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1. Find a solution x to the congruence: 2x ≡ 7 (mod 5).
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2. Find the remainder when 32463 is divided by 10.
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3. Prove, by mathematical induction, that
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n

n + 1

for all natural numbers n.
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4. Suppose that S is a set of natural numbers with the following
properties:
(a) 1 ∈ S
(b) k + 2 ∈ S whenever k ∈ S.
Prove that S contains all the odd natural numbers.
(Hint: you could use the well-ordering principle.)
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5. Prove that 11n+2 + 122n+1 ≡ 0 (mod 133) for every natural
number n.
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6. (a) Prove that x2 ≡ 1 (mod p) implies x ≡ 1 (mod p) or x ≡
−1 (mod p) for p a prime.

(b) Find an m and an x such that x2 ≡ 1 (mod m) and x 6≡
1 (mod m) and x 6≡ −1 (mod m).
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7. Prove that the only prime number p such that
(p− 1)! + 6 is divisible by p, is p = 5.
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8. Find a solution x to the congruence 15x ≡ 4 (mod 31).
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9. Find the remainder when 30! is divided by 31.
(Remark: the remainder should be a nonnegative number less
than 31.)
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10. Suppose that l,m and n are natural numbers and p is a prime.
Prove that

(l + m + n)p ≡ lp + mp + np (mod p).

Page 11 of 11


