n, ω0 :=

n∑
i=1

dpi ∧ dqi

)
−→ Q(R2n, ω0) := L2(Rn

q)

pi , qi ∈ C∞(R2n) −→

Q(pi ) := h
2π
√
−1

∂
∂qi

Q(qi ) := qi×
2



Kostant-Souriau theory

(M, ω) closed symplectic manifold

(L,∇L) prequantum line bundle def⇔

L→ M Hermitian line bundle

∇L connection of L with
√
−1

2π F∇L = ω

In the Kostant-Souriau theory, to obtain the quantum Hilbert space Q(M, ω),
we need a polarization.

Definition
A polarization P is an integrable Lagrangian distribution of TM ⊗ C.

• Let S be the sheaf of germs of covariant constant sections of L along P.

When a polarization P is given, Q(M, ω) is “naively" defined to be

Definition

Q(M, ω) := H0(M;S)
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Example (Kähler quantization)

(M, ω, J) closed Kähler manifold

(L, h,∇L) holomorphic Hermitian line bundle with Chern connection

⇒ T 0,1M can be taken to be a polarization P.

Definition

QKähler(M, ω) := H0(M;OL)

• When the Kodaira vanishing holds, dim QKähler(M, ω) = index of the
Dolbeault operator with coefficients in L.
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Example (Real quantization)

(L,∇L)→ (M, ω)
π→ B prequantized Lagrangian torus fiber bundle

• (L,∇L)|π−1(b) is a flat bundle for ∀b ∈ B.

Definition (Bohr-Sommerfeld (BS) point)

b ∈ B is Bohr-Sommerfeld def⇔
{

s ∈ Γ(L|π−1(b)) | ∇Ls = 0
}
6= {0}

• BS points appear discretely.
• We denote by BBS the set of BS points

Example (Local model)

(
Rn × T n × C, d − 2π

√
−1

n∑
i=1

xi dyi

)
→ (Rn × T n, ω0)

π0→ Rn ∴ Rn
BS = Zn

5



Example (Real quantization) continued

(L,∇L)→ (M, ω)
π→ B prequantized Lagrangian torus fiber bundle

⇒ The tangent bundle along the fiber TπM ⊗ C can be taken to be a
polarization P.

Assume (M, ω) is closed.

Theorem (Śniatycki)

Hq(M;S) =

⊕b∈BBS

{
s ∈ Γ(L|π−1(b)) | ∇Ls = 0

}
if q = dimR M

2

0 if q : otherwise

Definition (Real quantization)

Qreal (M, ω) := ⊕b∈BBS

{
s ∈ Γ(L|π−1(b)) | ∇

Ls = 0
}
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Does Q(M, ω) depend on a choice of polarization?

Question

QKähler(M, ω) ∼= Qreal (M, ω) ?

• Several examples show their dimensions agree with each other:

– dim QKähler(M, ω) = dim Qreal (M, ω) (Andersen ’97)
– the moment map µ of a toric manifold (Danilov ’78),

dim H0(M;OL) = #µ(M) ∩ t∗Z = #BS pts

– the Gelfand-Cetlin system on the complex flag manifold
(Guillemin-Sternberg ’83)

– the Goldman system on the moduli space of flat SU(2)-bundles
on a Riemann surface (Jeffrey-Weitsman ’92)
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QKähler ∼= Qreal as a limit of deformation of complex structures

Theorem (Baier-Florentino-Muorão-Nunes ’11)
When (M, ω) is a toric manifold, they give a one-parameter family of

• {J t}t>0 compatible complex structures of M

and for ∀t > 0

• {σt
m}m∈µ(M)∩t∗Z a basis of holomorphic sections of L→ (M, ω, J t )

such that for ∀m ∈ µ(M) ∩ t∗Z, σt
m converges to a delta-function section

supported on µ−1(m) as t →∞ in the following sense, for any section s of
L,

lim
t→∞

∫
M

〈
s,

σt
m

‖σt
m‖L1

〉
L

ωn

n!
=

∫
µ−1(m)

〈s, δm〉L dθm.

• Similar results have been obtained (but only for non-singular fibers):

– the Gelfand-Cetlin system on the complex flag manifold
(Hamilton-Konno ’14)

– smooth irreducible complex algebraic variety with certain
assumptions (Hamilton-Harada-Kaveh ’16) 8



How about the non-Kähler case?

For a non-integrable J, we have several generalizations of the Kähler
quantization. Among these is the Spinc quantization.

Theorem (Fujita-Furuta-Y ’10)

Let (L,∇L)→ (M, ω)
π→ B be a prequantized Lagrangian torus fiber bundle

with compact M. Let J be a compatible almost complex strucutre on (M, ω).
For the Spinc Dirac operator D associated with J, we have

ind D = #BS.

Purpose
To generalize BFMN apporach to the Spinc quantization.
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Spinc quantization – a generalization of the Kähler quantization

(L,∇L)→ (M, ω) closed symplectic manifold with prequantum line bundle

⇒ By taking a compatible almost complex structure J, we can obtain the
Spinc Dirac operator

D : Γ
(
∧•(T ∗M)0,1 ⊗ L

)
→ Γ

(
∧•(T ∗M)0,1 ⊗ L

)
.

• D is a 1st order, formally self-adjoint, elliptic differential operator.

Definition (Spinc quantization)

QSpinc (M, ω) := ker(D|∧0,even )− ker(D|∧0,odd ) ∈ K (pt) ∼= Z

• dim QSpinc (M, ω) = ind D depends only on ω and does not depend on
the choice of J and ∇L.

• If (M, ω, J) is Kähler (hence, (L,∇L) is holomorphic with Chern
connection), then D =

√
2(∂̄ ⊗ L + ∂̄∗ ⊗ L) and

ind D =
∑
q≥0

(−1)q dim Hq(M,OL).
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Deformation of almost complex structure

π : (M, ω)→ B: Lagrangian torus fiber bundle

J: compatible almost complex structure of (M, ω)

⇒ TM = JTπM ⊕ TπM (TπM: tangent bundle along the fiber of π)

Definition

For each t > 0, define J t by

J tv :=

 1
t Jv if v ∈ TπM

tJv if v ∈ JTπM.

• J t is still a compatible almost complex structure of (M, ω).

• Assume J is invariant along the fiber of π. Then,

J: integrable ⇔ J t : integrable ∀t > 0

• As t → +∞, TπM becomes smaller and JTπM becomes larger with
respect to gt := ω(·, J t ·). (adiabatic-type limit)

• For each t > 0, we denote by Dt the Dirac operator with respect to J t . 11



Main Theorem

(L,∇L)→ (M, ω)
π→ B: prequantized Lagrangian torus fiber bundle

J: compatible almost complex structure of (M, ω) invariant along the fiber of π

{J t}t>0: the deformation of J defined as in the previous slide

Theorem (Y ’19)

Assume M is closed and B is complete (i.e., B̃ ∼= Rn). For each t > 0, we
give orthogonal sections {ϑt

m}m∈BBS on L indexed by BBS such that

1. each ϑt
m converges to a delta-function section supported on π−1(m) as

t →∞ in the following sense, for any section s of L,

lim
t→∞

∫
M

〈
s,

ϑt
m

‖ϑt
m‖L1

〉
L

ωn

n!
=

∫
π−1(m)

〈s, δm〉L |dy |.

2. lim
t→∞
‖Dtϑt

m‖L2 = 0.

Moreover, if J is integrable, then, with a technical assumption, we can take
{ϑt

m}m∈BBS to be an orthogonal basis of holomorphic sections of
L→ (M, ω, J t ).
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Relation with Theta functions

Corollary
When π = p1 : M = T n × T n → B = T n,

ϑm(x , y) = eπ
√
−1(−m·Ωm+x·Ωx)ϑ

[
m
0

]
(−Ωx + y ,Ω) .
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Thank you for your attention!
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