
Learning seminar on perverse sheaves.
Beilinson’s theorem and some computations

Notes by Kostya Tolmachov

These notes consist of two independent parts. In the first part we formulate the
decomposition theorem and describe several of its applications in Kazhdan-Lusztig
and Springer theories. In the second part we formulate Beilinson’s theorem on the
derived category of perverse sheaves, and describe some ideas involved in its proof
(in very broad strokes).

1 Decomposition theorem and applications

Let X be a variety. A complex F ∈ Db
c(X) is called semisimple, if it is isomorphic

to a direct sum of shifts of simple perverse sheaves.
We first state the decomposition theorem in the form in which it is most com-

monly applied.

Theorem 1 (Decomposition theorem). Let f : X → Y be a proper morphism of
varieties, and assume that X is smooth. Then the complex f∗CX is semisimple.

To state the general result, we will need a notion of a semisimple complex of
geometric origin. The class of simple perverse sheaves of geometric origin is the
minimal class satisfying the following properties:

• Constant sheaf on a point is in this class.

• If f : X → Y is a morphism of varieties, and F is a simple perverse sheaf of
geometric origin on X (resp. on Y ), irreducible constituents of pHi(TF) are
of geometric origin, where T is one of f!, f∗ (resp. f∗, f !).

• If F ,G are simple perverse sheaves of geometric origin, irreducible con-
stituents of pHi(F ⊗ G), pHi(Hom(F ,G)) are of geometric origin.

The complex F ∈ Db
c(X) is called semisimple of geometric origin, if it is iso-

morphic to a direct sum of shifts of simple perverse sheaves of geometric origin.

Theorem 2 (Decomposition theorem, general form). Let f : X → Y be a proper
morphism of varieties, and let F ∈ Db

c(X) be a semisimple complex of geometric origin.
Then f∗F is a semisimple complex of geometric origin.

1.1 Schubert and Bott-Samelson varieties

Exposition follows [Ric10], [Spr]. Let G be a semisimple algebraic group, B its Borel
subgroup, T ⊂ B – maximal torus, B = G/B – flag variety. We consider left B-
orbits in B. They are numbered by the elements of the groupW = NG(T )/T , where
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NG stands for the normalizer under the adjoint action. Picking a lift ẇ of w ∈ W
to G, the orbit Ow, corresponding to w, is BẇB. Varieties Ow are isomorphic to
affine spaces. Let l(w) = dimOw . W has a structure of Coxeter group, with the set
of simple reflections S = {s ∈W : dimOs = 1}. Bruhat order on W is given by

y ≤ x ⇐⇒ Oy ⊂ Ox

Decomposition B =
⊔
w∈W Ow gives a stratification of B. We will be working

with sheaves constructible in this stratification.
Varieties Xw = Ow are called Schubert varieties.
It will be more convenient for us to work in the following symmetrized setting.

Consider the decomposition of the variety B × B into G-orbits with respect to the
left diagonal action of G. It is easy to see that they are in bijection with the B-orbits
in B,

B × B =
⊔
w∈W

Ow :=
⊔
w∈W

G · (B, ẇB).

Denote Xw = Ow. The variety Ow (resp. Xw) is a locally-trivial bundle over
B with the fiber Ow (resp. Xw). We have IC(Xw)y[dimB] ' IC(Xw)y , where Fy
denotes the stalk of the complex F at the stratum numbered by y.

Example. G = SL(n), B – variety of flags of vector spaces

Cn = Vn ⊃ Vn−1 ⊃ · · · ⊃ V0 = {0},dimVi = i,

W = Sn – symmetric group. (V•, V
′
•) ∈ Ow if there exists a basis (e1, . . . , en) of

Cn with
Vi = span(e1, . . . , ei), V

′
i = span(ew(1), . . . , ew(i)).

Consider the variety

X̃w = {(x1, . . . , xk+1) ∈ Bk+1 : (xl, xl+1) ∈ Osil }.

It is called the Bott-Samelson veriety. First, observe that X̃w is smooth, given by
iterated fibrations with smooth base and fiber P1, and there is a proper map

πw : X̃w → Xw, (x1, . . . , xk+1) 7→ (x1, xk+1).

In case w is a reduced expression, πw is a resolution of singularities, called the
Bott-Samelson (or Demazure) resolution.

Example. Let G = SL(3). In this case W = S3, generated by two reflections
s1, s2,W = {1, s1, s2, s1s2, s2s1, s1s2s1}. We have v < w iff l(v) < l(w) in this
case.

Let w = s1s2. The Bott-Samelson variety X̃w consists of triples of flags (V
(1)
• , V

(2)
• , V

(3)
• )

satisfying V (1)
2 = V

(2)
2 , V

(2)
1 = V

(3)
1 . So V (2)

• is completely determined by V (1)
• , V

(3)
•

and πw is an isomorphism. In particular, Xw is smooth.
Similarly, Xs2s1 is also smooth and is isomorphic to the corresponding Bott-

Samelson variety.
Let w = s1s2s1. X̃w consists of tuples of flags (V

(1)
• , V

(2)
• , V

(3)
• , V

(4)
• ) satisfying

V
(1)
2 = V

(2)
2 , V

(2)
1 = V

(3)
1 , V

(3)
2 = V

(4)
2 .
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By the discussion above, V (2)
• is completely determined by V (1)

• , V
(3)
• , so this sim-

plifies to triples (V
(1)
• , V

(2)
• , V

(3)
• ) with

V
(2)
1 ⊂ V (1)

2 , V
(2)
2 = V

(3)
2 .

We again get that V (2)
2 is determined by V (3)

• . Since V (2)
1 ⊂ V

(1)
2 ∩ V (3)

2 , it is
also determined, if V (1)

2 6= V
(3)
2 . Otherwise, when V (1)

2 = V
(3)
2 , which is the same

as saying (V
(1)
• , V

(3)
• ) ∈ Xs1 , we have P1 = P(V

(1)
2 ) choices. To summarize: fiber

of πw over Xs1 is isomorphic to P1, and over B×B\Xs1 it is isomorphic to a point.
Note that dimXs1 = 4,dimB × B = 6, so πw is semismall in this case.

It will be convenient for us to introduce the following book-keeping device. Let
H(W ) be a free Z[v, v−1]-module with basis Tw, w ∈ W . Let S denote the stratifi-
cation of B × B by orbits. For F ∈ Db

S(B × B) write

h(F) =
∑
w∈W

(∑
i∈Z

dimH−i(Fw)vi

)
Tw ∈ H(W ).

We have just computed

h(πs1s2∗CX̃s1s2
) = Ts1s2 + Ts1 + Ts2 + T1,

h(πs1s2s1∗CX̃s1s2s1
[6]) = v6(Ts1s2s1 + Ts2s1 + Ts1s2 + Ts2) + (v6 + v4)(Ts1 + T1).

Since we know that Xs1s2s1 ,Xs1 are smooth (first is the whole flag variety, second is
isomorphic to a projective line) we have

h(IC(Xs1)) = v4(Ts1 + T1),

h(IC(Xs1s2s1)) = v6(Ts1s2s1 + Ts2s1 + Ts1s2 + Ts2 + Ts1 + T1).

So, by the decomposition theorem, we must have

πs1s2∗CX̃s1s2s1
[6] ' IC(Xs1s2s1)⊕ IC(Xs1).

We will now discuss the general case.
Note that, by definition of the IC-extension, we have, for all w, y ∈W

dimH−i(IC(Xw)y) = 0 if i < dimOy = dimB + l(y),

from perversity and

dimH−i(IC(Xw)y) = 0 if i ≤ dimOy = dimB + l(y), w 6= y,

IC(Xw)w = C[dimB + l(w)],

from the IC property, which translates to

v− dimBh(IC(Xw)) ∈ vl(w)Tw +
∑
y<w

vl(y)+1Z[v]Ty,

Consider the variety B3 with projections

π12, π13, π23 : B3 → B2,

πij being a projection to ith and jth factors. Consider the following operation, called
convolution, on Db

S(B × B) : for A,B ∈ Db
S(B × B) write

A ∗ B = π1,3∗
(
π∗1,2A⊗ π∗2,3B

)
.
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Lemma. Fix s ∈ S, and let F ∈ Db
S(B × B) be such that Hi(F) = 0 for all i even

(resp. odd). Then CXs
∗ F satisfies the same property and

dimH−i((CXs
∗ F)w) =

{
dimH−i(Fsw) + dimH−i−2(Fw), if sw < w,

dimH−i−2(Fsw) + dimH−i(Fw), if sw > w.

Proof. We will prove the first equality and live the second one as an exercise. Pick
(x, z) ∈ Ow . By the proper base change, we need to compute the cohomology of a
constructible sheaf F ′ on

C = {y ∈ B : (x, y) ∈ Xs} ' P1

stratified as pttA1, where pt is the unique point y0 ∈ C with (y0, z) ∈ Osw . Stalk
of F ′ at pt is isomorphic to Fsw, and stalk over A1 is isomorphic to Fw . Writing

i : pt ↪→ P1 ←↩ A1 : j,

consider the long exact sequence of cohomology associated to the triangle

j!j
∗F ′ → F ′ → i∗i

∗F ′ → .

It gives
→ H−ic (j∗F ′)→ H−i(F ′)→ H−i(F ′pt)→

or
→ H−i−2(Fw)→ H−i(F ′)→ H−i(Fsw)→

where we used the fact that j∗F ′ is the sum of shifted constant sheaves and that
H•c (A1) = C[−2]. Now parity assumption on F gives that this long exact sequence
splits into short exact sequences, and we are done.

Assume that we have computed the stalks of IC complexes for all y < w. Pick
an expression

w = si1si2 . . . sik

and write w for the corresponding word.
Repeatedly applying the proper base change theorem, it is easy to see that

CXsi1
∗ CXsi2

∗ · · · ∗ CXsik
' πw∗CX̃w

.

So πw∗CX̃w
satisfies the parity condition of the Lemma. Assume from now on that

w is reduced. Applying the decomposition theorem, we get

πw∗CX̃w
[dimB + l(w)] ' IC(Xw)⊕

⊕
y<w

Vy ⊗ IC(Xy),

where Vy are graded vector spaces counting multiplicities. We get that IC(Xw)
must also satisfy the parity condition of the Lemma, as a direct summand of
πw∗CX̃w

[dimB + l(w)].
Choose s such that sw < w. Applying the results of [Zho] and the decomposition

theorem, one can show that CXs
∗ IC(Xsw)[1] is semisimple. Applying the Lemma,

on the other hand, we get that

h(CXs
∗ IC(Xsw)[1]) ∈ vl(w)Tw +

∑
y<w

vl(y)Z[v]Ty.
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From this one may deduce that the multiplicity of IC(Xy), y < w, in CXs
∗IC(Xsw)[1]

is the coefficient of vl(y)Ty , and, by induction, compute h(IC(Xw)).
Remark. It is easy to see that the restriction of h to semisimple complexes is

surjective onto H(W ). One can show that the convolution operation on such com-
plexes defines a Z[v, v−1]-algebra structure on H(W ). The corresponding algebra is
called Hecke algebra. It has a simple algebraic definition, for any coxeter group W ,
independent of geometry. v− dimBh(IC(X)) gives a basis of this algebra, called the
Kazdhan-Lusztig basis. It was first defined, purely algebraically, in [KL79]. Kazhdan
and Lusztig then proved, in [KL], that this algebraic definition coincides with the
geometric one given above. Coefficients of h(IC(X)) (after a multiplication by a
suitable power of v) are called Kazhdan-Luzstig polynomials.

1.2 Springer and Grothendieck-Springer resolutions

The exposition of this subsection is from Chapter 8.1 of the book [Ach].
Let g be the Lie algebra of g, b be the Lie algebra of B, t be the Lie algebra of

T . Let N be a unipotent radical of B, and let n be the Lie algebra of N . We have
an identification t ' b/n.

Consider a variety

g̃ = G×B b = {(xB, a) ∈ B × g : a ∈ Ad(x)(b)}.

g̃ is a smooth variety (being a fiber bundle over B), and we have a proper projection
map

µ : g̃→ g.

This variety is called the Grothendieck-Springer simultaneous resolution.
There is also a map

θ : g̃→ t, (xB, a) 7→ Ad(x−1)(a) mod n.

Let
Ñ = θ−1(0).

Restriction µÑ of µ to Ñ lands into the variety N of nilpotent elements in g. Ñ is
again smooth and in fact is isomorphic to the cotangent bundle T ∗B. It is called the
Springer resolution.

Note that the subvariety grs of regular semisimple elements in g is open and
dense. Let g̃rs = µ−1(grs). Then µrs := µ|g̃rs is a finite |W |-to-1 map.

Similarly, note that the subvariety Nr of regular nilpotent elements is open dense
in N , and all regular nilpotent elements are conjugate, so dimN = dimG− dim t.

Example. Let G = SL(n). Then g̃ consists of pairs (x, V•), x ∈ sln, V• – flag
of vector subspaces, preserved by x. Ñ is given by the condition that x is nilpotent.
Each regular nilpotent element preserves a unique flag, so Ñ is indeed a resolution
of singularities. Consider the adjoint action of G on N . Its orbits are numbered by
partition of n, corresponding to Jordan normal forms of nilpotent matrices. Thus,
regular orbit corresponds to a partition (n). For a partition λ, let Oλ denote the
corresponding orbit. Write

µ ≤ λ ⇐⇒ Oµ ⊂ Oλ.

Decomposition
N =

⊔
λ

Oλ
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gives an algebraic stratification of N , which we will denote S . G also acts on Ñ by
the formula

g(x, V•) = (Ad(g)(x), gV•),

and µÑ is a G-equivariant map, so µÑ∗CÑ ∈ Db
S(N ). Let A be a free Z[v, v−1]-

module with basis Tλ, where λ runs through the set of all partitions of n. Define, as
in the previous subsection, the map h : Db

S(N )→ A, via

h(F) =
∑
λ

(∑
i∈Z

dimH−i(Fλ)vi

)
Tλ.

Again, IC-property translates to

h(IC(Oλ)) ∈ vdimOλTλ +
∑
µ<λ

vdim(Oµ)+1Z[v]Tµ.

Remark. Varieties Oλ are not, in general, simply-connected (even when G =
SL(2)). However, in case of G = SL(n), we have an action of GL(n) on both
Ñ ,N , and µÑ is GL(n)-equivariant. It can be deduced from this and the fact that
stabilizers of GL(n)-action on N are connected, that the local systems appearing in
cohomology of µÑ∗CÑ restricted to Oλ are trivial in this case.

Example. Let G = SL(2). Then N = {x ∈ End(C2), x2 = 0} – quadratic
cone, Ñ = {(x, l) ∈ N × P1 : xl = {0}}. Fiber over any x 6= 0 consists of a single
line, and fiber over x = 0 is the whole P1. We also see that dimN = 2, so the map
µÑ is semismall. We have two G-orbits in N ,O(1,1) = {0},O(2) – regular orbit. So

h(µÑ∗CÑ [2]) = v2T(2) + (1 + v2)T(1,1).

We get µÑ∗CÑ [2] ' IC(O(2))⊕ IC(O(1,1)).
Example. Let G = SL(3). We have three G-orbits, O(3),O(2,1),O(1,1,1) with

dimO(3) = dimN = 6,dimO(2,1) = 4,dimO(1,1,1) = 0. Lets study O(2,1) more
carefully. This is the orbit consisting of nilpotent matrices of rank 1. Let X be such
a matrix, and consider the variety of flags {V•} that are preserved by X . Let the
line ` be the image of X , and let the plane K be the kernel of X . Then we must
have V2 ⊃ `, V1 ⊂ K . Now if V1 = `, for any V2 ⊃ `,X preserves V•, and if V2 = K
for any V1 ⊂ K,X preserves V•. We get that the fiber of µÑ over X is a union of
two projective lines intersection at the flag V = (` ⊂ K). In particular,

2 dimµ−1Ñ (X) = 2 ≤ codimO(2,1) = 2.

We also have

2 dimµ−1Ñ ({0}) = 2 dimB = 6 ≤ codimO(1,1,1) = dimN = 6,

so µÑ is semismall with respect to O(3).
Consider the variety Ñ ′ = {(x, `) ∈ End(C3) × P2 : x3 = 0, rkx ≤ 1, Imx ⊂

`}.
Exercise. Ñ ′ is a semismall resolution of O(2,1). Deduce that

h(IC(O(2,1))) = v4T(2,1) + (v4 + v2)T(1,1,1).

To summarize, we have

h(µÑ∗CÑ [6]) = v6T(3) + (v6 + 2v4)T(2,1) + (v6 + 2v4 + 2v2 + 1)T(1,1,1),
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and we deduce

µÑ∗CÑ [6] ' IC(O(3))⊕ IC(O(2,1))
⊕2 ⊕ IC(O(1,1,1)).

The main goal of this subsection is to prove the following

Proposition 1. µ is a small map and µÑ is a semismall resolution of singularities.

Proof. We first prove that µÑ is semismall. Denote Z = Ñ ×N Ñ . Z is called the
Steinberg variety. Semismallness of µÑ is equivalent, as was shown in the previous
talk [Zho], to

dimZ ≤ dimN .
We have a projection map π : Z → B × B. Let Zw = π−1(Ow), w ∈ W . We will
show that

dimZw ≤ dimN
for all w ∈W . Choose a representative ẇ of w. There is an isomorphism of varieties

G×B∩ẇBẇ
−1

(n ∩Ad(ẇ)n)→ Zw,

(exercise). It follows that

dimZw = dimG− dim(B ∩ ẇBẇ−1) + dim(n ∩Ad(ẇ)n).

But the Lie algebra of B ∩ ẇBẇ−1 is isomorphic, as a vector space, to t ⊕ (n ∩
Ad(ẇ)n), so

dimZw = dimG− dim t = dimN .
Proof of the smallness of µ is similar. Let Z ′ = g̃ ×g g̃, π : Z ′ → B × B –

projection, Z ′w = π−1(Ow). Similarly, we have

G×B∩ẇBẇ
−1

(b ∩Ad(ẇ)b)
∼−→ Z ′w,

so dimZ ′w = dim g for all w.
We already know that over grs µ is a finite map. Let

Z ′′ = {(xB, yB, a) ∈ Z ′ : a /∈ grs}, Z ′′w = Z ′′ ∩ Z ′w.

We have

G×B∩ẇBẇ
−1

(b ∩Ad(ẇ)b ∩ (g\grs))
∼−→ Z ′′w.

Now (b∩Ad(ẇ)b∩ grs) is a non-empty open subset in a vector space b∩Ad(ẇ)b,
so its complement has a strictly positive codimension. We deduce that

dimZ ′′w < dimZ ′w = dim g,

so dimZ ′′ < dim g. Choose any locally-closed subvariety Y ⊂ g\grs such that
fibers of µ have the same dimension over all points x ∈ Y . Let µ′ : Z ′ → g be the
projection, let

Z ′Y = µ′−1(Y ).

Z ′Y ⊂ Z ′′, so dimZ ′Y < dim g. Pick a point x ∈ Y . We have

µ′−1(x) = µ−1(x)× µ−1(x).

So
dimZ ′Y = 2 dimµ−1(x) + dimY < dim g,

and we are done.
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Corollary 1.1. Let iN : N ↪→ g be the closed embedding.

µ∗Cg̃[dim g] = IC(µrs∗Cg̃rs
[dim g]),

µÑ∗CÑ [dimN ] = i∗N IC(µrs∗Cg̃rs
[dim g])[−dim t] ∈ Perv(N ).

Moreover, by the decomposition theorem, we know that the latter sheaf is semisimple.

We will now construct the W -action on these sheaves.

Proposition 2. µrs is a Galois covering with the Galois group W .

Proof. Let brs = b ∩ grs, trs = grs ∩ t. We have g̃rs = G ×B brs. We have the
following map, indcued by the inclusion trs ↪→ brs:

G×T trs → G×B brs.

This is an isomorphism (exercise). We get an action of W on g̃rs induced by the
free action of W on trs. Using the fact that each Cartan subalgebra is contained in
excatly |W | Borel subalgebras, one gets an isomorphism

g̃rs/W ' grs,

as desired.

Using the fact from the talk [Dyk] that IC is a fully faithful functor Perv(grs)→
Perv(g), we get

Corollary 1.2.
End(IC(µrs∗Cg̃rs

[dim g])) ' C[W ].

Corollary 1.3. There is an action of W on the sheaf µÑ∗CÑ [dimN ], and, in particu-
lar, on the cohomology of its fibers.

This action is originally due to Springer, and the construction given here is due
to Lusztig.

2 Beilinson’s theorem

Theorem 3. Let X be a variety. Then there is a triangulated equivalence of categories

real : Db(Perv(X))→ Db
c(X),

such that real |Perv(X) is the tautological embedding.

We indicate some ideas behind the proof. Start we the following simple lemma:

Lemma 2.1. Let f : T → T ′ be a triangulated functor between two triangulated
categories. Assume that there is a subset C ⊂ Ob(T ) generating T as a triangulated
category, such that f(C) generates T ′ and

Hom(X,Y [k]) = Hom(f(X), f(Y )[k])

for all X,Y ∈ C. Then f is an equivalence of categories.
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This lemma, assuming that we can construct some functor Db(Perv(X)) →
Db
c(X), reduces Beilinson’s theorem to the comparison of Ext-groups in Perv(X)

computed in Db(Perv(X)) and Db
c(X).

The following notion is used repeatedly throughout the proof. Let T be a trian-
gulated category with a t-structure, let C be its heart. For X,Y ∈ C, a morphism
f ∈ Hom(X,Y [k]) is called effaceable, if there exist morphisms p : X ′ → X ,
i : Y → Y ′, p being surjective and i injective, such that i[k] ◦ f ◦ p : X ′ → Y ′[k] is
0.

Lemma. If A is abelian, T = Db(A) (so that A is the heart of the natural t-structure),
then for all k > 0, X, Y ∈ A, any morphism f ∈ Hom(X,Y [k]) is effaceable. Moreover,
there always exist a surjective map p : X ′ → X such that f ◦ p = 0 and an injective
map i : Y → Y ′ such that i[n] ◦ f = 0.

E.g., if k = 1, rotate the triangle X → Y [1] → Cone(f) → to the exact
sequence 0 → Y → Cone(f)[−1] → X → 0 and take Y ′ = Cone(f)[−1] (or
X ′ = Cone(f)[−1]). Proof for the general k is similar and is left as an exercise.

We have the following:

Proposition 3. Let T be a triangulated category, C0 be a heart of t-structure on T ,
C ⊂ C0 – Serre subcategory. Suppose we have a triangulated functor

ρ : Db(C)→ T

such that ρ|C is isomorphic to the inclusion functor. For X,Y ∈ C, consider the map

ExtkC(X,Y )→ HomT (X,Y [k])

induced by ρ. We have

• This map is an isomorphism for k = 0, 1.

• If this map is an isomorphism for k = 0, 1, . . . , n − 1, it is injective for k = n
and its image consists of effaceable morphisms.

Corollary 2.1. ρ is an equivalence of categories if and only if, for k > 0, X, Y ∈ C, all
morphisms in HomT (X,Y [k]) are effaceable.

This can already be used to reduce Beilinson’s theorem to the case when X
is affine. Indeed, assume that it is known for all affine varieties U , and let X be
any variety. Choose F ,G ∈ Perv(X), f ∈ Hom(F ,G[k]). Choose an affine open
cover {ji : Ui → X} of X . By the lemma above, we can choose surjective maps
pi : Pi → j∗i F with j∗i f ◦ pi = 0. By adjunction, we have maps pi : ji!Pi → F with
f ◦ pi = 0. But j∗i pi are surjective, so

p = ⊕ipi : ⊕ji!Pi → F

is surjective (because perverse sheaves can be glued on open covers) and satisfies
f ◦ p = 0, so f is effaceable.

Note that, if we replace the categories in Beilinson’s theorem with categories of
sheaves constructible with respect to a fixed stratification, the theorem is false: take,
for example, the trivial stratification of X = P1. In this stratification, the category of
perverse sheaves is semisimple, but HomDbc(X)(CX ,CX [2]) 6= 0, as was discussed in
[Zho]. However if we take X to be an open subset of A1 (with trivial stratification),
the theorem holds:
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Proposition 4. Let X ⊂ A1 be an affine open subset. Then we have an equivalence of
categories

Db(Loc(X)) ' Db
loc(X),

where Db
loc stands for the derived category of sheaves with locally-constant cohomologies.

Proof. Let F ,G be two local systems. Since X is affine, ExtkDbloc(X)(F ,G) vanishes

for k ≥ 2. ExtkLoc(X)(F ,G) also vanishes for k ≥ 2, since π1(X) is free and so has
homological dimension 1. And since local systems are closed under extensions, we
have

Ext1Loc(X)(F ,G) ' Ext1Dbloc(X)(F ,G).

By induction on dimension, one then proves the following theorem:

Theorem 4. For any variety X there exists a smooth, open, connected affine subvariety
U such that

Db(Loc(U)) ' Db
loc(U).

For local systems, effaceability can be checked using the following

Proposition 5. For a connected affine variety U the following conditions are equivalent:

• for all k > 0,F ,G ∈ Loc(U) all morphisms in HomDbloc(U)(F ,G[k]) are efface-
able.

• for all k > 0,G ∈ Loc(U) there is an injective morphism G → G′ in Loc(U)
such that the induced morphism Hk(G)→ Hk(G′) is 0.

Induction is based on the following two lemmas:

Lemma. If U → V is a locally-trivial fibration with fibers of dim ≤ 1, and the
statement of the theorem is true for V , then it is true for U .

This Lemma, along with the Noether’s normalization, reduces the theorem to the
case when X is an open subset of An.

Lemma. Let X be an open subset of An. Then, there is an open subset U ⊂ X such that
U is a locally-trivial fibration over some V ⊂ An−1 with fibers isomorphic to an affine
subset of A1.

Then we need the following two propositions.

Proposition 6. Let Z ⊂ X be a closed subset of the form f−1(0) for some regular func-
tion f : X → C, i : Z → X be the corresponding closed embedding. Let Db

Z(Perv(X))
be the full subcategory of Db(Perv(X)) consisting of complexes with cohomology sup-
ported on Z . Then i∗ defines the equivalence

i∗ : Db(Perv(Z))→ Db
Z(Perv(X))

Remark. This is a derived version of the proposition that appeared in [Dyk].
We will prove this proposition using the following fact: there exist exact functors

Φunf : Perv(X)→ Perv(Z),Υf : Perv(X)→ Perv(X), with canonical morphisms

F → Υf (F)← i∗Φ
un
f (F)
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that become isomorphisms when F ∈ PervZ(X).
Now the fact that i∗ admits the right inverse Φunf , shows that the map

ExtkPerv(Z)(F ,G)→ ExtkPerv(X)(i∗F , i∗G)

is injective for all k. To show surjectivity, recall the Yoneda’s definition of Ext.
Elements of Extk(F ,G), k ≥ 1, are given by equivalence classes of exact sequences

0→ G → C1 → · · · → Ck → F → 0,

with two sequences considered equivalent, if they can be connected by a chain of
morphisms of sequences that are isomorphisms on F and G. Take

(0→ i∗G → C1 → · · · → Ck → i∗F → 0) ∈ ExtkPerv(X)(i∗F , i∗G).

This sequence is equivalent to the sequence

(0→ i∗G → i∗Φ
un
f C1 → · · · → i∗Φ

un
f Ck → i∗F → 0) ∈ i∗ ExtkPerv(Z)(F ,G),

via

(0→ i∗G → ΥfC1 → · · · → ΥfCk → i∗F → 0) ∈ ExtkPerv(X)(i∗F , i∗G),

and so i∗ is surjective onto ExtkPerv(X)(i∗F , i∗G).
Exercise. Prove a similar statement where Db(Perv(Z)), Db

Z(Perv(X)) are re-
placed by Db(C(Z)), Db

Z(C(X)), where C(Z), C(X) are abelian categories of con-
structible sheaves.

Proposition 7. Let U ⊂ X be an affine open subset, j : U → X be the corresponding
open embedding. Then, for any F ∈ Perv(X),G ∈ Perv(U) and for any k, we have

ExtkPerv(U)(j
∗F ,G) = ExtkPerv(X)(F , j∗G),

ExtkPerv(X)(j!G,F) = ExtkPerv(U)(G, j∗F).

Note that, since U is assumed to be affine, j!, j∗ are exact functors on perverse
sheaves, by Artin’s theorem, so the proposition above makes sense.

Proof. We have j! = j∗ : Perv(X)→ Perv(U) exact and right (resp. left) adjoint to
j! (resp. j∗). Lets prove the first adjunction of the proposition, the second is similar.

We have natural transformations

idPerv(X) → j∗j
∗, j∗j∗ → idPerv(U)

such that compositions

j∗ → j∗j
∗j∗ → j∗, j

∗ → j∗j∗j
∗ → j∗

are identity transformations. Since the functors j∗, j∗ are exact, they induce maps
on Yoneda Ext-groups:

Extk(j∗F ,G)→ Extk(j∗j
∗F , j∗G)→ Extk(F , j∗G),

Extk(F , j∗G)→ Extk(j∗F , j∗j∗G)→ Extk(j∗F ,G).

These maps are mutually inverse isomorphism: proof is the same as the proof that
unit-counit adjunction induces an isomorphism on Hom-sets.
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Knowing the above theorem and propositions, one then deduces Beilinson’s the-
orem by induction in dimension, when X is affine: if F ,G ∈ Perv(X) are supported
on some closed subvariety, we use Proposition 6 and inductive assumption. If F has
full support and G has closed support, one chooses an open affine set U disjoint
from the support of G and deduces the theorem from the long sequences of Ext’s
coming from the exact triangle j!FU → F → K → and five lemma.

If F ,G have full support, we choose U such that the restriction of F ,G to U
are shifted local systems, and apply Theorem 4 along with the Propositions 6, 7 to
the corresponding long exact sequences. We leave out the (somewhat complicated)
details.

Exercise. Do it for dimX = 1.

2.1 Realization functor

We will now describe how to construct the functor real from the theorem. We follow
Section 1.10 of the book [Ach].

Let A be an abelian category. Denote by FA an additive category of filtered
objects in A, namely objects equipped with an increasing bounded filtration indexed
by Z:

{0} ⊂ · · · ⊂ FiM ⊂ Fi+1M ⊂ · · · ⊂M,

where the word bounded means that FiM = 0 for i � 0, and FiM = M for
i � 0. Morphisms in FA are morphisms in A preserving the filtration. We can
form categories Chb(FA) and Hob(FA), a bounded category of chain complexes
and a bounded homotopy category of FA.

Category Hob(FA) comes equipped with the following structures:

1. the collection of strictly full triangulated subcategories F≤n,F≥n. F≤n is a
subcategory consisting of complexesM with filtration F satisfying FiM = M
for i ≥ n, and F≥n is a subcategory consisting of complexesM with filtration
F satisfying FiM = 0 for i < n;

2. triangulated functors

σ≤n : Hob(FA)→ F≤n, σ≥n : Hob(FA)→ F≥n,

truncating the filtration:

Fk(σ≤nM) =

{
FnM if k > n,

FkM if k ≤ n;

Fk(σ≥nM) =

{
FkM/Fn−1M if k ≥ n,
0 if k < n;

3. There is a unique natural transformation δ : σ≥n+1 → σ≤n[1] such that for
any X ∈ Hob(FA), the diagram

σ≤nX → X → σ≥n+1X
δ−→ σ≤nX[1]

is a distinguished triangle.
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4. associated graded functors grn = σ≥nσ≤n;

5. functors i : Hob(A)→ Hob(FA), given by

Fki(M) =

{
M if k ≥ 0,

0 if k < 0;

and ω : Hob(FA) → Hob(A), forgetting the filtration. i is an equivalence
Hob(A)→ F≤0 ∩ F≥0.

We say that a morphism f : X → Y in Hob(FA) is a filtered quasi-isomorphism
if ω grn f is a quasi-isomorphism in Hob(A). It can be shown that filtered quasi-
isomorphisms satisfy the localization conditions. The localized category DF b(A) is
called the filtered derived category of A. It inherits all structures indicated above
from Hob(FA).

Theorem 5. Let T be a full triangulated subcategory of Db(A). Suppose that it is
equipped with a bounded t-structure, and let C be its heart. Then there is a t-exact,
triangulated functor

real : Db(C)→ T
whose restriction to C ⊂ Db(C) is the inclusion functor C → T .

We only indicate how the functor is constructed. Let C̃ be the full additive
subcategory of DF b(A) given by

C̃ = {X ∈ F|ω grnX ∈ C[n]}.
There is a functor β : C̃ → Chb(C) constructed as follows. For X ∈ C̃, i ∈ Z,
consider the canonical exact triangle for σ≥−i−1σ≤−iX :

gr−i−1X → σ≥−i−1σ≤−iX → gr−iX
δ−→ gr−i−1X[1].

Define β(X) to be the chain complex Y • with Y i = ω gr−iX[i] and with differ-
ential given by −ωδ[i]. One then needs to check that this is indeed a complex,
functorial in X , that ωβ−1 factors through Hob(C) and sends quasi-isomorphisms
to isomorphisms, all of which we skip.
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