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Abstract

In this paper we give the Bohr-Sommerfeld-Heisenberg quantization
of the mathematical pendulum.

1 Introduction

The Dirac’s formulation of quantum mechanics [7] can be described as a
precursor of the theory of C∗ algebras. Quantum observables are self adjoint
operators in a complex vector space of quantum states. In chapter 3 of [8]
Dirac represents quantum states as functions on the spectrum of the maxi-
mal abelian subalgebra (complete set of commuting observables). Classical
Hamiltonian mechanics may be regarded as the limit of quantum mechanics
when ~ tends to zero. There are quantum systems without classical ana-
logues.

Quantization is an attempt to find a quantum system corresponding to
a given classical system. Since there may be several different approaches,
quantization may give inequivalent results. Because quantum observables
may be represented as operators on the space of functions on the spectrum
of the maximal abelian subalgebra, the usual approach to quantization is to
identify a complete set of commuting observables and to study operators on
its spectrum.

For a completely integrable Hamiltonian system, Bohr-Sommerfeld quan-
tization [1, 12] of the action variables gives rise to a space of quantum states
and a complete set of commuting observables acting of this space of states.
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0Corrected: 21 November 2019
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Bohr-Sommerfeld theory does not provide operators of transition between
the eigenstates of operators corresponding to the actions. These transitions
are accounted for by shifting operators. Because the general theory of these
operators requires an extension of geometric quantization to locally Hamil-
tonian vector fields, which is far a field from the topic of this paper, we refer
the reader to [6]. However, we do treat a special case relevant to this paper in
the appendix. The commutation relations satisfied by the shifting operators
are the same as the commutation relations satisfied by formal quantization
of the functions e±iϑ, where ϑ is an angle in the action angle coordinates
for the integrable system. Moreover, if ϑ were a single-valued function, then
its Hamiltonian vector field Xϑ would generate a local group etXϑ of local
symplectomorphisms of the phase space preserving the Bohr-Sommerfeld po-
larization, which would lift to a local group etZϑ of local quantomorphisms.
Since the angle ϑ is a multi-valued function, etZϑ is not well defined for
t 6= nh, where h is Planck’s constant and n ∈ Z. However, the shifting op-
erators, given by e±hZϑ are well defined and correspond to the operators of
multiplication by e±iϑ. The existence of shifting operators answers Heisen-
berg’s criticism [10] of the Bohr-Sommerfeld theory.

In geometric quantization, a complete set of commuting observables cor-
responds to a polarization. For a completely integrable Hamiltonian system
with a regular foliation by Lagrangian tori, we get Bohr-Sommerfeld theory
by choosing a polarization tangent to the tori of the foliation [4]. Taking into
account the existence of shifting operators, we obtain a full geometrically
based quantum theory. We do not try to compare the results of our quanti-
zation scheme with observations. For readers who would like to compare the
energy spectra of the Schrodinger and the Bohr-Sommerfeld quantizations
of the mathematical pendulum, we provide implicit equations for the energy
spectrum in Bohr-Sommerfeld theory. In interesting completely integrable
systems [5], the foliation by tori is not regular and we have to take into
account the singularities of the polarization to obtain the Bohr-Sommerfeld
quantum spectrum.

In this paper we discuss how to treat the singularities in the mathematical
pendulum.

2 The classical mathematical pendulum

2.1 The basic setup

We consider the classical mathematical pendulum, which is a Hamiltonian
system on T ∗S1 = R × S1 = R × (R/2πZ), the cotangent bundle of the
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circle S1, with coordinates (p, α), symplectic form ω = dp ∧ dα, and 1-form
θ = p dα. The Hamiltonian of the system is

H : T ∗S1 → R : (p, α) 7→ 1
2 p

2 − cosα+ 1. (1)

The Hamiltonian vector field XH of H satisfies XH (dp ∧ dα) = −p dp−
sinα dα so that

XH(p, α) = − sinα
∂

∂p
+ p

∂

∂α
. (2)

Its integral curves are solutions of Hamilton’s equations
dp

dt
= − sinα and

dα

dt
= p. (3)

The Hamiltonian H has two critical points: one at (0, 0) with H(0, 0) = 0
and the other at (0, π) with H(0, π) = 2. These correspond to a stable
elliptic and an unstable hyperbolic equilibrium point of XH , respectively.

H
-

Figure 1. The graph of H(x,y) = 1
2 y2 � cosx+1 with (x,y) 2 [�p,p]⇥R.

2.2 Action-angle coordinates

In this subsection we find action-angle coordinates (I, ϑ) for the mathemat-
ical pendulum.

First, we introduce the action function I on T ∗S1 such that for every
connected component C(e) of the energy level H−1(e), the restriction of I
to C(e) is

I(e) = I|C(e) = 1
2π

∫
C(e)

θ = 1
2π

∫
C(e)

p dα. (4)

Before giving explicit expressions for I and ϑ we compute the Poisson bracket
{I, ϑ} as follows:

{I, ϑ} = LXϑI = 1
2π

∫
C(e)

LXϑθ = 1
2π

∫
C(e)

[Xϑ dθ + d(Xϑ θ)]
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= − 1
2π

∫
γ

dϑ = −1, (5)

since ω = dθ and C(e) is parametrized by a periodic integral curve γ of XH

of period T = T (e). We reparametrize C(e) using ϑ = 2π
T t, which is the

angle function. Because the matrix of the symplectic form ω in action angle
coordinates is ((

0 {I, ϑ}
{ϑ, I} 0

)−1
)t

=

(
0 −1
1 0

)
,

it follows that ω = dI∧dϑ. Similarly, the Poisson bracket {I,H} is computed
as follows:

{I,H} = LXH I = 1
2π

∫
C(e)

LXHθ = 1
2π

∫
C(e)

[XH dθ + d(XH θ)]

= 1
2π

∫
γ

d(−H +XH θ) = 0,

since the curve γ is closed. Thus I is constant on the integral curves of XH .
So I is constant on C(e). Consequently,

1
2π

∫
C(e)

I dϑ = 1
2π
I|C(e)

∫
γ

dϑ = I(e). (6)

We now give explicit expressions for the action I and the angle ϑ of the
mathematical pendulum. There are two cases.

Case 1. 0 < e < 2.
We denote by I0 the restriction of I to the region P0 = {(p, α) ∈ T ∗S1 |
H(p, α) < 2}. Because (0, 0) is a nondegenerate minumum of the Hamilto-
nian H with minimum value 0, for e near 0 the level set H−1(e) is diffeomor-
phic to a circle S1 and hence is connected. From the Morse isotopy lemma it
follows that for every e with 0 < e < 2 the level set H−1(e) is diffeomorphic
to a circle and hence is connected. By definition

I0(e) = 1
2π

∫
H−1(e)

p dα = 1
π

∫ α+

α−

√
2 (e− (1− cosα)) dα, (7)

where e = 1 − cosα±, which implies that α− = −α+, since cos is an even
function. Therefore

I0(e) = 4
π
e

∫ π/2

0

cos2ϕ√
1− e

2sin2ϕ
dϕ, (8)
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using the identity cosα = 1 − 2 sin2 α
2 and the change of variables sin α

2 =

sin α+

2 sinϕ. We check some limiting cases. First when e ↗ 2 we obtain
lime↗2 I0(e) = 8

π . When e ↘ 0 we find that I0(e) ∼ 4e
π

∫ π/2
0 cos2ϕdϕ = e,

which is what is given by the harmonic oscillator.

We now find the corresponding angle ϑ0. By definition

ϑ0 =
2π

T
t =

2π

T

∫ α

−α+

dα√
2(e− (1− cosα))

=
4π

T

∫ ϕ

0

1√
1− e

2sin2ϕ
dϕ,

where T = T (e) is the period of the motion of the mathematical pendulum
on H−1(e). From Hamilton’s equations it follows that

T = 4

∫ π/2

0

1√
1− e

2sin2ϕ
dϕ. (9)

Again we check some limiting cases. First, when e↗ 2 we find that T ↗∞.
So ϑ0 ↘ 0. Second, when e↘ 0 we get T ↘ 4

∫ π/2
0 dϕ = 2π. So ϑ0 ↘ 2ϕ =

α, which checks with the angle given by the harmonic oscillator.

Case 2. e > 2.
First we find the restrictions I± of I to the regions P± = {(p, α) ∈ T ∗S1 |
H(p, α) > 2, ± p > 0}. Because (0, π) is a nondegenerate critical point of
Morse index 1 of the Hamiltonian H with critical value 2, for e > 2 but near
to 2 the level set H−1(e) is diffeomorphic to the disjoint union of two circles
C±(e). By the Morse isotopy lemma it follows that for all e > 2 the level set
H−1(e) is diffeomorphic to C−(e)

∐
C+(e). By definition

I±(e) = 1
2π

∫
C±(e)

pdα = 1
π

∫ π

−π

√
2(e− (1− cosα)) dα

= 4
√
2e
π

∫ π/2

0

√
1− 2

e
sin2ϕ dϕ. (10)

We check two limiting cases. When e↘ 2, lime↘2 I±(e) = 4
π

∫ π/2
0 cosϕdϕ =

4
π
, which is one half of the action I(e) at e = 2. This is correct because as
e ↘ 2 the component C±(e) of H−1(e) converges to H−1(2) ∩ {±p ≥ 0}.
When e↗∞, we get I±(e) ∼

√
2e.

We now find the corresponding angle ϑ±. By definition

ϑ± =
2π

T±
t =

2π

T±

∫ α

−π

dα√
2(e− (1− cosα))

=
2π

T±

√
2
e

∫ ϕ

0

1√
1− 2

e sin2ϕ
dϕ.
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where T± = T±(e) is the period of the motion of the mathematical pendulum
on H−1(e). From Hamilton’s equations it follows that

T± =

∫ π

−π

dα√
2(e− (1− cosα))

=

√
2

e

∫ π/2

0

1√
1− 2

e sin2ϕ
dϕ. (11)

Again we check some limiting cases. First, when e↘ 2 we find that T± ↗∞.
So ϑ± ↘ 0. Second, when e↗∞ we get T± ∼ π√

2e
. So ϑ ∼ 4ϕ = 2α.

It follows from the above discussion that the action function I, defined by
equation (4) is continuous on [0,∞). However, I(e) is not smooth at e = 2,
see Dullin [9].

3 Elements of geometric quantization

In this section, we review the elements of geometric quantization applicable
to the mathematical pendulum following [11].

Consider a trivial complex line bundle L = C × T ∗S1 with projection map
ρ : L → T ∗S1 :

(
z, (p, α)

)
7→ (p, α) and trivializing section λ0 : T ∗S1 → L :

(p, α) 7→ (1, (p, α)). Define a connection ∇ on L by setting

∇λ0 = −i~−1θ ⊗ λ0, (12)

where ~ is Planck’s constant divided by 2π and θ = p dα is the canonical 1-
form on T ∗S1. Since ω = dθ, it follows that the curvature of the connection
∇ is −12π~ ω.

We consider the geometric quantization of the mathematical pendulum with
respect to the singular polarizationD of T ∗S1 consisting of all integral curves
of the Hamiltonan vector field XH (2)1 associated to the Hamiltonian func-
tion H (1). This means that quantum states of the mathematical pendulum
are represented by sections of the prequantization line bundle L that are
covariantly constant along D. It should be noted that this representation is
not unique. Multiplication of every section by a constant phase factor leads
to an equivalent representation. For e /∈ {0, 2}, the leaves of D are smooth
and are topological circles due to the conclusions of subsection 2.2. More-
over, this polarization has singularities consisting of the equilibrium points

1Throughout this paper we will use the shorthand mathsymbol (Number) to mean
mathsymbol given in equation (Number). For example, XH (2) means XH given in equa-
tion (2).
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(0, 0) and (0, π) of XH and two homoclinic orbits of XH , which have (0, π)
as a common boundary. Therefore, we are extending geometric quantization
to a singular polarization, which leads to the difficulties encountered here.

4 Bohr-Sommerfeld conditions

Consider an integral curve γ : R → T ∗S1 : t 7→ γ(t) =
(
p(t), α(t)

)
of the

Hamiltonian vector field XH . Suppose that e = H(γ(t)) is not 0 or 2. Then,
γ is periodic with period T 6= 0. The cases when e = 0 and e = 2 will be
discussed separately.

Let σ : T ∗S1 → L be a section of the prequantization line bundle that is
covariantly constant along D. Then γ∗σ : R→ L is a horizontal lift of γ to
L. γ∗σ is periodic with period T if either the restriction of the connection
∇ to the image of γ has trivial holonomy group, or σ restricted to the image
of γ is identically zero.

Theorem 4.1 Let γ : [0, T ]→ T ∗S1 be a periodic integral curve of XH with
period T 6= 0. The holonomy group of ∇, restricted to the image im γ of γ,
is trivial if and only if the action integral

Iγ = I|im γ = 1
2π

∫ T

0
γ∗θ dt = n~, (13)

for some n ∈ Z.
Proof. Consider an integral curve γ : R → T ∗S1 : t 7→ γ(t) =

(
p(t), α(t)

)
of the Hamiltonian vector field XH . It satisfies Hamilton’s equations (3).
Suppose that e = H(γ(t)) ∈ (0, 2). Then, the curve γ is periodic with
period T , see (9). Let

γ̃ : [0, T ]→ L : t 7→
(
z(γ(t)), γ(t)

)
= z(γ(t))λ0(γ(t))

be a horizontal lift of γ. Then the covariant derivative D
dt γ̃(t) of γ̃ must

vanish. Equation (12) implies that

D

dt
γ̃(t) =

D

dt

(
z(γ(t))λ0(γ(t))

)
=

dz

dt
λ0(γ(t))− i~−1z〈θ | XH〉(γ(t))λ0(γ(t))

=
(dz

dt
− i~−1z

〈
p dα | − sinα

∂

∂p
+ p

∂

∂α

〉)
λ0(γ(t))
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=
(dz

dt
− i~−1p(t)2 z

)
λ0(γ(t)),

where 1
2 p(t)

2 − cosα(t) + 1 = e. Hence, p(t) = ±
√

2(e− (1− cosα(t))).
Because dz

dt = dz
dα

dα
dt = dz

dα p, the curve γ̃ is horizontal (= covariantly constant)
if dz

dα p(t)− i~−1p(t)2z = p(t)
(
dz
dα − i~−1p(t)z

)
= 0, that is,

−i~ 1

z

dz

dα
= ±

√
2(e− (1− cosα)). (14)

Here the + sign corresponds to α ∈ [0, α+] and the − sign corresponds to
α ∈ [α−, 0] = [−α+, 0]. Integrating (14) from α− to α+ and using the fact
that cos is an even function, we get

−i~ ln

(
z(α+)

z(α−)

)
= 2

∫ α+

α−

√
2(e− (1− cosα)) dα = 2πI(e)

by equation (6). The horizontal lift γ̃ of the closed curve γ is a closed curve
in the line bundle L if and only if z(α+) = z(α−). Since ln is a multivalued
function and ln 1 = 2πni, it follows that γ̃ is a closed curve in L if and only
if we have I|C(e) = n~.

For e > 2, we have H−1(e) = C−(e) q C+(e), and there are integral curves
γ− and γ+ of XH such that where C−(e) is the image of γ− and C+(e) are
image of γ+. The same argument as in the preceding paragraph shows that
the horizontal lift γ̃− of γ− is a closed curve in L if and only if I−(e) = m−~,
where m− is an integer. Similarly, the horizontal lift γ̃+ of γ+ is a closed
curve in L if and only if I+(e) = m+~, where m+ is an integer. Since
I−(e) = I+(e), it follows that m− = m+. Moreover, I−(e) = I|C−(e) and
I+(e) = I|C+(e).

Equation (13) gives the Bohr-Sommerfeld conditions discussed in the
introduction. The action integral is independent of the parametrization of γ
within its orientation class. However, the change of orientation of γ would
lead to the change from n to −n. Therefore, the Bohr-Sommerfeld condition
(13) depends only on the image of γ. In the following, we shall refer to
the image an integral curve γ of XH that satisfies equation (13) as a Bohr-
Sommerfeld torus. The integer n on the right hand side of equation (13)
is called the quantum number of the corresponding Bohr-Sommerfeld torus.
Since integral curves of XH preserve the Hamiltonian H, we may rewrite
equation (13) in the form

I|C(e) = 1
2π

∫
C(e)

p dα = n~, (15)
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where C(e) is a connected component of the energy level H−1(e). Thus,
Bohr-Sommerfeld conditions (13) impose conditions on the energy. The set
of values of the energy allowed by Bohr-Sommerfeld conditions is interpreted
as the quantum energy spectrum of the system.

From the discussion preceding theorem 4 it follows that a section σ of the
prequantum line bundle, which is covariantly constant along D, has support
contained in the union of Bohr-Sommerfeld tori and the energy levels H−1(0)
and H−1(2). Since H−1(0) is a critical point, the restriction of σ to H−1(0)
is the value of σ at H−1(0) which is not restricted by the condition that
σ is covariantly constant along D. So we may allow the value e = 0 in
equation (15). On the one hand, we consider H−1(0) as a (singular) Bohr-
Sommerfeld torus corresponding to the quantum number n = 0. On the
other hand, we assume that the singular level set H−1(2) is not a (singular)
Bohr-Sommerfeld torus.

Since a section of theprequantization line bundle that is covariantly con-
stant along D has its support in the union of Bohr-Sommerfeld tori, which
has empty interior, such sections can be smooth only in the sense of distri-
butions. Therefore, we adopt the following definition.

Definition 4.2 A quantum state of the mathematical pendulum is a section σ
of the prequantization line bundle ρ, whose support lies in the union of Bohr-
Sommerfeld tori such that for each Bohr-Sommerfeld torus C the restriction
σ|C of σ to C is a smooth covariantly constant section of ρ|C .
Let H be the space of quantum states of the mathematical pendulum. For
each Bohr-Sommerfeld torus C, we choose a non-vanishing smooth covari-
antly constant section σ of L|C . The family {σ|C} is a basis of H, which we
shall refer to as a Bohr-Sommerfeld basis. Give H a hermitian scalar product
(· | ·) so that the Bohr-Sommerfeld basis {σ|C} is orthonormal. Thus, we
have obtained a vector space structure on the space of states of the mathe-
matical pendulum. Note that this structure is not uniquely determined by
the geometry of the classical phase space. We have the freedom of multiply-
ing each basis vector σ|C by a nonzero complex number.

Definition 4.3 A function f ∈ C∞(T ∗S1) is Bohr-Sommerfeld quantizable
if it is constant on Bohr-Sommerfeld tori. Bohr-Sommerfeld quantization
assigns to a quantizable function f a linear operator Qf on H such that, for
each Bohr-Sommerfeld torus C

Qfσ|C = f|C σ|C . (16)

9



Observe that the operators Qf corresponding to Bohr-Sommerfeld quan-
tizable functions f are diagonal in the Bohr-Sommerfeld basis. Since the
Bohr-Sommerfeld tori are closed and mutually disjoint, for any function
C 7→ λC on the collection of Bohr-Sommerfeld tori, there exists a func-
tion f ∈ C∞(T ∗S1) such that f|C = λC . Thus, each basis vector σ|C is an
eigenvector of the operator Qf corresponding to an eigenvalue λC .

5 Quantization away from the singularity

5.1 Structure of the Bohr-Sommerfeld basis

We now study of the structure of the Bohr-Sommerfeld basis {σ|C}.
The energy level H−1(2) divides T ∗S1 into three open subsets: P0 =

{(p, α) | H(p, α) < 2} and P∓ = {(p, α) | H(p, α) > 2 and ∓ p > 0}. Let H0

be the subspace of H consisting of sections with support in P0. Similarly, let
H∓ be the subspaces of H consisting of sections with support in P∓. Then
H = H0 ⊕ H− ⊕ H+ and {σ|C}0,± = {σ|C C ⊆ P0,±} are bases of H0, H+,
and H−, respectively.

A Bohr-Sommerfeld torus in P0 can be labelled by its quantum number
n = 0, . . . , N , where N is the largest nonnegative integer such that N~ <
I(2). Thus {σ|C}0 = {σ00, . . . , σ0N}, where the subscript n = 0, . . . , N is
the quantum number of the state σ0n and the superscript 0 reminds us that
σ0n lies in H0. Similarly a Bohr-Sommerfeld torus in P± can be labeled by
it quantum number m ≥ M , where 2M is the smallest even nonnegative
integer greater than or equal to N + 1. In other words,

M = min{m ∈ Z>0 2m ≥ N + 1} =

{
1
2 (N + 2), if N is even
1
2 (N + 1), if N is odd.

(17)

Hence the Bohr-Sommerfeld basis of H± is {σ|C}± = {σ±m, m ≥M}, where
the subscriptm is the quantum number of the state σ±m in H±. SinceN < 2M
the basis {σC} of H has the lattice structure

σ00 � σ01 � · · ·� σ0N
↗↙ σ+M � σ+M+1 � · · ·
↘↖ σ−M � σ−M+1 � · · ·

(18)

The structure of the Bohr-Sommerfeld set can be used to study the energy
spectrum of the mathematical pendulum, which consists of values of en such
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that a connected component C(en) of the energy level H−1(en) satisfies
Bohr-Sommerfeld conditions

1

2π

∫
C(en)

pdα = n~

for some integer n. See the discussion following equation (12). The part of
energy spectrum contained in the interval interval [0, 2] is simple, and it can
be obtained by solving for en equation

n~ =
4

π
en

∫ π/2

0

cos2 ϕ√
1− en

2 sin2 ϕ
dϕ,

where 0 ≤ n ≤ N , and N is the largest positive integer such that eN < 2. We
have assumed that e = 2 is not in the energy spectrum of the mathematical
pendulum. For e > 2, The part of the energy spectrum contained in the half
line [2,∞) can be obtained by solving for em the equation

m~ =
1

π

∫ π

−π

√
2 (em − (1− cosα)dα,

where 2m ≥ N + 1 ensures that em > 2. In this range, each eigenspace is
2-dimensional.

5.2 Transitions between quantum states

In this subsection we discuss the transitions between quantum states given
by the horizontal arrows in diagram (18). The transitions from σ0N to σ±M
given by slanted arrows in diagram (18) involve crossing the energy level
2, where the action I is continuous but not differentiable. This requires
understanding the Z2 symmetry of the mathematical pendulum, which will
be treated in the next section.

In diagram (18) transitions involving the right pointing horizontal arrows
correspond to the action of an operator b on H such that

bσ0n = σ0n+1, for n = 0, 1, . . . , N − 1 (19)

and
bσ±m = σ±m+1, for m = M,M + 1, . . .. (20)

We refer to b as the raising operator on H. Transitions involving the left
pointing horizontal arrows give rise to the lowering operator a such that

aσ0n = σ0n−1, for n = 1, . . . , N (21)
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and
aσ±m = σ±m−1, for m = M + 1, . . .. (22)

Since σ00 is the lowest point in the lattice, we require that

aσ00 = 0. (23)

Thus in diagram (18) the lowering operator a corresponds to left pointing
horizontal arrows, while the raising operator b corresponds to right pointing
horizontal arrows.2 In order to interpret the slanted arrows in the diagram
we need to discuss the Z2 symmetry of the mathematical pendulum. The
shifting operators a and b will be constructed by lifting the shifting opera-
tor in the Z2-reduced quantum system. In the appendix we construct this
shifting operator using geometric quantization.

In order to identify the function whose quantization might lead to the
operator b we extend Dirac’s quantization rule

[Qf1 ,Qf2 ] = i~Q{f1,f2} (24)

to complex valued functions. Action angle coordinates (I, ϑ) on P0∪P+∪P−
restrict to action angle coordinates (I0, ϑ0) on (P0, ω|P0) and (I±, ϑ±) on
(P±, ω|P±), respectively. The latter action angle coordinates have been com-
puted in section 2.2. They satisfy the Poisson bracket relations {I0, ϑ0} = −1
and {I±, ϑ±} = −1 on P0 and P±, respectively. Therefore

{I0, eiϑ0} = −ieiϑ0 and {I±, eiϑ±} = −ieiϑ± . (25)

If we introduce the quantum operator Qeiϑ on H, equations (24) and (25)
imply

[QI0 ,Qeiϑ0 ] = −i~Qeiϑ0 and [QI± ,Qeiϑ± ] = −i~Qeiϑ± . (26)

On the other hand, equation (16) yields

QI0σ
0
n = n~σ0n, for n = 0, 1, . . . , N (27)

and
QI±σ

±
m = m~σ±m, for m = M,M + 1, . . . (28)

2For small positive quantum numbers, when the value of e is slightly above zero, the
mathematical pendulum is well approximated by the 1-dimensional harmonic oscillator.
In this situation the shifting operators a and b are well appoximated by the classical
raising and lowering operators of the harmonic oscillator. We do not discuss the complex
analytic nature of this approximation.
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Equations (19) and (20) imply that the operator b and the quantized actions
satisfy the commutation relations

[QI0 ,b]σ0n = −i~bσ0n and [QI± ,b]σ±m = −i~bσ±m (29)

for n = 0, 1, . . . , N − 1 and m = M,M + 1, . . ., respectively. Comparing
equations (26) and (29) shows that the raising operator b defined in equations
(19) and (20) satisfy the same commutation relations as the operator Qeiϑ .

It is of interest to see to what degree the raising and the lowering opera-
tors on H correspond to quantization of classical functions on P = P0∪P−∪
P+. Their restrictions to the subspaces H0, H− and H+ of H with supports in
H0, H− and H+, respectively, can be related to quantization of the functions
e±iϑ0 , e±iϑ− , and e±iϑ− on P0, P+ and P−, respectively.

Choose the basic sections of basic sections {σ0n}
N
n=1 in H0 so that eiϑ0σ0n =

aσ0n+1 for all 1 ≤ n ≤ N . Because b0 ◦a0 σ
0
n = σ0n for all 1 ≤ n ≤ N ,

it follows that the restriction b0 of the raising operator b to H0 may be
interpreted as the operator Qeiϑ0 , which sends σ0n into eiϑ0σ0n for 1 ≤ n ≤
N . Similarly, the restriction b∓ of the raising operator b to H− may be
interpreted as the operator Qeiϑ− of multiplication by eiϑ0,∓ . In other words,
b− = Qeiϑ− . Similarly, b+ = Qeiϑ+ , is the restriction of the raising operator
b to H+. On the other hand, the restriction b0 of the raising operator b to
H0 agrees with eiϑ0 except on σ0n because bσ0n is not in H0. In the same way,
the lowering operators a0, a−, and a+ may be interpreted in terms of the
multiplication operators Qeiϑ0 , Qeiϑ− , and Qeiϑ+ , respectively.

6 The Z2-symmetry

The mathematical pendulum (H,T ∗S1, ω) has a Z2-symmetry generated by

ζ : T ∗S1 → T ∗S1 : (p, α) 7→ (−p,−α), (30)

because the Hamiltonian H (1) and the symplectic form ω = dp ∧ dα are
invariant. In more detail, for every (p, α) ∈ T ∗S1 we have (ζ∗H)(p, α) =
H(−p,−α) = H(p, α). So H is invariant. Also the 1-form θ = pdα is
invariant, because (ζ∗θ)(p, α) = (−p)d(−α) = θ(p, α). This implies that the
2-form ω is invariant, because ζ∗ω = ζ∗(dθ) = d (ζ∗θ) = ω.

The quantized mathematical pendulum (H,T ∗S1, ω) has quantum line
bundle

ρ : L = C× T ∗S1 → T ∗S1 :
(
z, (p, α)

)
7→ (p, α) (31)
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with covariant derivative ∇ = −i~θ ⊗ λ0, where λ0 : T ∗S1 → L : (p, α) 7→(
1, (p, α)

)
is a section, which trivializes the bundle ρ. The bundle space L

has a Z2-symmetry generated by the mapping

µ : L→ L :
(
z, (p, α)

)
7→
(
z, (−p,−α)

)
. (32)

The mapping µ covers the Z2-symmetry of the mathematical pendulum gen-
erated by ζ (30), since ρ ◦µ = ζ ◦ρ.

6.1 The Z2-symmetric quantum system

Consider the Z2-symmetry on L generated by the mapping µ (32). The
Z2-symmetric quantized system is the mathematical pendulum with Z2-
symmetry generated by ζ (30) and quantum line bundle ρ (31) having the
Z2-symmetry generated by µ (32).

Let Γ(ρ) be the vector space of smooth sections of the bundle ρ.

Lemma 6.1.1 The Z2 action on L generated by the mapping µ (32) induces
a Z2-action on Γ(ρ) generated by the linear map

µ∗ : Γ(ρ)→ Γ(ρ) : σ 7→ µ∗(σ) = µ−1 ◦σ ◦ζ. (33)

Proof. Let σ : T ∗S1 → L : (p, α) 7→
(
z(p, α), (p, α)

)
be a smooth section of

the bundle ρ. Then

(µ∗σ)(p, α) = µ−1
(
z
(
ζ(p, α)

)
, ζ(p, α)

)
=
(
z(ζ(p, α)), (p, α)

)
(34)

is a section of the bundle ρ. So

µ∗
(
µ∗(σ)

)
(p, α) =

(
z(ζ2(p, α)), (p, α)

)
= σ(p, α),

that is, (µ∗)2σ = σ.

The mapping ζ : T ∗S1 → T ∗S1 (30) acts on the set of all Bohr-Sommerfeld
tori. Hence it induces an operator

P : H→ H : σ|C 7→ µ∗(σ|C), (35)

which we call the parity operator. Since the mapping µ (32) generates a
Z2-action on L, it follows that µ∗ (33) generates a representation of Z2 on H.
From the fact that the Hamiltonian H (1) is invariant under the Z2-action
on T ∗S1, we get [QH ,P] = 0. Moreover,
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Lemma 6.1.2 The maps

P0,± = P|H0,± : H0,± → H0,∓

are bijective involutions, which implies P−10 = P0 and P−1± = P∓.
Proof. Recall that if σ ∈ Γ(ρ), then σ = fλ0 for some smooth function
f on T ∗S1. The support suppσ of σ is the support supp f of the func-
tion f , which is {(p, α) ∈ T ∗S1 f(p, α) 6= 0}. Suppose that σ|C0,±(e) =
z0,±(p, α)λ0(p, α) ∈ H0,±. Then suppσ|C0,±(e) = C0,±(e). From (34) we get(
P0,±(σ|C0,±(e))

)
(p, α) = z0,±(ζ(p, α))λ0(p, α). So we obtain

(p, α) ∈ suppP0,±(σ|C0,±(e)) if and only if ζ(p, α) ∈ supp z0,± = C0,±(e)

if and only if (p, α) ∈ ζ
(
C0,±(e)

)
= C0,∓(e). So P0,±(σ|C0,±(e)) ∈ H0,∓. Thus

P0,± maps H0,± onto H0,∓. From(
P2

0,±σ|C0,±(e)

)
(p, α) = z0,±

(
ζ2(p, α)

)
λ0(p, α)

= z0,±(p, α)λ0(p, α) = σ|C0,±(e)(p, α)

we get P2
0,± = id|H0,± . The operator P0,± is injective, for if P0,±(σ|C0,±(e))

= P0,±(σ′|C0,±(e)), then

σ|C0,±(e) = P2
0,±(σ|C0,±(e)) = P2

0,±(σ′|C0,±(e)) = σ′|C0,±(e).

Thus the operator P0,± is bijective. Since P2
0,± = idH± , it follows that

P−10 = P0 and P−1± = P∓.

We say that a quantum state σ|C of the Z2-quantized mathematical pen-
dulum (H,T ∗S1, ω) with quantum line bundle ρ is even if it is covariantly
constant even section σ|C of ρ, that is, P(σ|C) = σ|C . Let Heven be the vec-
tor space spanned by the even quantum states. σ|C is an odd quantum state
if it is covariantly constant odd section σ|C of ρ, that is, P(σ|C) = −σ|C .
Let Hodd be the vector space spanned by the odd quantum states.

Claim 6.1.3 We have
H = Heven ⊕ Hodd. (36)

Proof. The proof of this claim is standard, but we include it for complete-
ness. Suppose that the section σ|C is in H. Then P(σ|C) ∈ H. So the
sections σeven|C = 1

2

(
σ|C +P(σ|C)

)
and σodd|C = 1

2

(
σ|C −P(σ|C)

)
lie in H

and σ|C = σeven|C + σodd|C . Now σeven|C ∈ Heven, because it is covariantly
constant, has support C, and is an even section, since

P(σeven|C) = 1
2

(
P(σ|C) + P2(σ|C)

)
= 1

2

(
σ|C + P(σ|C)

)
= σeven|C .
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Similarly, σodd|C ∈ Hodd. Thus H = Heven + Hodd. The preceding sum is
direct since Heven ∩ Hodd = {0}. For if σ|C ∈ Heven ∩ Hodd, then σ|C =
P(σ|C) = −σ|C , which implies σ|C = 0.

Theorem 6.1.4 Let σ|C be a nonzero even or odd quantum state in Heven ∩
H0 or Hodd ∩ H0, respectively. Then its quantum number is even or odd,
respectively.

Proof. Write σ(p, α) = z(p, α)λ0 for (p, α) ∈ T×S1 = T ∗S1 \{(0, 0), (0, π)},
where z(p, α) = εz(−p,−α) with ε = 1 if σ is even and ε = −1 if σ is odd.
Note that z|C is nowhere vanishing, for if it vanished at some point in C then
it would be identically zero on C, since σ|C is covariantly constant. But this
contradicts our hypothesis. Because σ|C ∈ H0 by hypothesis, it follows that
C = C(e) = (H×)−1(e), where H× = H|T×S1 and 0 < e < 2.

Let γ be a closed curve in T×S1, which parametrizes C. The image of γ
is {(p, α) ∈ T×S1 1

2 p
2 − cosα+ 1 = e}, which is clearly invariant under the

Z2-action generated by ζ (30). Setting p = 0 we get 1 − cosα = e, which
has a solution α+ ∈ [0, π] and another solution α− = −α+. Thus we can
parametrize γ by α, say γ(α) =

(
p(α), α

)
for α ∈ [−α+, α+]. Let

ρ× : L× = C× T×S1 → T×S1 :
(
z, (p, α)

)
7→ (p, α)

be the quantum line bundle with covariant derivative ∇× = ∇|Γ(ρ×). Let
γ̃ be the horizontal lift of γ. Parametrize the image of γ̃ by α, namely,
γ̃(α) =

(
z(p(α), α), (p(α), α)

)
for α ∈ [−α+, α+]. So γ̃ is a section of L×.

Suppose that for some α0 ∈ [−α+, α+] we have z
(
γ(−α0)

)
= εz

(
γ(α0)

)
,

where ε = ±1. Then z
(
γ(−α0)

)
6= 0, since σ|C is nowhere zero. Because

γ̃ is the horizontal lift of γ, using the covariant derivative ∇×, integrating
equation (14) we get

−i ~
2π

ln
z(γ(α0))

z(γ(−α0))
=

2

2π

∫ α0

−α0

√
2(e− (1− cosα)) dα

=

{
2m~, if ε = 1

(2m− 1)~, if ε = −1
(37)

for some positive integer m. The last equality in (37) follows because the
hypothesis z

(
γ(−α0)

)
= εz

(
γ(α0)

)
implies that

ln
z(γ(α0))

z(γ(−α0))
= ln ε =

{
2mπi, if ε = 1

(2m− 1)πi, if ε = −1
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for some integer m. Since
√

2(e− (1− cosα)) > 0 on (−α0, α0), we see
that m > 0. From the fact that the Bohr-Sommerfeld torus C = C(e) =
(H×)−1(e) has quantum number n, that is,

2

2π

∫ α+

−α+

√
2(e− (1− cosα)) dα = n~

and
√

2(e− (1− cosα)) > 0 on (−α+, α+), we obtain
{

0 ≤ 2m ≤ n, if ε = 1
0 ≤ 2m− 1 ≤ n, if ε = −1.

We now show that {
n = 2m, if ε = 1
n = 2m− 1, if ε = −1.

(38)

Consider the function

F (α0) =
1

2π

∫ α0

−α0

√
2(e− (1− cosα)) dα.

For α0 = 0 we get F (0) = 0; while for α0 = α+, we get F (α+) = n~. By
continuity, for every 0 ≤ k ≤ n there is an angle αk ∈ [0, α+] such that
F (αk) = k~. Hence (38) holds.

Corollary 6.1.5 Let σ|C be a nonzero even or odd quantum state in Heven∩
H0 or Hodd∩H0, respectively. Then the quantum number of σ|C is the number
of Z2-orbits of ε µ (32) on the image of the horizontal lift of the curve γ, which
parametrizes C.

Proof. Suppose that for some α0 ∈ [−α+, α+] we have γ̃(−α0) = εµ
(
γ̃(α0)

)
.

Then z
(
γ(−α0)

)
= εz

(
γ(α0)

)
. Repeating the argument of theorem 8 which

proves equations (37) and (38) shows that the quantum number n of the
Bohr-Sommerfeld torus C = (H×)−1(e) is equal to the number of αk ∈
[0, α+] such that z

(
γ(αk)

)
= εz

(
γ(−αk)

)
. In other words, n is the number

of Z2 orbits of ε µ on the image of γ̃.

It follows from lemma 6.1.2 that the operators P± enable us to go from
H+ to H− and back. Thus they play the role of shifting operators. In partic-
ular {P+σ

+
m}m≥M is a basis of H−. Because the parity operator P induces a

Z2-symmetry on the Hilbert space H, by averaging the given inner product,
we may assume that the parity operator P preserves the new inner prod-
uct on H. In order to simplify the presentations we choose the orthonormal
bases {σ±m} of H± so that P±σ

±
m = σ∓m. In order to construct operators

relating H0 to H± we need to show that reduction of the Z2-symmetry of the
mathematical pendulum gives rise to the quantized Z2-reduced mathematical
pendulum.
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6.2 Z2-quantization and reduction

In this subsection discuss quantization of the Z2-reduced mathematical pen-
dulum.

6.2.1 Reduction of the Z2-symmetry

Here we reduce the Z2-symmetry of the mathematical pendulum (H,T ∗S1, ω)
generated by ζ (30).

First we determine the reduced phase space P̃ , which is the space T ∗S1/Z2

of orbits of the Z2-symmetry on T ∗S1. To start with we use cut and paste
geometric methods to construct the Z2-orbit space. Recall that a connected
subset ∆ of T ∗S1 is a fundamental domain for the Z2-symmetry generated
by ζ (30), if it contains exactly one point of each Z2-orbit in T ∗S1.

Claim 6.2.1 The set ∆ = {(p, α) ∈ T ∗S1 p > 0 or p = 0 &α ∈ [0, π]} is a
fundamental domain for the Z2-action generated by ζ.

Proof. Clearly ∆ is connected. Let (p, α) ∈ T ∗S1 \∆. If p 6= 0, then p < 0.
So ζ(p, α) = (−p,−α) ∈ ∆. Suppose that p = 0 and α ∈ (π, 2π). Then
−α ∈ (0, π). So ζ(0, α) = (0,−α) ∈ ∆. Hence ζ(T ∗S1 \ ∆) ⊆ ∆, which
implies T ∗S1 \∆ = ζ

(
ζ
(
T ∗S1 \∆

))
⊆ ζ(∆). Consequently,

T ∗S1 = (T ∗S1 \∆) ∪∆ ⊆ ζ(∆) ∪∆ ⊆ T ∗S1,

that is, ζ(∆) ∪∆ = T ∗S1. Note that ∆ ∩ ζ(∆) = {(0, 0), (0, π)}, which are
the fixed points of the Z2-action.

Look at the closure ∆ of ∆ in T ∗S1 and identify the points on the boundary
of ∆, which lie on the same Z2-orbit. The resulting space is a model for the
orbit space T ∗S1/Z2.

We now give another construction for the reduced phase space using
invariant theory and the concept of a differential space, see [2]. The algebra
of real analytic functions on T ∗S1, which are invariant under the symmetry
group Z2, is generated by

τ1 = cosα, τ2 = p sinα, τ3 = 1
2 p

2 − cosα+ 1. (39)

These invariant functions are subject to the relation

C(τ) = 1
2 τ

2
2 − (τ3 + τ1 − 1)(1− τ21 ) = 0, |τ1| ≤ 1 & τ3 ≥ 0, (40)

which defines the Z2-orbit space P̃ = T ∗S1/Z2 as a semialgebraic variety
in R3 with coordinates τ = (τ1, τ2, τ3). We say that a function f on P̃
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is smooth if there is a smooth function F on R3 such that f = F |
P̃
. Let

t1

t2

t3

Figure 2. The Z2-reduced space in R3.

C∞(P̃ ) be the space of smooth functions on P̃ . Then
(
P̃ , C∞(P̃ )

)
is a locally

compact subcartesian differential space, because P̃ is a semialgebraic.

Next we construct the reduced Hamiltonian. Since the Hamiltonian H of
the mathematical pendulum is invariant under the Z2-symmetry, it induces a
smooth function H̃ on P̃ given by restricting the smooth function τ3 : R3 →
R : τ 7→ τ3 to P̃ .

In order to have dynamics on P̃ , we first need a Poisson bracket { , }R3

on C∞(R3). A calculation using the Poisson bracket { , } on P shows that

{τ1, τ2} = τ21 − 1 =
∂C

∂τ3

{τ2, τ3} = 2τ1(τ3 + τ1 − 1) + τ21 − 1 =
∂C

∂τ1

{τ3, τ1} = τ2 =
∂C

∂τ2

For every F , G ∈ C∞(R3) let

{F,G}R3 =
∑
i,j

∂F

∂τi

∂G

∂τj
{τi, τj} = 〈gradF × gradG, gradC〉, (41)

Here 〈 , 〉 is the Euclidean inner product on R3 and × is the vector product.
Then { , }R3 is a Poisson bracket on C∞(R3). On C∞(P̃ ) define a Poisson
bracket { , }

P̃
as follows. Suppose that f, g ∈ C∞(P̃ ). Then there are

F,G ∈ C∞(R3) such that f = F |
P̃
and g = G|

P̃
. Let {f, g}

P̃
= {F,G}R3 |P̃ .

Because of (41), the defining function C (40) of P̃ is a Casimir in the Poisson
algebra A =

(
C∞(R3), { , }R3 , ·

)
. Hence, the collection I of all smooth

functions on R3, which vanish identically on P̃ , is a Poisson ideal in A.
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Consequently, the Poisson bracket { , }
P̃

is well defined and B = A/I =(
C∞(P̃ ) = C∞(R3)|I, { , }

P̃
, ·
)
is a Poisson algebra.

Consider the derivation −adτ3 on the Poisson algebra A. This derivation
gives rise to the Z2-reduced Hamiltonian vector field −ad

H̃
on the locally

compact subcartesian differential space (P̃ , C∞(P̃ )) associated to the Z2-
reduced Hamiltonian H̃. To see this note that on R3 the integral curves of
−adτ3 satisfy

τ̇1 = {τ1, τ3}R3 = −τ2
τ̇2 = {τ2, τ3}R3 = 2τ1(τ3 + τ1 − 1) + τ21 − 1

τ̇3 = {τ3, τ3}R3 = 0.

Because C is a Casimir of the Poisson algebra A, we obtain 0 = {C, τ3}R3 .
In other words, C is an integral of −adτ3 . A calculation shows that −adτ3
leaves the sets C−1(0), {τ3 + τ1−1 = 0}, and {τ1 = ±1} invariant. Thus the
Z2-reduced space P̃ is invariant under the flow of −adτ3 . Consequently, the
Z2-reduced Hamiltonian vector field −ad

H̃
, where H̃ = τ3|P̃ , is defined on

P̃ . Because the Hamiltonian vector field XH of the mathematical pendulum
is complete, the reduced vector field −ad

H̃
is complete. Its flow ϕH̃t is a

1-parameter group of diffeomorphisms of P̃ . In fact, for p̃ ∈ H̃−1(e) the
closure of the integral curve t 7→ ϕH̃t (p̃) is a connected component of the
level set H̃−1(e), since a level set of the reduced Hamiltonian H̃ is compact.

We now take a closer look at the Z2-reduction mapping

π̃ : T ∗S1 → P̃ ⊆ R3 : (p, α) 7→ τ(p, α). (42)

The Z2-action on T ∗S1 has two fixed points: p0 = (0, 0) and p2 = (0, π). So
the reduced space P̃ has two singular points p̃0 = (1, 0, 0) and p̃2 = (−1, 0, 2),
which are conical. The set P̃× of nonsingular points of P̃ is P̃ \{p̃0, p̃2}, which
is a smooth manifold that is diffeomorphic to R2 \ {(±1, 0)}. The Z2-orbit
map π̃ (42) restricted to T×S1 = T ∗S1 \ {p0, p2} is the proper submersion

π̃× : T×S1 → P̃× : (p, α) 7→ τ(p, α), (43)

whose fiber (π̃×)−1(τ) at τ ∈ P̃ is two distinct points. Thus we have proved

Lemma 6.2.2 The Z2-orbit map π̃× (43) is a 2 to 1 covering map.

The 1-form θ× = θ|T×S1 = (p dα)|T×S1 on T×S1 is invariant under the
Z2-action, since T×S1 is a smooth Z2-invariant manifold. Hence θ× pushes
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down under the Z2-orbit map π̃× (43) to a 1-form θ̃× on the smooth manifold
P̃×. So (π̃×)∗θ̃× = θ×. Here are explicit expressions for the 1-form θ̃×.

Claim 6.2.3 On Ũ1 = P̃× \ {τ1 = ±1} we have θ̃×|Ũ1 = −τ2(1− τ21 )−1 dτ1;
while on Ũ2 = P̃× \ ({τ1 = 0} ∪ {τ3 + τ1 − 1 = 0}) we have θ̃×|Ũ2 =(
2(τ3 + τ1− 1)dτ2− τ2dτ1− τ2dτ3

)(
2τ1(τ3 + τ1− 1)

)−1. Note P̃× = Ũ1 ∪ Ũ2.

Proof. On U1 = T×S1 \ {(p,±π) ∈ T×S1 p ∈ R×} we have

(π̃×)∗(θ̃×|Ũ1) = − p sinα

1− cos2α
d(cosα) = (pdα)|U1 = θ×|U1;

while on U2 = T×S1 \ {(p,±π/2) ∈ T×S1 p ∈ R×} ∪ {(0, α) ∈ T×S1} we
have

(π̃×)∗(θ̃×|Ũ2) =

(
p2d(p sinα)− p sinα d(cosα)− p sinα(p dp− d(cosα))

)
p2 cosα

= (pdα)|U2 = θ×|U2.

Note that for i = 1, 2 we have (π̃×)−1(Ũi) = Ui and T×S1 = U1 ∪ U2.

Because the 2-form ω = dθ on T ∗S1 is invariant under the Z2-symmetry
generated by ζ (30), the 2-form ω× = ω|T×S1 = d(θ|T×S1) = dθ× on T×S1

is Z2-invariant. Hence ω× pushes down to a 2-form ω̃× on the Z2-reduced
space P̃×. Now

(π̃×)∗(dθ×) = d((π̃×)∗θ̃×) = dθ× = ω× = (π̃×)∗ω̃×.

Since π̃∗ is surjective, we obtain ω̃× = dθ̃×. Thus the punctured Z2-reduced
space P̃× is a symplectic manifold with symplectic form ω̃× = dθ̃×.

We now compute the Z2-reduced actions. On P̃× \{τ1 = ±1} the 1-form
θ̃× is −τ2(1 − τ21 )−1 dτ1, where τ2 = ∓

√
2(τ3 + τ1 − 1)(1− τ21 ). So θ̃× =

±
√

2(τ3+τ1−1)
1−τ21

dτ1. The Z2-reduced Hamiltonian on P̃× is H̃× = H̃|P̃×.
Consequently, the reduced action Ĩ× : (0, 2) ∪ (2,∞) → R on a connected
component C̃(e) of the level set (H̃×)−1(e) is

Ĩ×(e) =
1

2π

∫
C̃(e)

θ̃× =
1

π

∫ 1

max(1−e,−1)

√
2(e+ τ1 − 1)√

1− τ21
dτ1, (44)

when 0 < e < 2 or e > 2. We now calculate the integral in (44). First we
consider the case when 0 < e < 2. Letting u2 = τ1 − (1− e), u =

√
ev, and

then v = cosϕ, we get successively

Ĩ×(e) =

√
2

π

∫ √e
0

2u2√
(e− u2)(2− e+ u2)

du
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=
2
√

2

π
e

∫ 1

0

v2√
(1− v2)(2− e+ ev2)

dv

=
2

π
e

∫ π/2

0

cos2ϕ√
1− e

2sin2ϕ
dϕ ≥ 0. (45)

Next we treat the case when e > 2. Letting τ1 = cosϑ and ϑ = 2ϕ succes-
sively, we get

Ĩ×(e) =

√
2

π

∫ π/2

0

√
e− 1 + cosϑ dϑ =

2
√

2

π

∫ π/2

0

√
e− 2 + 2 cos2ϕdϕ

=
2
√

2e

π

∫ π/2

0

√
1− 2

e
sin2ϕdϕ ≥ 0. (46)

Note that the Z2-reduced action Ĩ× (45) and (46) is one half the original
action I× = I|T×S1 (8) and (10). Moreover, the function e 7→ Ĩ×(e) is
continuous at e = 2. Dullin [9] shows, Ĩ× has a logarithm term in its series
expansion in e− 2, which shows Ĩ× is not differentiable at e = 2.

The corresponding Z2-reduced angle ϑ̃× is

ϑ̃× =
2π

T̃
t =

2π

T̃

∫ 1

t

2 dτ1√
2(1− τ21 )(e− 1 + τ1)

, (47)

where t ∈ [max(1− e,−1), 1] and

T̃ = T̃ (e) =

∫ 1

−1

2 dτ1√
2(1− τ21 )(e− 1 + τ1)

. (48)

In order to simplify the notation, in the following we will use Ĩ for the
reduced action on the reduced space P̃ and ϑ̃ for the reduced angle, which
is not defined at the singular points p̃0 and p̃2 of P̃ . Note that Ĩ× = Ĩ|

P̃×

and ϑ̃× = ϑ̃|
P̃× .

6.2.2 Reduction of the Z2-quantum symmetry

In this subsubsection we reduce the Z2-symmetry of the quantized mathe-
matical pendulum. In other words, we reduce the Z2-action on L ⊆ C× R2

generated by the mapping µ (32). We use invariant theory.

The algebra of invariant real analytic functions is generated by

σ1 = z, τ1 = cosα, τ2 = p sinα, τ3 = 1
2 p

2 − cosα+ 1
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subject to the relation

1
2 τ

2
2 = 1

2 p
2sin2α = 1

2 p
2(1− cos2α)

= (τ1 + τ3 − 1)(1− τ21 ), |τ1| ≤ 1 & τ3 ≥ 0. (49)

Equation (49) defines the Z2-orbit space P̃ = L/Z2. The Hilbert mapping

ς̃ : L→ P̃ :
(
z, (p, α)

)
7→
(
σ1(z), τ1(p, α), τ2(p, α), τ3(p, α)

)
=
(
σ1(z), τ(p, α)

)
is the orbit map of the Z2-action. The Z2-orbit space P̃ is C × (T ∗S1/Z2),
which is a semialgebraic variety with two singular planes C×{(±1, 0, 1∓1)}.
We view P̃ as a complex “line bundle” over the Z2-orbit space P̃ with bundle
projection

$̃ : P̃ = C× P̃ → P̃ :
(
σ1, τ = (τ1, τ2, τ3)

)
7→ τ.

Here (49) is the defining relation of the Z2-orbit space P̃ with orbit mapping
π̃ : T ∗S1 → P̃ : (p, α) 7→ τ(p, α). Consider the smooth manifold P̃× = P̃ \
{(±1, 0, 1∓1)} = C× P̃× of nonsingular points of P̃, where P̃× = T×S1/Z2

and T×S1 = T ∗S1 \ {(0, 0), (0, π)}. Restricting $̃ to C× P̃× gives a trivial
smooth bundle ρ̃× : L̃× = C × P̃× → P̃×. The bundle ρ̃× serves as the
quantum bundle of the Z2-reduced mathematical pendulum (H̃×, P̃×, ω̃×).

6.2.3 The Z2-reduced quantum system

In this subsubsection we quantize the Z2-reduced quantum mathematical
pendulum, namely, the Z2-reduced mathematical pendulum (H̃×, P̃×, ω̃×)
with the Z2-reduced quantum bundle

ρ̃× : L̃× = C× P̃× → P̃× : (z, τ) 7→ τ

and trivializing section λ̃0 : P̃× → L̃× : τ 7→ (1, τ).

We need to find a connection ∇̃× on the smooth sections of the bundle
ρ̃×, which is related to the original connection ∇× on P×. On smooth
sections of the bundle ρ× we have a connection, whose covariant derivative
∇×X in the direction of the smooth vector field X on T×S1 acts on the section
λ×0 by ∇×Xλ×0 = −i~−1

(
X θ×

)
λ×0 . Suppose that X̃ is a smooth vector field

on P̃×, which is π̃×-related to the vector field X, that is, T π̃×X = X̃ ◦ π̃×.
On the line bundle ρ̃× with trivializing section λ̃×0 define a connection ∇̃×
by (π̃×)∗(∇̃×

X̃
λ̃×0 ) = ∇×Xλ×0 . In other words,
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Fact 6.2.3.1
∇̃×
X̃
λ̃×0 = −i~−1(X̃ θ̃×)λ̃×0 . (50)

Proof. Equation (50) follows because by definition

(π̃×)∗
(
∇̃×
X̃
λ̃×0
)

= ∇×Xλ×0 = −i~−1(X θ×)λ×0 ;

whereas

(π̃×)∗
(
− i~−1(X̃ θ̃×)λ̃×0

)
= −i~−1

(
(X̃ θ̃×) ◦ π̃×

)
λ̃×0 ◦ π̃

×

= −i~−1(X̃ ◦ π̃× θ̃× ◦ π̃×)λ̃×0 ◦ π̃
×

= −i~−1(T π̃×X Tπ̃×θ×)λ̃×0 ◦ π̃
×

= −i~−1(X θ×)
(
(T π̃×)tλ̃×0 ◦ π̃

×)
= −i~−1(X θ×)λ×0 , since (π̃×)∗λ̃×0 = λ×0 .

Thus (π̃×)∗
(
∇̃×
X̃
λ̃0
)

= (π̃×)∗
(
− i~−1(X̃ θ̃×)λ̃0

)
, which implies (50) since

π̃× is surjective.

Next we determine the quantization rules for the Z2-reduced Hamiltonian
system (H̃× = H̃|P̃×, P̃×, ω̃×) with quantum line bundle ρ̃× and trivializing
section λ̃0. The mapping P̃× → T P̃× : p 7→ span{X

H̃×(p)} defines a smooth
Lagrangian distribution D̃ on the symplectic manifold (P̃×, ω̃×), which is a
polarization of (P̃×, ω̃×). A leaf of D̃ is a connected component of a level
set (H̃×)−1(e) of the Z2-reduced Hamiltonian H̃× on P̃×, which is a smooth
S1 when e ∈ (0, 2) ∪ (2,∞).

Let γ : R→ P̃× be an integral curve of X
H̃× of energy e ∈ (0, 2)∪(2,∞).

Then γ is periodic of primitive period T̃ = T̃ (e) > 0. Also γ parametrizes
a connected component C̃×(e) of the smooth level set (H̃×)−1(e). Parallel
transport the section λ̃ of the C×-bundle ρ̃× along γ using the connection
∇̃×. Then at every point γ(t) in (H̃×)−1(e) we have

0 = (∇̃×X
H̃×
λ̃)(γ(t)) = (LX

H̃×
f)(γ(t))λ̃0 − i

~(X
H̃× θ̃×)(γ(t))f(γ(t))λ̃0,

that is,
dF (t)

dt
− i

~
(X

H̃× θ̃×)(γ(t))F (t) = 0, (51)

where F (t) = f(γ(t)). For equation (51) to have a nonvanishing solution

F (T̃ ) = F (0) exp
(
i
~

∫ T̃

0
(X

H̃× θ̃×)(γ(t)) dt
)

= A(T̃ )F (0),

24



the holonomy A(T̃ ) of the connection ∇̃× along γ must equal 1, because
F (T̃ ) = f(γ(T̃ )) = f(γ(0)) = F (0) 6= 0. Consequently, for some k ∈ Z we
have

k =
1

~

∫ T̃

0
(X

H̃× θ̃×)(γ(t)) dt =
1

~

∫ T̃

0
θ̃×(γ(t))X

H̃×(γ(t)) dt

=
1

~

∫ T̃

0
θ̃×(γ(t))

dγ(t)

dt
dt =

1

~

∫ T̃

0
γ∗θ̃× =

1

~

∫
(H̃×)−1(e)

θ̃×

In other words, when e ∈ (0, 2)∪ (2,∞) the quantization rule for the (Z2, ·)-
reduced quantized Hamiltonian system (H̃×, P̃×, ω̃×) with quantum bundle
ρ̃× : L̃× → P̃× is

0 ≤ Ĩ×(e) =
1

2π

∫
C̃×(e)

θ̃× = k~, for some k ∈ Z≥0, (52)

where Ĩ× is the action (44) of the Z2-reduced mathematical pendulum.

Lemma 6.2.3.2 The reduction mapping π̃× : T×S1 → P̃× : (p, α) 7→ τ(p, α)
(43) maps a Bohr-Sommerfeld torus C(e) of the mathematical pendulum
(H×, T×S1, ω×) onto a Bohr-Sommerfeld torus C̃(e) of the Z2-reduced math-
ematical pendulum (H̃×, P̃×, ω̃×).

Proof. By lemma 6.2.3.1 the Z2-reduction mapping π̃× is a 2 to 1 covering
map. Its preimage of the e-level set (H̃×)−1(e) of the Z2-reduced Hamilto-
nian on the Z2-reduced phase space P̃× is (H×)−1(e) if 0 < e < 1 or e > 2.
Thus the image of a connected component C(e) of (H×)−1(e) under π̃× is
(H̃×)−1(e). Since

(π̃×)∗
(
Ĩ×|

C̃(e)

)
= (π̃×)∗

( 1

2π

∫
(H̃×)−1(e)

ϑ̃×
)

=


2
2π

∫
(H×)−1(e) ϑ

×, if 0 < e < 2

2
2π

∫
C±(e)

ϑ×, if 2 < e
=

1

2π

∫
C(e)

ϑ× = (I×)|C(e),

the image under π̃× of a Bohr-Sommerfeld torus of the mathematical pendu-
lum is a Bohr-Sommerfeld torus of the Z2-reduced mathematical pendulum.

For every positive integer k, let σ̃k be a section of the line bundle ρ̃×,
which is supported and covariantly constant on the level set (Ĩ×)−1(k~). As
before we add the quantum number 0, which corresponds to a section sup-
ported on the singular Bohr-Sommerfeld torus corresponding to the singular
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point (1, 0, 0) of P̃ . The collection {σ̃k}k∈Z≥0
is an orthonormal basis of the

space H̃ of quantum states of the Z2-reduced mathematical pendulum.

Since the quantum states {σ̃k}k∈Z≥0
are ordered by increasing k, there

exist shifting operators ã and b̃ such that

b̃ σ̃k = σ̃k+1, for k ≥ 0

ã σ̃k = σ̃k−1, for k > 0 and ã σ̃0 = 0.
(53)

Because the local lattice structure of the set of Bohr-Sommerfeld tori on
P̃ is linear, the shifting operators ã and b̃ are also well defined across the
singularitiy at the reduced energy value e = 2. As before, the operators
ã and b̃ satisfy the same commutation relations as the quantum operators
Q

e−iϑ̃
and Q

eiϑ̃
, respectively.

6.2.4 Lifting the shifting operators

In this subsubsection we use the isomorphism R : Heven → H̃ to lift the
shifting operators on H̃ to shifting operators on Heven.

We define R as the operator which sends the basis {σ02k, k = 1, . . . ,K;

σ+m + σ−m, m = M,M + 1, . . .} of Heven to the basis {σ̃k} of H̃ as follows

R(σ02k) = σ̃k, for k = 1, . . . ,K

R(σ+m + σ−m) = σ̃m, for m ≥M .
(54)

Recall that 2M =
{
N + 2, if N is even
N + 1, if N is odd and 2K =

{
N, if N is even

N − 1, if N is odd. To define shift-
ing operators on Heven recall that equation (53) defines the shifting operators
b̃ and ã on H̃. We may lift the shifting operator ã to the shifting operator
aeven on Heven by setting

Raeven σ02k = ãRσ02k for k ≤ K
Raeven(σ+m + σ−m) = ãR(σ+m + σ−m) for m ≥M

(55a)

and lift the shifting operator b̃ to the shifting operator beven on Heven by
setting

Rbeven σ02k = b̃Rσ02k for k ≤ K
Rbeven(σ+m + σ−m) = b̃R(σ+m + σ−m) for m ≥M .

(55b)

If k + 1 ≤ K, then

Rbeven σ02k = b̃Rσ02k = b̃ σ̃k = σ̃k+1 = Rσ02k+2.
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So bevenσ02k = σ02k+2, because R is injective. Since n = 2k, it follows
that beven raises the quantum number n by 2, provided that n + 1 < N .
Hence σ0n+2 = bσ0n+1 = bbσ0n = bevenσ0n. A similar argument shows that
beven raises the quantum number m ≥ M by 1 and that beven(σ+m + σ−m) =
Qeiϑ(σ+m+σ−m). Analogous results can be obtained for the lowering operator
aeven. In particular, if k ≤ K, then

Raevenσ02k = ãRσ02k = ã σ̃k = σ̃k−1 = Rσ02k−2.

This implies that aevenσ0n = σ0n−2 = Qe−2iϑσ0n for 0 < n ≤ N . Similarly, for
m > M we get aeven(σ+m + σ−m) = (m− 1)(σ+m + σ−m).

7 Crossing the singularity

The operators aeven and beven, defined in equation (55a) and (55b), respec-
tively allow for shifting quantum states which cross the singular level set
H−1(2). In order to write this out explicitly, we need to consider the cases
when N is even or odd seperately.

We look at the operators aeven and beven whenN = 2K,M = 1
2 (N+2) =

K + 1, and σ0N = σ02K ∈ Heven ∩ H0 together with

σ+M + σ−M = σ+K+1 + σ−K+1 ∈ Heven ∩ (H+ ⊕ H−).

In this case equation (55b) yields

Rbevenσ0N = Rbevenσ02K = b̃Rσ02K = b̃ σ̃K

= σ̃K+1 = σ̃M = R(σ+M + σ−M ). (56)

Since R : Heven → H̃ is injective, we get

bevenσ0N = σ+M + σ−M . (57)

Let pr± : H+ ⊕ H− → H± : σ+m + σ−m 7→ σ±m. From (57) we get

pr+bevenσ0N = σ+M and pr−bevenσ0N = σ−M , (58)

which represents the transition given by the right pointing top and bottom
slanted arrows in diagram (18) when N is even. Similarly,

Raeven(σ+M + σ−M ) = ãR(σ+M + σ−M ) = ãR(σ+K+1 + σ−K+1)

= ã σ̃K+1 = σ̃K = Rσ02K = Rσ0N ,
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which implies
aeven(σ+M + σ−M ) = σ0N . (59)

Next we look at the operators aeven and beven when N = 2K+1 andM =
K + 1 and σ0N = σ02K+1 ∈ Hodd ∩ H0. Then by theorem 8 we have σ0N−1 =
σ02K ∈ Heven∩H0. Moreover, σ+M +σ−M = σ+K+1 +σ−K+1 ∈ Heven∩ (H+⊕H−).
We can cross directly from σ0N−1 = σ02K to σ+M + σ−M = σ+K+1 + σ−K+1 using
the operator beven. In other words,

bevenσ0N−1 = σ+M + σ−M . (60)

Therefore, in order to cross from σ0N to σ+M + σ−M , we first go to σ0N−1 and
then to σ+M + σ−M . So bevenaσ0N = σ+M + σ−M . Hence for odd N , we have

pr+bevenaσ0N = σ+M and pr−bevenaσ0N = σ−M , (61)

which represents the right pointing top and bottom slanted arrows in diagram
(18) when N is odd. Similarly,

Raeven(σ+M + σ−M ) = ãR(σ+M + σ−M ) = ãR(σ+K+1 + σ−K+1))

= ã σ̃K+1 = σ̃K = Rσ02K = Rσ0N−1,

which implies
aeven(σ+M + σ−M ) = σ0N−1. (62)

Let
ι± : H± → H+ ⊕ H− : σ±m 7→ 1

2 (σ±m + Pσ±m) = σ+m + σ−m. (63)

Using the injection mapping ι± and equations (59) and (62) when N =
2M − 2 we have

â even
± (σ±M ) = aevenι±(σ±M ) = aeven(σ+M + σ−M ) = σ0N ; (64a)

while when N = 2M − 1 we have

â even
± (σ±M ) = baevenι±(σ±M ) = baeven(σ+M + σ−M ) = bσ0N−1 = σ0N . (64b)

The operator â even
+ represents the transition given by the left pointing top

slanting arrow in diagram (18); while the operator â even
− represents the tran-

sition given by the left pointing bottom slanting arrow in the diagram.
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8 Appendix: construction of the lowering operator

In this appendix we construct the lowering operator a for the quantized
Z2-reduced system on T×S1.

On phase space T ∗S̃1 = R× S̃1, where S̃1 = R/(2π Z) with coordinates
(p, ϑ) and symplectic form ω = dp ∧ dϑ consider the trivial (right) principal
bundle

π× : L× = C× × T ∗S̃1 → T ∗S̃1 :
(
b, (p, ϑ)

)
7→ (p, ϑ)

with connection 1-form β = 1
2π

db
b − 1

hpdϑ. The curvature dβ of β is − 1
hω,

which we suppose has integer de Rham cohomology.

The action integral of Bohr-Sommerfeld quantization is I =
∫ 2π
0 p dϑ =

2π p. The variable conjugate to I is θ = ϑ/2π, since ω = dI ∧ dθ. Let (I, θ)
be coordinates on T ∗S1 = R × S1 with S1 = R/Z and let ω = dI ∧ dθ be
the symplectic form on T ∗S1. The vector field X = − ∂

∂I = − 1
2π

∂
∂p on T ∗S1

is locally Hamiltonian, since

LXω = d(X ω) +X dω = d(−dθ) = 0,

and has local Hamiltonian θ, since −dθ = X ω locally. The flow of X is

etX : T ∗S1 → T ∗S1 : (I, θ) 7→ (I − t, θ) =
(
2π(p− 1

2π
t), ϑ/2π

)
. (65)

Note that the diffeomorphism ehX sends the Bohr-Sommerfeld torus Tn,
defined by {I = nh}, onto the Bohr-Sommerfeld torus Tn−1, defined by
{T = (n− 1)h}.

In what follows we find a quantomorphism Φh of (L, λ), which covers ehX .
In other words, Φh is a diffeomorphism of L into itself such that Φ∗hλ = λ
and π ◦Φh = ehX ◦π. Here

π : L = C× T ∗S1 → T ∗S1 :
(
z, (I, θ)

)
7→ (I, θ)

is the line bundle, associated to the C× principal bundle π× : L× → T ∗S1,
with connection 1-form λ = 1

2πidz − 1
hIdθ.

The vector field X is integral, that is, 1) there is an good covering U =
{Ui}i∈I of T ∗S1 by open sets Ui, i ∈ I, where every finite intersection of
elements of U is either empty or contractible; 2) for every Ui, Uj ∈ U such
that Ui ∩ Uj 6= ∅ we have θ|Ui − θ|Uj is an integer on Ui ∩ Uj . The local
Hamiltonian functions θ|Ui for i ∈ I piece together to give a smooth mapping
[θ] : T ∗S1 → S1 = R/Z, which is the “coordinate” θ, that is, [θ] = ϑ/2π.
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Consider the vector field Z on L×, whose flow is

etZ : L× → L× :
(
b, (I, θ)

)
7→
(
b e−2πi tθ/h, (I − t, θ)

)
. (66)

The flow of Z preserves the connection 1-form β, since for every (b, I, θ)) ∈
L× we have(

(etZ)∗β
)
(b, I, θ) = 1

2πi
d ln[b e−2πi tθ/h]− 1

h
(I − t)dθ

=
(

1
2πi

db

b
− 1

h
Idθ
)
− 1

h
t dθ + 1

h
t ddθ = β(b, I, θ).

We have
etZ = e−tYθ/h ◦et liftX , (67)

where Yθ/h(b, I, θ) = d
dt t=0

(b e2πi tθ/h, I, θ) is a vector field on (L×, β), whose
flow is etYθ/h(b, I, θ) = (b e2πi tθ/h, I, θ), and liftX is a vector field on (L×, β),
which is the horizontal lift of the vector field X, that is, liftX(b, I, θ) ∈
kerβ(b, I, θ) for every (b, I, θ) ∈ L×. The vector fields liftX and X are π×-
related, that is, T(b,I,θ)π×

(
liftX(b, I, θ)

)
= X

(
π×(b, I, θ)

)
for every (b, I, θ) ∈

L×. The flow of liftX is

et liftX(b, I, θ) =
(
b, etX(I, θ)

)
= (b, I − t, θ).

Note that the flows of the vector fields Yθ/h and liftX commute.

We now look at the universal covering space (T ∗R, ω̃) of (T ∗S1, ω) with
coordinates (p, q) and symplectic form ω̃ = dp ∧ dq. The universal covering
map is given by

κ : T ∗R→ T ∗S1 : (p, q) 7→ ( 1
2π
I, θ) = (p, q mod Z),

since R → S1 = R/Z : q 7→ q mod Z is the smooth universal covering
map of S1. Pull the local Hamiltonian vector field X on T ∗S1 back by
the covering map κ to a vector field X̃ on T ∗R, which is κ-related to X,
that is, T(p,q)κ

(
X̃(p, q)

)
= X

(
κ(p, q)

)
for every (p, q) ∈ T ∗R. The integral

vector field X̃ is the Hamiltonian vector field Xq−c = − ∂
∂p associated to the

Hamiltonian function q : T ∗R → R : (p, q) 7→ q. The constant c can be
choosen to be 0, because the smooth mappings [q] : T ∗R → S1 = R/Z :
(p, q) 7→ q mod Z and κ∗[θ] : T ∗R → S1 : (q, p) 7→ [θ]

(
κ(p, q)

)
are equal,

namely,
[q] = κ∗[θ]. (68)

A calculation shows that

κ ◦etXq = etX ◦κ. (69a)
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The C× bundle π× : L× → T ∗S1 pulls back under the covering map κ to
the C× bundle π̃× : L̃× → T ∗R : (b, p, q) 7→ (p, q) with connection 1-form
β̃ = κ∗β = 1

2πi
db
b − 1

h
p dq. The flow etZ on L× lifts to the 1-parameter group

of diffeomorphisms

etZ̃ : L̃× → L̃× : (b, p, q) 7→
(
b e−2πi tq/h, p− t, q

)
, (70)

which preserves β̃. We have etZ̃ = e−tỸq/h ◦et liftXq , where Ỹq/h is the vector
field on L̃×, whose value at (p, q) is d

dt t=0
(b e−2πi tq/h, p, q). Its flow is given

by etYq/h(b, p, q) = (b e2πi tq/h, p, q). Also liftXq is a vector field on L̃×, which
is the horizontal lift of Xq using the connection 1-form β̃ on L̃×. The flow of
liftXq is et liftXq(b, p, q) = (b, p− t, q). Note that the flows etYq/h and et liftXq

commute. Since L̃× = κ∗L×, there is a smooth mapping

κ× : L̃× → L× : (b, p, q) 7→ (b, p, q mod Z) = (b, 1
2π
I, θ),

which covers κ, that is, π× ◦κ× = κ ◦ π̃×. The flows et liftXq and et liftX are
κ×-related, that is

κ× ◦et liftXq = et liftX ◦κ×. (69b)

Let
σ× : T ∗S1 → L× : (I, θ) 7→

(
b(I, θ), I, θ

)
be a smooth section of the bundle π× : L× → T ∗S1, where (I, θ) 7→ b(I, θ)
is a smooth nowhere vanishing complex valued function on T ∗S1. Then

(etZ)∗σ
× = etZ ◦σ× ◦e−tX = e−tYθ/h ◦

(
et liftX ◦σ× ◦e−tX

)
=
(
e−tYθ/h

)
∗
◦
(
et liftX

)
∗σ
× (70)

is a smooth section of the bundle π× : L× → T ∗S1. Let

σ̃× : T ∗R→ L̃× : (p, q) 7→
(
b̃(p, q), p, q

)
be a smooth section of the bundle π̃× : L̃× → T ∗R, which is the pull back by
the mapping κ× of the smooth section σ× of the bundle π× : L× → T ∗S1.
For every (p, q) ∈ T ∗R we have σ̃×(p, q) =

(
b(κ(p, q)), κ(p, q)

)
. So

κ× ◦ σ̃× = σ× ◦κ, (69c)

which characterizes σ̃×. We now show that

(ehZ̃)∗σ̃
× = (κ×)∗

(
e−2πi [θ]•(eh liftX)∗σ

×), (70)
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We explain what the symbol • in the above formula means. For a smooth
section σ× : T ∗S1 → L× : (I, θ) 7→

(
b(I, θ), I, θ

)
of the bundle π× : L× →

T ∗S1 and a smooth complex valued function f on T ∗S1 we define f •σ× :
T ∗S1 → L× to be the smooth section (I, θ) 7→

(
b(I, θ)f(I, θ), I, θ

)
.

Proof. Analgous to (67) we have(
etZ̃
)
∗σ̃
× =

(
e−tỸθ/h

)
∗
◦
(
et liftXq

)
∗σ̃
×, (71)

where σ× = (κ×)∗σ×. To verify equation (70) we first show that

(κ×)∗
(
(eh liftX)∗σ

×) = (eh liftXq)∗
(
(κ×)∗σ×

)
. (71a)

This follows by applying equations (69a), (69b), and (69c). Next we show
that

(ehỸq/h)∗
(
(κ×)∗σ×

)
= (κ×)∗(e−2πi [θ]•σ×). (71b)

Using (68), for every (p, q) ∈ T ∗R we get

e2πi [θ](κ(p,q)) = e2πi [q] = e2πi(q+n), for every n ∈ Z

= e2πi q = eh(2πi q/h).

So

(ehỸq/h)∗
(
(κ×)∗σ×

)
(p, q) = (κ×)∗

(
(ehYq/h)∗σ

×)(p, q)
=
(
(ehY[θ]/h)∗σ

×)(κ(p, q)
)

= σ×
(
κ(p, q)

)
eh(2πi q/h)

= σ×
(
κ(p, q)

)
e2πi [θ](κ(p,q)) =

(
e2πi [θ]•σ×

)(
κ(p, q)

)
= (κ×)∗(e2πi [θ]•σ×

)
(p, q).

Equation (71) follows from equations (71a) and (71b). �

The locally Hamiltonian vector field X on T ∗S1 with flow etX : T ∗S1 →
T ∗S1 : (I, θ) 7→ (I − t, θ) lifts to a vector field X̂ on L, whose flow is
etX̂ : L→ L : (z, I, θ) 7→ (z, I − t, θ). The map

µ : L = C×T ∗S1 → L× = C××T ∗S1 : (z, I, θ) 7→ (ez, I, θ) = (b, I, θ) (72)

is smooth and µ∗β = λ. Moreover, we have µ ◦etX̂ = et liftX ◦µ. Instead of
etX̂ we will write êtX . The mapping µ intertwines the (right) action of C×
on L× with the action of C× on L, namely, µ(b′z, I, θ) = µ(b, I, θ)(b′)−1 for
every b, b′ ∈ C× and every (I, θ) ∈ T ∗S1. From these remarks it follows that
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the operator Φ×h = e−2πi [θ]• (êh liftX)∗ on smooth sections of the line bundle
π× : L× → T ∗S1 becomes the operator

Φh = e2πi [θ](êh liftX)∗ (73)

on smooth sections of the line bundle π : L→ T ∗S1. Clearly, Φh covers ehX ,
that is, π ◦Φh = ehX ◦π, and preserves the connection 1-form λ. So Φh is
the desired lowering operator a.

We note that Φ−h is the raising operator b.
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