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1 Derived Categories

Unless otherwise stated, let A be an abelian category.

De�nition 1.1. Let Ch(A ) be the category of chain complexes in A . Objects in this category are chain
complexes A•, which is a sequence of objects and morphisms in A of the form

· · · −→ Ai−1
di−1

−→ Ai
di−→ Ai+1 −→ · · ·

satisfying di ◦ di−1 = 0 for every i ∈ Z.
A morphism f : A• → B• between two complexes is a collection of morphisms f = (f i : Ai → Bi)i∈Z in

A such that f i+1 ◦ diA = diB ◦ f i for every i ∈ Z.

De�nition 1.2. A chain complex A• is said to be bounded above if there is an integer N such that Ai = 0
for all i > N . Similarly, A• is said to be bounded below if there is an integer N such that Ai = 0 for all
i < N . A• is said to be bounded if it is bounded above and bounded below.

Let Ch−(A ) (resp. Ch+(A ), Chb(A )) denote the full subcategory of Ch(A ) consisting of bounded-
above (resp. bounded-below, bounded) complexes.

Let Ch◦(A ) denote any of the four categories above. For a complex A•, let [1] : Ch(A ) → Ch(A )
denote the shift functor where A[1]i = Ai−1.

De�nition 1.3. A quasi-isomorphism in Ch(A ) is a chain map f : A• → B• such that the induced maps
Hn(f) : Hn(A)→ Hn(B) are isomorphisms for all n.

The derived category for A can be thought of as a category obtained from Ch(A ) by having quasi-
isomorphisms be actual isomorphisms. To do this, we localize (= invert) quasi-isomorphisms.

De�nition 1.4. Let A be an additive category and let S be a class of morphisms in A closed under
composition. Let AS be an additive category and let L : A → AS be an additive functor. We say (AS , L)
is obtained by localizing A at S if A ′ is an additive category and F : A → A ′ is an additive functor that
sends all morphisms of S to isomorphisms, then there exists a unique functor F : AS → A ′ and a unique
isomorphism ε : F ◦ L ∼→ F .

This is similar to the construction of localizing a ring. However, like in the case of localizing a ring,
localizations may not always exist or be nice. Proposition I.6.3 of [2] state that a localization AS exists for
A if S satis�es the following conditions:

L0 For every X ∈ A , we have idX ∈ S .

L1 Given morphisms f : X → Y and s : Z → Y with s ∈ S , there is a commutative diagram

W
g //

t

��

Z

s

��
X

f // Y

with t ∈ S .
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L2 Given morphisms g : W → Z and t : W → X with t ∈ S , there is a commutative diagram

W
g //

t

��

Z

s

��
X

f // Y

with s ∈ S .

L3 Given morphisms f, g : X → Y , the following are equivalent:

• There is a morphism t : Y → Y ′ with t ∈ S such that t ◦ f = t ◦ g.
• There is a morphism s : X ′ → X with s ∈ S such that f ◦ s = g ◦ s.

The objects of AS are the same as A , but the morphisms are �roofs�.

De�nition 1.5. Let S be a class of morphisms closed under composition. For X,Y ∈ A , a roof diagram
from X to Y is a diagram of morphisms

W

s

~~

f

  
X Y

with s ∈ S . Two roof diagrams X
s← W

f→ Y and X
s′← W ′

f ′→ Y are equivalent if there is a commutative
diagram in A

W

s

}}

f

!!
X U

OO

��

uoo Y

W ′
s′

aa

f ′

>>

with u ∈ S .

If S satis�es L0-L3, one can identify HomAS (X,Y ) with equivalence classes of roof diagrams, where

composition of roof diagrams X
s← W → Y and Y

s′← W ′ → Z is a commutative diagram X ← W ′ → Z of
the form

W ′′

s′′

}} ""
W

s

~~ !!

W ′

s′

||   
X Y Z

with s′′ ∈ S . The existence of such a diagram follows from L1.

Remark 1.6. Basement diagrams can also be used instead of roof diagrams to describe HomAS (X,Y ). These
are diagrams of the form

X

  

Y

s

~~
W

where s ∈ S .
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Unfortunately, quasi-isomorphisms in Ch(A ) do not satisfy these conditions. To remedy this, instead of
working with Ch(A ), we work with the homotopy category K(A ).

De�nition 1.7. The homotopy category of A , denoted by K(A ) , is the category whose objects are
those of Ch(A ), but whose morphisms are homotopy classes of chain maps. That is, HomK(A )(A

•, B•) :=
HomCh(A )(A

•, B•)/ ∼, where for two morphisms f, g : A• → B• in Ch(A ), we say f ∼ g if there exists a
collection of morphisms hi : Ai → Bi−1, i ∈ Z, such that

f i − gi = hi+1 ◦ diA + di−1B ◦ hi.

As in the case of Ch(A), let K−(A ) (resp. K+(A ), Kb(A )) denote the full subcategory of K(A ) of
bounded-above (resp. bounded-below, bounded) complexes.

Let K◦(A ) denote any of the four homotopy categories.

Remark 1.8. One can show that K◦(A ) is equivalent to Ch◦(A ) localized at chain homotopies.

Proposition 1.9. In K◦(A ) the class of quasi-isomorphisms satis�es L1-L3.

Proof. See Section I.6 of [2].

De�nition 1.10. The derived category (resp. bounded-above derived category, bounded-below derived
category, bounded derived category) of A , denoted D(A ) (resp. D−(A ), D+(A ), Db(A )) is the category
obtained from K(A ) (resp. K−(A ),K+(A ),Kb(A )) by localizing at the quasi-isomorphisms.

Let D◦(A ) denote any of the four derived categories.

Remark 1.11. For an object A ∈ A , we can view A as a chain complex A• where A0 = A and Ai = 0 for
i 6= 0. This allows us to embed A into Db(A ) as a full subcategory.

We will now proceed to the important notion of distinguished triangles.

De�nition 1.12. Let f : (A•, d•A)→ (B•, d•B) be a chain map. The chain-map cone (mapping cone) of
f , denoted by cone(f), is the chain complex given by

cone(f)i = Ai+1 ⊕Bi

with di�erential di : cone(f)i → cone(f)i+1 given by

di =

[
−di+1

A 0
f i+1 diB

]
.

The inclusion maps Bi → cone(f)i and projection maps cone(f)i → Ai+1 give chain maps

i2 : B → cone(f) and p1 : cone(f)→ A[1]

Exercise 1.13. Show that the composition B• → cone(f)→ A•[1] is zero and the composition A• → B• →
cone(f) is homotopic to the zero map.

De�nition 1.14. A diagram
A1 → A2 → A3 → A1[1]

in K◦(A ) (resp. D◦(A )) is called a distinguished triangle if it is isomorphic in K◦(A ) (resp. D◦(A ))
to a diagram of the form

A
f→ B

i2→ cone(f)
p1→ A[1]

for some chain map f .

An additive category with a shift functor (automorphism) and distinguished triangles (collection of di-
agrams) satisfying some natural axioms is called a triangulated category. The homotopy category K◦(A )
and the derived category D◦(A ) are natural examples.

Remark 1.15. If we have a distinguished triangle X → Y → Z → X[1], then it gives us a long exact sequence
in cohomology

· · · −→ Hk(X) −→ Hk(Y ) −→ Hk(Z) −→ Hk+1(X) −→ · · · .
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2 Derived Functors

De�nition 2.1. Let T and T ′ be triangulated categories (e.g. Db(A ) and Db(A ′)). A triangulated
functor is an additive functor F : T → T ′ with a natural isomorphism

F (X[1]) ∼= F (X)[1]

such that for any distinguished triangle X → Y → Z → X[1] in T ,

F (X)→ F (Y )→ F (Z)→ F (X)[1]

is a distinguished triangle in T ′.

Lemma 2.2. If F : A → B is an additive functor of additive categories, the induced functor F : K◦(A )→
K◦(B) is a triangulated functor. If in addition F is an exact functor of abelian categories, the induced
functor F : D◦(A )→ D◦(B) is a triangulated functor.

Proof. Easy exercise.

Recall that a complex A• in Ch◦(A ) or K◦(A ) is called acyclic Hi(A•) = 0 for all i. If we have
a functor F that is not exact, the image of an acyclic complex may not be acyclic, or it may not send
quasi-isomorphisms to quasi-isomorphisms.

In the case of an exact functor F , we obtain a triangulated functor F : D◦(A )→ D◦(B) and a natural
isomorphism θ : LB ◦ F

∼→ F ◦ LA where LA : K◦(A ) → D◦(A ) is the localization functor. Then in the
case where F is not exact, the next best thing is to have a natural transformation in one direction.

De�nition 2.3. Let F : K◦(A )→ K◦(B) be a triangulated functor. A right derived functor of F is a
triangulated functor RF : D◦(A )→ D◦(B) with a natural transformation

ε : LB ◦ F → RF ◦ LA

that is universal in the following sense: if G : D◦(A ) → D◦(B) is another triangulated functor with a
natural transformation φ : LB ◦ F → G ◦ LA , then there exists a unique functor morphism φ̃ : RF → G
such that φ = (φ̃LA ) ◦ ε, where φ̃LA : RF ◦ LA → G ◦ LA .

Similarly, a left derived functor of F is a triangulated functor LF : D◦(A )→ D◦(B) together with a
natural transformation

η : LF ◦ LA → LB ◦ F

that is universal in the following sense: if G : D◦(A ) → D◦(B) is another triangulated functor with a
natural transformation φ : G◦LA → LB ◦F , then there exists a unique functor morphism φ̃ : G→ LF such
that φ = η ◦ (φ̃LA ) where φ̃LA : G ◦ LA → LF ◦ LA .

De�nition 2.4. Let A be an abelian category and Q ⊂ A a full subcategory. Q is said to be large
enough on the right if for any object A ∈ A , there is an injective map A→ X with X ∈ Q.

Similarly, Q is said to be large enough on the left if for any object A ∈ A , there is a surjective map
X → A with X ∈ Q.

De�nition 2.5. Let Q ⊂ A be a full subcategory.

1. Given A ∈ Ch◦(A ), a right Q-resolution of A is a quasi-isomorphism q : A → Q such that
Q ∈ Ch◦(Q). For A ∈ Ch+(A ), such a right resolution is said to be strict if A ∈ Ch(A )≥n and
Q ∈ Ch(A )≥n for a �xed n.

2. Given A ∈ Ch◦(A ), a left Q-resolution of A is a quasi-isomorphism q : Q → A such that Q ∈
Ch◦(Q). For A ∈ Ch−(A ), such a right resolution is said to be strict if A ∈ Ch(A )≤n and Q ∈
Ch(A )≤n for a �xed n.
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Example 2.6. Consider the case of A ∈ A as a sequence A• where Ai = 0 for i 6= 0 and A0 = A. Then a
strict right Q-resolution Q• of A is the same as giving an exact sequence

0 −→ A0 q−→ Q0
d0Q−→ Q1

d1Q−→ · · ·

The map q : A0 → Q0 is called the augmentation map.

Proposition 2.7. Let A be an abelian category and let Q ⊂ A be a full subcategory.

1. If Q is large enough on the right, then every object in Ch+(A ) admits a strict right Q-resolution.

2. If Q is large enough on the left, then every object in Ch−(A ) admits a strict left Q-resolution.

Proof. 1) Exercise. Hint: Take an injection q0 : A0 → Q0 where Q0 ∈ Q. To construct Q1, let r :

A0 → Q0 ⊕ A1 be given by r =

[
q0

−d0A

]
. Then choose an injection coker r → Q1 with Q1 ∈ Q. The map

q1 : A1 → Q1 is the composition
A1 ↪→ Q0 ⊕A1 � coker r → Q1

and the di�erential d0Q : Q0 → Q1 is the composition

Q0 ↪→ Q0 ⊕A1 � coker r → Q1.

[WLOG, assume A ∈ Ch+(A )≥0. We want to construct a quasi-isomorphism q = (qi) : A• → Q• where
Q• ∈ Ch+(Q)≥0. As Q is large enough, we have an injection q0 : A0 → Q0. Suppose we have already
constructed Q• and maps q• up to the ith step. Let p : Qi−1 � coker di−2Q be the quotient map. Let

r : Ai−1 → coker di−2Q ⊕ Ai be the map given by r =

[
pqi−1

−di−1A

]
. Let s : coker di−2Q ⊕ Ai � coker r be the

quotient. Choose an injection u : coker r → Qi with Qi ∈ Q. De�ne di−1Q = u ◦ s ◦ i1 ◦ p and qi = u ◦ s ◦ i2
as in the diagram:

Ai−1
di−1
A //

r

++

qi−1

��

Ai

i2tt

qi

��

coker di−2Q ⊕Ai

s

&&
coker di−2Q

i1

77

coker r

u
""

Qi−1

p

::

di−1
Q // Qi

Then check that Q• is a complex and q is a chain map and quasi-isomorphism.]

De�nition 2.8. Let F : A → B be a left exact functor of abelian categories. A full subcategory Q ⊂ A
is said to be a right adapted class for F if it satis�es the following conditions:

1. The class Q is large enough on the right.

2. If 0→ X ′ → X → X ′′ → 0 is a short exact sequence with X ′, X ∈ Q, then X ′′ ∈ Q.

3. For any short exact sequence 0 → X ′ → X → X ′′ → 0 with X ′ ∈ Q, the sequence 0 → F (X ′) →
F (X)→ F (X ′′)→ 0 is exact.

Similarly, for a right exact functor F : A → B, a full subcategory Q ⊂ A is said to be a left adapted
class for F if it satis�es the following conditions:
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1. The class Q is large enough on the left.

2. If 0→ X ′ → X → X ′′ → 0 is a short exact sequence with X,X ′′ ∈ Q, then X ′ ∈ Q.

3. For any short exact sequence 0 → X ′ → X → X ′′ → 0 with X ′′ ∈ Q, the sequence 0 → F (X ′) →
F (X)→ F (X ′′)→ 0 is exact.

Example 2.9. Let A be an algebra and A-mod be the category of A-modules. Then the full subcategory
of projective modules P is large enough on the left and the full subcategory of injective modules I is large
enough on the right.

Let M be an A-module. Then Hom(M,−) is left exact with I as a right adapted class and M ⊗− (or
equivalently −⊗M) is right exact with P as a left adapted class.

Lemma 2.10. Let A and B be abelian categories.

1. Let F : A → B be a left exact functor, and let Q be a right adapted class for F . If Q ∈ Ch+(Q)
is acyclic, then F (Q) is acyclic. If f : X → Y is a quasi-isomorphism in Ch+(Q) , then F (f) is a
quasi-isomorphism.

2. Let F : A → B be a right exact functor, and let Q be a left adapted class for F . If Q ∈ Ch−(Q)
is acyclic, then F (Q) is acyclic. If f : X → Y is a quasi-isomorphism in Ch−(Q) , then F (f) is a
quasi-isomorphism.

Proof. Suppose F is left exact and let Q ∈ Ch+(Q) be acyclic. Let Ki = im di−1 = ker di. Any left exact
functor preserves kernels, then F (Ki) ∼= kerF (di). Using induction, suppose im F (di−2) = F (Ki−1) and
Ki−1 ∈ Q. We have a short exact sequence

η : 0→ Ki−1 → Qi
di−1

→ Ki → 0.

As Q is an adapted class, we have Ki ∈ Q and F (η) is an exact sequence, so im F (di−1) ∼= F (Ki). Thus
F (Q) is acyclic.

Suppose f : X → Y is a quasi-isomorphism. Extend f to a distinguished triangle X
f→ Y → K → in

K+(Q). Note that f is a quasi-isomorphism if and only if K is acyclic, so apply the above result (apply
cohomology to the triangle to get a long exact sequence of cohomology).

Theorem 2.11. Let A and B be abelian categories.

1. If F : A → B is a left exact functor that admits a right adapted class, then it admits a right derived
functor RF : D+(A )→ D+(B).

2. If F : A → B is a right exact functor that admits a left adapted class, then it admits a left derived
functor LF : D−(A )→ D−(B).

We will describe what the functor RF does on objects and morphisms. For X ∈ Ch+(A ), choose a right
Q-resolution qX : X → QX . De�ne

RF (X) = F (QX).

Let f : X → Y be a morphism. As qX is a quasi-isomorphism, we can form f̃ = qY ◦ f ◦ q−1X : QX → QY .

As a basement, f̃ can be represented by the diagram

QX
h

!!

QY
s

}}
W

where s is a quasi-isomorphism. Then qW ◦ s : QY → QW is a quasi-isomorphism so F (qW ◦ s) is a
quasi-isomorphism. De�ne RF (f) : RF (X)→ RF (Y ) to be the basement diagram

RF (X) = F (QX)

F (qW ◦h)

''

RF (Y ) = F (QY )

F (qW ◦s)

ww
F (QW )
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De�ne the natural transformation ε : LB ◦ F → RF ◦ LA where for X ∈ K+(A ), let εX be the map

LB(F (X))
LB(F (qX))−−−−−−−→ LB(F (QX)) = RF (LA (X)).

Exercise 2.12. Check the above is well-de�ned. In particular, check that the de�nition does not depend
on which Q-resolution is taken and does not depend on which basement diagram is taken.

Proposition 2.13. Let F : A → B and G : B → C be left exact functors. Suppose that F and G have
right adapted classes Q ⊂ A and S ⊂ B, respectively, such that F (Q) ⊂ S . Then there is a canonical
isomorphism R(G ◦ F )

∼→ RG ◦RF . Similarly for right exact functors.

Proof. Exercise.

3 Sheaves

As the category of sheaves of C-vector spaces on X, Sh(X), is abelian, we can form its derived category
D◦(X) := D◦Sh(X).

Proposition 3.1. Sh(X) has enough injectives.

Proof. For M a C-vector space, as shown in Example 2.2.4 of Stefan's talk, we have HomC(Gx,M) ∼=
HomSh(X)(G,Mx) natural in G, where Mx is the skyscraper sheaf at x. As all vector spaces are injective
objects, then HomC(−,M) is an exact functor so HomSh(X)(−,Mx) is also exact. Thus Mx is an injective
sheaf. Using the universal property of the product,

∏
x∈X(Mx) is also an injective sheaf.

Let F be a sheaf. There is a sheaf map ϕ : F → (Fx)
x
with ϕx : Fx → Fx the identity. By the universal

property of the product, we obtain an injective sheaf map θ : F →
∏
x∈X(Fx)x.

By the proposition, all left exact functors have derived functors. However, Sh(X) may not have enough
projectives.

As the pullback functor is exact, for f : X → Y , let f∗ : D◦(Y )→ D◦(X) denoted the induced functor.
Since it is exact, we have (g ◦ f)∗F ∼= f∗g∗F for F ∈ D◦(X), by Proposition 2.1.5 of Stefan's talk, and
Proposition 2.13.

As the push-forward ◦f∗ is left exact, it has a derived functor denoted by f∗ : D+(X)→ D+(Y ).

Proposition 3.2. The push-forward functor ◦f∗ sends injectives to injectives.

Proof. Exercise. Use the fact that ◦f∗ is a right adjoint to f∗ (Proposition 2.2.2 of Stefan's talk) and f∗ is
exact.

Corollary 3.3. Let f : X → Y and g : Y → Z be continuous. Then for F ∈ D+(X), we have g∗f∗F ∼=
(g ◦ f)∗F .

De�nition 3.4. Let A ∈ K−(A ) and B ∈ K+(A ). Their Hom chain-complex, denoted chHom(A,B)
is the chain complex in (VectC) whose terms are

chHom(A,B)n =
⊕
j−i=n

Hom(Ai, Bj)

and di�erential given by
d(f) = dB ◦ f + (−1)j−i+1f ◦ dA

for f ∈ Hom(Ai, Bj).

As Sh(X) has enough injectives, we can form the derived Hom functor (in the second variable)
RHom : D−(X)op ×D+(X)→ D+(VectC).

Proposition 3.5. For A ∈ D−(X) and B ∈ D+(X), there is a natural isomorphism

HomD(X)(A,B) ∼= H0(RHom(A,B)).
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Theorem 3.6. Let f : X → Y be a continuous map. For F ∈ D+(Y ) and G ∈ D+(X), there are natural
isomorphisms

RHomD+(X)(f
∗F ,G) ∼= RHomD+(Y )(F , f∗G)

HomD+(X)(f
∗F ,G) ∼= HomD+(Y )(F , f∗G)

Proof. Replace G by an injective resolution. The �rst claim reduces to the claim that there is a natural
isomorphism chHom(f∗F ,G) ∼= chHom(F ,◦ f∗G), which follows from the fact that f∗ is adjoint to ◦f∗ in
the abelian case. The second claims follows from fact that the 0th cohomology of RHom is Hom.

Remark 3.7. Let X,Y ∈ Sh(X). For n ∈ Z, the nth Ext group of X and Y , denoted by ExtnSh(X)(X,Y )

or Extn(X,Y ), is given by

Extn(X,Y ) := HomD(X)(X,Y [n]) = Hn(RHom(X,Y )).

3.1 Flabby Sheaves

De�nition 3.8. A sheaf F is said to be �abby if for every open set U ⊂ X, the restriction map F(X)→
F(U) is surjective.

Example 3.9. If X has the discrete topology, for a sheaf F on X and U ⊂ X, we have, by the gluing axiom,

F(U) =
∏
x∈U
F({x}).

Then the restriction map F(X)→ F(U) is surjective. Thus every sheaf on a discrete space is �abby.

Lemma 3.10. Let f : X → Y be a continuous map.

1. Flabby sheaves form an adapted class for ◦f∗.

2. If F is �abby, then ◦f∗(F) is �abby.

Proof. 1) Exercise.
2) Let U ⊂ Y be open. Then ◦f∗(F)(Y )→◦f∗(F)(U) is the map F(X)→ F(f−1(U)), which is surjective

as F is �abby.

Remark 3.11. We will later show that injective sheaves are �abby, but the converse is not true in general.

Let Xdisc be the set X but with the discrete topology. Let i : Xdisc → X be the obvious map. For any
sheaf F , the sheaf i∗F is �abby, as shown in the example above. Then by 2) of the lemma, ◦i∗i

∗F is �abby.
This gives a map F ↪→◦i∗i∗F , which can be shown to be an injection. Thus we can embed any sheaf as a
subsheaf of a �abby sheaf. Iterating this, we construct the following �abby resolution:

0→ F ε→ i∗i
∗F d0→ i∗i

∗(cokε)
d1→ i∗i

∗(cokd0)→ · · ·

We can do this for any F ∈ Ch+(Sh(X)) as well. This resolution is called the Godement resolution of
F .
Remark 3.12. As Γ is push-forward to a point, �abby sheaves are also an adapted class for Γ.

As an application of �abby sheaves, we will show how Leray-Cartan cohomology (sheaf cohomology) is
related to singular cohomology.

De�nition 3.13. Let X be a topological space, and let F ∈ D+(X). The nth hypercohomology of F is

Hn(X,F) := Hn(RΓ(F)).

The nth hypercohomology with compact support of F is

Hn
c (X,F) := Hn(RΓc(F)).
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De�nition 3.14. Let X be a topological space. The nth Leray-Cartan cohomology group (sheaf
cohomology) of X with coe�cients in C is the nth hypercohomology of the constant sheaf CX :

Hn(X;C) := Hn(X,CX).

Similarly, the nth Leray-Cartan cohomology group with compact support is

Hn
c (X;C) := Hk

c (X,CX).

Theorem 3.15. If X is a locally contractible topological space, then there is a natural isomorphism

Hk(X;C) ∼= Hk
sing(X;C).

In addition, if X is also locally compact, then there is a natural isomorphism

Hk
c (X;C) ∼= Hk

sing,c(X;C).

Example 3.16. Let X be locally contractible and let f : X → pt. Then Hi(f∗CX) = Hi
sing(X,C).

Example 3.17. Let f : X → Y be a locally trivial �bration of locally contractible spaces. Then f∗(CX)
is a direct sum of local systems whose underlying vector spaces are the cohomologies of the �bers, that is,
H•(f−1(y)) for y ∈ Y . This can be deduced using a later result (Theorem 6.3).

Proof of Theorem. Let S i(X) be the group of singular i-cochains with coe�cients in C, that is, S i(X) =
HomZ(Ci(X),C) where Ci(X) is the free abelian group with basis generated by continuous maps ∆i → X.
Let

S •(X) = (· · · → 0→ S 0(X)
d→ S 1(X)

d→ S 2(X)
d→ · · · ),

a chain complex of vector spaces. Then Hk
sing(X;C) = Hi(S •(X)).

For U ⊂ V , we have a restriction map S i(V ) → S i(U) so the map U 7→ S i(U) makes S i into a
presheaf on X. We then get a sequence of presheaves

0→ CX,pre
η→ S 0 d→ S 1 → · · ·

where η is obtained from the fact that X is locally contractible and the 0th cohomology of a point is C.
Shea�fy to get the sequence

0→ CX
η→ S 0,+ d→ S 1,+ → · · ·

We will show that this is a �abby resolution of CX . First, we will show S i satis�es the gluing axiom.
Let (Uα)α∈I be an open cover of an open set U ⊂ X and let (sα ∈ S i(Uα))α∈I be a collection of singular
cochains satisfying sα|Uα∩Uβ = sβ |Uα∩Uβ . De�ne s ∈ S i(U) as follows: for a singular simplex c : ∆i → U ,
let

s(c) =

{
sα(c) if im(c) ⊂ Uα
0 if im(c) 6⊂ Uα for all α ∈ I

It is clear that s|Uα = sα for all α so S i satis�es the gluing axiom. Let S i
loc(U) = {s ∈ S i(U) :

for some open cover (Uα)α∈I of U, we have s|Uα = 0 for all α ∈ I}. We will show that

S i,+(U) ∼= S i(U)/S i
loc(U).

Consider the natural shea��cation morphism + : S i(U) → S i,+(U) sending ϕ 7→ +(ϕ) =: ϕ+. Then
ϕ+ = 0 if and only if ϕ|Uα = 0 for some open cover (Uα)α∈I of U . Thus the kernel is S i

loc(U). The gluing
axiom shown above gives surjectivity.

As S i,+(U) is a quotient of S i(U), to prove it is �abby, it su�ces to prove the restriction S i(X) →
S i(U) is surjective. Let s ∈ S i(U). For a singular simplex c : ∆i → X de�ne s̃ ∈ S i(X) by

s̃(c) =

{
s(c) im(c) ⊂ U
0 im(c) 6⊂ U
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Then s̃|U = s.
Exactness in degree > 0 follows from X being locally contractible: for U ⊂ X contractible, we have

an exact sequence S i−1(U) → S i(U) → S i+1(U) so taking the direct limit using a basis of contractible
neighbourhoods, we get an exact sequence of stalks S i−1

x → S i
x → S i+1

x . We have exactness in degree 0
by construction.

It turns out that S • is quasi-isomorphic to S •,+. Thus we have a quasi-isomorphism CX → S •,+. As
�abby sheaves are an adapted class for Γ, we have

RΓ(CX) ∼= Γ(S •,+) = S •,+(X)
qis← S •(X).

Then the result follows after taking cohomology. A similar proof is done for the compact support case.

Exercise 3.18. Let j : C× ↪→ C be the natural inclusion. Let F = j∗C. Show that H0(F) = C, a constant
sheaf, and H1(F) = C0, a skyscrapher sheaf.

3.2 C-Soft Sheaves

For this section, assume all spaces are locally compact.
As proper push-forward is left exact, the right derived functor for the proper push-forward ◦f! is f! :

D+(X)→ D+(Y ). Unlike the push-forward, the proper push-forward does not map injectives to injectives.
It requires a di�erent adapted class called c-soft sheaves.

De�nition 3.19. A sheaf F on X is said to be c-soft if for every compact K ⊂ X, the natural map
Γ(F)→ Γ(F|K) is surjective.

Let f : X → Y be a continuous map of locally compact spaces. A sheaf F on X is said to be relatively
c-soft for f , or f -relative c-soft, if for each y ∈ Y , the sheaf F|f−1(y) is c-soft.

Exercise 3.20. Let f : X → Y be a continuous map between locally compact topological spaces. Show any
c-soft sheaf on X is relatively c-soft for f .

Lemma 3.21. Every �abby sheaf on X is c-soft.

Proof. Let F be a �abby sheaf on X. Let K ⊂ X be compact and s ∈ Γ(F|K). Using the fact that

Γ(F|K) ∼= lim
V ⊂ X open
V ⊃ K

F(V )

we have s to be the restriction of a section s̃ ∈ F(U) for some open set U containing K. As F is �abby, s̃ is
the restriction of a global section in Γ(F), hence so is s. Therefore F is c-soft.

Lemma 3.22. Let f : X → Y be a continuous map of locally compact spaces. If F is c-soft, then ◦f!(F) is
c-soft.

Lemma 3.23. Let f : X → Y be a continuous map of locally compact spaces. The class of c-soft sheaves
and the class of f -relative c-soft sheaves are both adapted class for ◦f!.

Proposition 3.24. Let f : X → Y and g : Y → Z be a continuous maps of locally compact spaces. For
F ∈ D+(X), there is a natural isomorphism g!f!F ∼= (g ◦ f)!F .

Proof. Follows from the same for result for ◦g!,
◦ f! (Proposition 4.0.3 in Stefan's talk), Proposition 2.13, and

Lemma 3.22.

Theorem 3.25 (Proper Base Change). Suppose we have a Cartesian square of continuous maps between
locally compact spaces

X ′
g′ //

f ′

��

X

f

��
Y ′

g // Y

Then there is a natural isomorphism of functors g∗ ◦ f!
∼→ f ′! ◦ (g′)∗.
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Proof. Stefan proved the abelian version of this in his talk (Theorem 4.1.1). From that we obtain an
isomorphism R(g∗ ◦f!)

∼→ R(◦f ′! (g
′)∗). As the pullback functor is exact, we have R(g∗◦f!) ∼= R(g∗)◦R(◦f!) =

g∗ ◦ f!.
Suppose F ∈ Sh(X) is c-soft. Then F|f−1(g(y)) is c-soft. As (f ′)−1(y) ∼= f−1(g(y)), the sheaf (g′)∗F

is relatively c-soft for f ′. Then as relatively c-soft sheaves for f ′ form an adapted class for (f ′)! and using
Proposition 2.13, we have R(◦f ′! (g

′)∗) ∼= f ′! (g
′)∗.

3.3 Derived Functor of Restriction with Supports

Let h : Y → X be the inclusion of a locally closed subset. Recall that the de�nition of ◦h! is

◦h!(F)(U) = lim
V ⊂ X open
V ∩ Y = U

{s ∈ F(V ) : supp s ⊂ U}

and that it is left exact.

Lemma 3.26. ◦h! takes injectives to injectives.

Proof. Let F be an injective sheaf. As shown in Stefan's talk (Lemma 5.0.1), h! is exact when h is the
inclusion of a locally closed subspace. Then using adjointness (Proposition 5.1.2 of Stefan's talk), we have
Hom(−,◦ h!F) ∼= Hom(h!(−),F) which is the composition of the two exact functors Hom(−,F) and h!.
Thus Hom(−,◦ h!F) is exact, so ◦h!F is injective.

Let the right derived functor of ◦h! be denoted by h! : D+(X)→ D+(Y ).

Theorem 3.27. Let h : Y → X be a locally closed inclusion. For F ∈ D+(Y ) and G ∈D+(X), there is a
natural isomorphism

HomD+(X)(h!F ,G) ∼= HomD+(Y )(F , h!G).

Proof. Exercise.
[Follows from corresponding statement on abelian level for h!,

◦ h!, proved in Stefan's lecture (Proposition
5.1.2), and the fact that ◦h! takes injective to injectives.]

Remark 3.28. We will later construct f ! for any f and show it is adjoint to f!.

Proposition 3.29. Let k : W → Y and h : Y → X be locally closed inclusions. For F ∈ D+(W ), there is a
natural isomorphism h!k!F ∼= (h ◦ k)!F . For G ∈ D+(X), there is a natural isomorphism k!h!G ∼= (h ◦ k)!G.

Proof. The �rst assertion follows from similar statements on level of abelian categories (for locally closed
inclusions, h! and k! come from exact functors). For the second assertion, the right adjoint to h! ◦k! is k! ◦h!
and the right adjoint to (h ◦ k)! is (h ◦ k)!, then use uniqueness of adjoint functors.

Lemma 3.30. Injective sheaves are �abby.

Proof. Let j : U ↪→ X be the inclusion of an open subset of X. It's an exercise to show that the sheaf ◦j!CU
is given by

(◦j!CU )(V ) = {locally constant functions s : V → C such that s|X\U = 0}

for V ⊂ X open. Thus we can identify ◦j!CU with a subsheaf of CX .
Let F be an injective sheaf on X. Apply the exact functor Hom(−,F) to the injection j!CU → CX to

obtain a surjection Hom(CX ,F) → Hom(j!CU ,F). We have Hom(CX ,F) ∼= Γ(F), using Example 2.2.3
from Stefan's talk. Note that as j is an open inclusion, we have j! = j∗, as in Section 5.1 of Stefan's talk.
We have

Hom(j!CU ,F) ∼= Hom(CU , j∗F) ∼= Γ(j∗F) ∼= F(U).

Thus Γ(F)→ F(U) is surjective, so F is �abby.
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Proposition 3.31. Let h : Y → X be a locally closed inclusion. For any F ∈ D+(Y ), the natural maps

h!h∗F → h∗h∗F → F

F → h!h!F → h∗h!F

are isomorphisms.

Proof. Apply the same argument as in the abelian case (Proposition 5.1.5 of Stefan's talk) for an injective
resolution of F .

Theorem 3.32. Let i : Z ↪→ X be a closed inclusion and let j : U ↪→ X be the complementary open
inclusion.

1. We have i∗ ◦ j! = 0, i! ◦ j∗ = 0, and j∗ ◦ i∗ = 0.

2. For any F ∈ D+(X), there is a natural distinguished triangle

j!j
∗F → F → i∗i

∗F → .

3. For any F ∈ D+(X), there is a natural distinguished triangle

i∗i
!F → F → j∗j

∗F → .

In each of these triangles, the �rst two maps are adjunction maps.

Proof. 1) As i∗, j!, j
∗, i∗ come from exact functors, the �rst and third equalities follow from Stefan's talk

(Theorem 5.1.6). We have i! ◦ j∗ is right adjoint to j∗ ◦ i! ∼= j∗ ◦ i∗ = 0, so it vanishes too.
2) Let F ∈ Sh(X) and x ∈ X. Consider the maps on stalks induced by adjunction maps:

(j!j
∗F)x → Fx → (i∗i

∗F)x.

If x ∈ U , the �rst map is an isomorphism and the last term is 0. If x ∈ Z, the �rst term is 0 and the second
map is an isomorphism. Thus we get a short exact sequence of sheaves

0→ j!j
∗F → F → i∗i

∗F → 0.

For F ∈ D+(X), use the above short exact sequence to get a short exact sequence of chain complexes.
Let f : j!j

∗F → F and g : F → i∗i
∗F be the corresponding maps. De�ne θ : cone(f) → i∗i

∗F by
θi : (j!j

∗F)i+1 ⊕F i → (i∗i
∗F)i is the map θi =

[
0 gi

]
.

Exercise: θ is a chain map and a quasi-isomorphism.
Let i2 : F → cone(f) and p1 : cone(f)→ (j!j

∗F)[1] be the natural inclusion and projection maps. Then

j!j
∗F f−→ F θ◦i2−−−→ i∗i

∗F p1◦θ−1

−−−−→ (j!j
∗F)[1]

is a distinguished triangle.
3) Similar to 2): use adjunction maps to get a sequence of sheaves. Show it's a short exact sequence

when F is an injective sheaf.

4 Tensor Product and Sheaf Hom

4.1 Tensor Product

Since we are working over C, all sheaves are �at, so tensor product is an exact functor in both variables.
Then it induces a functor ⊗ : D(X)×D(X)→ D(X).

Proposition 4.1. Let f : X → Y be a continuous map. For F ,G ∈ D(X), there is a natural isomorphism
f∗(F ⊗ G) ∼= f∗F ⊗ f∗G.
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Proof. Use the sheaf level result (Lemma 6.1.1 of Stefan's talk).

Proposition 4.2 (Projection Formula). Let f : X → Y be a continuous map of locally compact spaces. For
F ∈ D+(X) and G ∈ D+(Y ), there is a natural isomorphism f!F ⊗ G

∼→ f!(F ⊗ f∗G).

To prove this, we �rst need a few results.

Lemma 4.3. Let X be a locally compact space. Then F ∈ Sh(X) is c-soft if and only if for every closed
subset Z ⊂ X, the natural map Γc(F)→ Γc(F|Z) is surjective.

Proof. Exercise. (Proposition 2.5.6 of [2]).

Lemma 4.4. Let f : X → Y be a continuous map of locally compact spaces. For F ∈ Sh(X) and G ∈ Sh(Y ),
there is a natural morphism ◦f!F ⊗ G → ◦f!(F ⊗ f∗G).

Proof. Let U ⊂ Y be open. By de�nition we have

(◦f!F ⊗pre G)(U) = {s ∈ F(f−1(U)) : f |supp s is proper} ⊗ G(U)

◦f!(F ⊗pre f∗pre(G))(U) = {u ∈ F(f−1(U))⊗ (f∗preG)(f−1(U)) : f |supp u is proper}
For t ∈ (◦f!F ⊗pre G)(U), we can write t as a �nite sum

∑
i si ⊗ s′i where si ∈ (◦f!F)(U) and s′i ∈ G(U) =

(f∗preG)(f−1(U)). Then we can regard each si⊗s′i as an element of ◦f!(F⊗pref∗preG)(U). We have supp(si⊗s′i)
to be a closed subset of supp si and in general, supp

∑
i si ⊗ s′i is a closed subset of

⋃
i supp si so

f |supp∑
si⊗s′i : supp

∑
i

si ⊗ s′i → Y

is proper. This gives us a map (◦f!F ⊗pre G)(U)→ ◦f!(F ⊗pre f∗preG)(U) so we get a presheaf map ◦f!F ⊗pre
G → ◦f!(F ⊗pre f∗preG). Composing with the shea��cation maps f∗preG → f∗G and F ⊗pre f∗G → F ⊗ f∗G,
we get a map ◦f!F ⊗pre G → ◦f!(F ⊗ G). The universal property of shea��cation gives us the desired map
◦f!F ⊗ G → ◦f!(F ⊗ f∗G).

Lemma 4.5. Let X be a locally compact space. If F ∈ Sh(X) is c-soft and M ∈ VectC, then there is a
natural isomorphism Γc(F)⊗M → Γc(F ⊗MX).

Proof. Since M is a direct sum of copies of C, it su�ces to show that Γc commutes with arbitrary direct
sums (c.f. Lemma 2.1.34 of Pramod's text).

Proof of Projection formula. Suppose F ∈ Sh(X) is c-soft and M ∈ VectC. We will �rst show that the
morphism in Lemma 4.4 is an isomorphism by showing it induces an isomorphism on stalks. Let y ∈ Y .
Using Lemma 6.1.1 of Stefan's talk, we have

(◦f!F ⊗ G)y ∼= (◦f!F)y ⊗ Gy ∼= Γc(F|f−1(y))⊗ Gy

and
(◦f!(F ⊗ f∗G))y ∼= Γc((F ⊗ f∗G)|f−1(y)) ∼= Γc(F|f−1(y) ⊗ g∗Gy)

where g : f−1(y)→ pt. These two are isomorphic by Lemma 4.5.
Suppose F is c-soft and G is a sheaf. Then we will show F ⊗ f∗G is relatively c-soft for f . Let y ∈ Y .

Consider the commutative diagram

Γc(F)⊗ Gy //

∼
��

Γc(F|f−1(y))⊗ g∗f−1(y)Gy

∼
��

Γc(F ⊗ f∗G) // Γc((F ⊗ f∗G)|f−1(y))

where the vertical maps are isomorphisms by Lemma 4.5. The top horizontal map is surjective as F is c-soft
so the bottom map is also surjective. Thus F ⊗ f∗G is relatively c-soft for f by Lemma 4.3.

Let F ∈ D+(X) and G ∈ D+(Y ). Replace F by a c-soft resolution. Then F ⊗ f∗G is relatively c-soft
for f , an adapted class for f!. Then conclude the result using the isomorphism obtained at the beginning of
this proof and Proposition 2.13.
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We will now introduce the external tensor product functor.

De�nition 4.6. Let F ∈ Sh(X) and G ∈ Sh(Y ). Their external tensor product F � G is the sheaf on
X × Y given by F � G = p∗1F ⊗ p∗2G.

As the pullback functor and tensor product functor are exact, we obtain a derived external tensor product
functor � : D−(X)×D−(Y )→ D−(X × Y ).

4.2 Sheaf Hom

Recall that the sheaf hom functor H om is left exact in both variables. For F ∈ Ch−(Sh(X)) and G ∈
Ch+(Sh(X)), we can form the chain complex chH om(F ,G), in a way similar to chHom. As we have
enough injectives, we can form the derived functor (in the second variable)

RH om : D−(X)×D+(X)→ D+(X).

Explicitly, RH om(F ,G) is computed by replacing G with an injective resolution, and then applying chH om.
In general, there is no adapted class for H om in the �rst variable.

Lemma 4.7. For F ∈ D+(X), there is a natural isomorphism

RH om(CX ,F) ∼= F .

Proof. If F is a sheaf, by Example 2.2.3 of Stefan's talk, we have Hom(CX ,F) ∼= Γ(F). Applying this to
H om, we get H om(C,F)(U) ∼= Γ(F|U ) = F(U) so H om(C,−) is the identity functor. Then RH om(C,−)
is also isomorphic to the identity functor.

Lemma 4.8. Let U ⊂ X be an open subset. For any F ∈ D−(X) and G ∈ D+(X), there is a natural
isomorphism

RH om(F ,G)|U ∼= RH om(F|U ,G|U ).

Proof. Use the abelian version, which is clear from the de�nition, and the fact that restriction of an injective
sheaf to an open subset is injective. The latter fact follows from results in Section 5 of Stefan's talk, namely
if j : U ↪→ X is an open inclusion, then j! = j∗ and j! is exact, so for an injective sheaf F on X, we have
Hom(−,F|U ) ∼= Hom(−, j∗F) ∼= Hom(j!(−),F), which is a composition of exact functors. Hence F|U is
injective.

Proposition 4.9. For F ∈ D−(X) and G ∈ D+(X), there is a natural isomorphism

RΓ(RH om(F ,G))
∼→ RHom(F ,G).

Proof. If F and G are sheaves, we have Γ(H om(F ,G)) = Hom(F ,G) by de�nition. Suppose G is an injective
sheaf. We will show H om(F ,G) is �abby so that chH om(F ,G) is a chain complex of �abby sheaves, which
is an adapted class for Γ. Let j : U → X be an open subset. We have an injection j!j

∗F → F from Theorem
3.29. Applying the exact functor Hom(−,G) and using j∗ ∼= j!, we get a surjection

Hom(F ,G) � Hom(j!j
∗F ,G) ∼= Hom(j∗F , j∗G) = Hom(F|U ,G|U ).

Thus Γ(H om(F ,G))→H om(F ,G)(U) is surjective, so H om(F ,G) is �abby. For the derived case, conclude
using Proposition 2.13.

Theorem 4.10. For F ,G ∈ D−(X) and H ∈ D+(X), there is a natural isomorphism

RHom(F ⊗ G,H) ∼= RHom(F , RH om(G,H)).

Proof. Exercise.
[Replace H by an injective resolution. Note that for an injective sheaf I, we have Hom(−,H om(T , I)) ∼=

Hom(− ⊗ T , I), the composition of − ⊗ T and Hom(−, I), so it is exact. Thus H om(T , I) is injective.
Then the result follows from the abelian version.]
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Summarizing our results, we obtain this table:

Functor Exactness Adapted Classes
f∗,⊗,� exact
f∗, RΓ left injective, �abby
f! left injective, �abby, c-soft, relatively c-soft
RΓc left injective, �abby, c-soft

RH om left injective

5 Right Adjoint to Proper Push-Forward

In general, functors may not have adjoints. There are general categorical theorems (Adjoint Functor Theo-
rem and Special Adjoint Functor Theorem) detailing when adjoints exist, and they involve some �niteness
conditions on the category and the functor (preserves small colimits).

De�nition 5.1. Let X be a locally compact topological space. If there is a nonnegative integer n such that
every sheaf F ∈ Sh(X) admits a c-soft resolution of length at most n, then X is said to have �nite c-soft
dimension. In that case, the smallest such integer n is called the c-soft dimension of X.

Theorem 5.2. Let f : X → Y be a continuous map of locally compact spaces of �nite c-soft dimension.
There exists a triangulated functor f ! : D+(Y ) → D+(X) that is right adjoint to f! : D+(X) → D+(Y ).
Moreover, for F ∈ D+(X) and G ∈ D+(Y ), there is a natural isomorphism

RH om(f!F ,G) ∼= f∗RH om(F , f !G).

Proof. Idea: Suppose f ! has been constructed and f !G is a sheaf. For an open U ⊂ X, let jU : U ↪→ X be
the inclusion. Then

(f !G)(U) ∼= Γ(j!Uf
!G) ∼= Hom(CU , j!Uf !G) ∼= Hom(f!jU !CU ,G).

In general, given a sheaf F on X, the sheaf H om(F , f !G) is described by

H om(F , f !G)(U) = Hom(F|U , (f !G)|U ) ∼= Hom(jU !j
∗
UF , f !G) ∼= Hom(f!(F ⊗ jU !CU ),G)

where the last equality is due to the projection formula. Thus we can describe H om(F , f !G) without needing
f !.

For a c-soft sheaf K on X, F ∈ Sh(X) and G ∈ Sh(Y ), de�ne the sheaf EK(F ,G) by

EK(F ,G)(U) = Hom(f!(F ⊗ jU !(K|U )),G).

The functor EK(−,−) is left exact. There is a natural isomorphism EK(F ,G) ∼= H om(F , EK(CX ,G)). Let
r be the c-soft dimension of X. Then take a c-soft resolution of the constant sheaf:

0→ CX → K0 → · · · → Kr → 0.

Let K• be the complex
0→ K0 → · · · → Kr → 0.

For F ∈ Ch−(Sh(X)) and G ∈ Ch+(Sh(Y )), de�ne a complex of sheaves E(F ,G) by

E(F ,G)n =
⊕

k−(i+j)=n

EKj (F i,Gk)

with di�erential similar to the construction of chHom so that

E(F ,G) ∼= chH om(F , E(CX ,G)).

The functor E(−,−) has a right derived functor and de�ning f !(G) = RE(CX ,G) gives us the result.
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To show the isomorphism, let F ∈ D+(X) and G,H ∈ D+(Y ). Then using tensor-Hom adjunction and
the projection formula, we have

Hom(H, RH om(f!F ,G) ∼= Hom(H⊗ f!F ,G)
∼= Hom(f!(f

∗H⊗F),G)

∼= Hom(f∗H⊗F , f !G)

∼= Hom(f∗H, RH om(F , f !G))

∼= Hom(H, f∗RH om(F , f !G))

Then using Yoneda's lemma, we get the required isomorphism.

Proposition 5.3. Suppose we have a Cartesian square of continuous maps between locally compact spaces
of �nite c-soft dimension:

X ′
g′ //

f ′

��

X

f

��
Y ′

g // Y

Then there is a natural isomorphism of functors g′∗ ◦ (f ′)!
∼→ f ! ◦ g∗.

Proof. Let F ∈ D+(X) and G ∈ D+(Y ). Proper base change gives us

Hom(f ′! (g
′)∗F ,G) ∼= Hom(g∗f!F ,G).

Adjunction gives us
Hom(F , g′∗(f ′)!G) ∼= Hom(F , f !g∗G).

As this is for any F , the result follows from Yoneda's lemma.

Proposition 5.4. Let f : X → Y and g : Y → Z be continuous maps of locally compact spaces of �nite
c-soft dimension. There is a natural isomorphism f ! ◦ g! ∼= (g ◦ f)!.

Proposition 5.5. Let f : X → Y be a continuous map of locally compact spaces of �nite c-soft dimension.
For F ∈ Db(Y ) and G ∈ D+(Y ), there is a natural isomorphism

f !RH om(F ,G) ∼= RH om(f∗F , f ! G).

Proof. Let H ∈ D+(Y ). Then using tensor-Hom adjunction and the projection formula, we have

Hom(H, f !RH om(F ,G)) ∼= Hom(f!H, RH om(F ,G))
∼= Hom(f!H⊗F ,G)
∼= Hom(f!(H⊗ f∗F),G)

∼= Hom(H⊗ f∗F , f !G)

∼= Hom(H, RH om(f∗F , f !G))

Then using Yoneda's lemma, we get the required isomorphism.

6 Base Change for Locally Trivial Fibrations

De�nition 6.1. Let X be a locally contractible space. De�ne D◦loc(X) to be the full subcategory of D◦(X)
given by

D◦loc(X) = {F ∈ D◦(X)|Hk(F) ∈ Loc(X) for all k ∈ Z}.

Lemma 6.2. Let X be a topological space and let x ∈ X. For F ∈ D+(X), there is a natural isomorphism

Hn(Fx) ∼= lim
U3x

Hn(U,F|U ).
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Proof. (Skip proof) WLOG, F is a complex of �abby sheaves (Godement resolution). It is clear from the
de�nition that restriction of �abby is �abby. Thus

RΓ(F|U ) = Γ(F|U ) = F•(U).

As direct limits of k-modules are exact, lim→Hk(RΓ(F|U )) can instead by computed as the kth cohomology
of the chain complex

· · · → lim
U3x
Fk−1(U)→ lim

U3x
Fk(U)→ lim

U3x
Fk+1(U)→ · · ·

which is the chain complex for Fx.

Theorem 6.3. Let f : X → Y be a locally trivial �bration of locally contractible spaces.

1. For F ∈ D+
loc(X) and any point y ∈ Y , there is a natural isomorphism (f∗F)y ∼= RΓ(F|f−1(y)).

2. Suppose we have a Cartesian square of locally contractible spaces:

X ′
g′ //

f ′

��

X

f

��
Y ′

g // Y

For any F ∈ D+
loc(X), there is a natural isomorphism g∗f∗F

∼→ f ′∗(g
′)∗F .

Proof. 1) Let y ∈ Y . We have

Hk(f∗F)y ∼= lim
U3y

Hk(U, f∗F|U ) ∼= lim
U3y

Hk(f−1(U),F|f−1(U))

∼= lim
U3y

Hom(Cf−1(U),F|f−1(U)[k]).

As Y is locally contractible, this limit can be computed using contractible neighbourhoods of y. As f is a
locally trivial �bration, for U a su�ciently small neighbourhood of y, we have f−1(U) ∼= U × f−1(y). If U is
also contractible, we get that the inclusion f−1(y) ↪→ f−1(U) is a homotopy equivalence. Use this to deduce
that

Hk(f∗F)y ∼= lim
U3y

Hom(Cf−1(U),F|f−1(U)[k])

∼= Hom(Cf−1(y),F|f−1(y)[k]) ∼= Hk(f−1(y),F|f−1(y)).

Thus the base change map (f∗F)y → RΓ(F|f−1(y)) induces isomorphisms in cohomology, so it is an isomor-
phism.

2) In Stefan's talk (Theorem 4.1.1), a map g∗f∗F → f ′∗(g
′)∗F was constructed on the sheaf-theoretic

level. Replacing F with a �abby resolution, we get the corresponding derived version. It is enough to show
the result on stalks, which is 1).
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