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1 Sheaf functors and constructibility

In this note, we show the six operations of sheaves, namely pπ˚, π˚q, pπ!, π!q, and pbL,RHomq, map con-
structible complexes to constructible complexes following the exposition of [Achar], sections 3.8-3.10.

Conventions 1.1. Varieties are (quasiprojective) complex varieties, and we will use their complex topol-
ogy when dealing with constructibility of sheaves and complexes. Morphisms of varieties are denoted
by π, ρ, ..., etc. to distinguish them from functions on spaces, and we generally suppress R for right de-
rived pushforward functors. aX stands for the structure morphism of X . The coefficient ring for sheaves
is k “ C.1

So far, we have seen from Balazs’ talks that the functors π˚, b “ bL, π˚ for a finite morphism π,
and the extension by zeros functor k! (where k is a locally closed embedding) preserve constructibility. In
this section, we prove that the two pushforward functors π˚ and π!, the functor π!, and the derived Hom
functor RHom preserve constructibility. We first recall some relevant notions and results from algebraic
geometry.

Theorem 1.2 (Nagata compactification theorem). Let X π
ÝÑ Y be a map of varieties. Then there is a com-

mutative diagram of varieties

X �
�  //

π
  

X

rπ
��
Y

such that X rπ
ÝÑ Y is a proper morphism, and X 

ãÝÑ X is an open embedding.

Theorem 1.3 (Ehresmann fibration theorem). LetX π
ÝÑ Y be a smooth, surjective and proper map between

smooth varieties. Then π is a (differentiably) locally trivial fibration with respect to the complex topology.

1This in particular simplifies some proofs. It is indeed safe to assume k is a commutative Noetherian ring (with 1) of gld k ă
`8, as all the results remain valid (with slight modification of proofs).
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We need a generalized version of this theorem involving normal crossing stratifications on X . We first
introduce the following definitions:

Definition 1.4. Let X π
ÝÑ Y be a map between smooth varieties, and let Z ı

ãÝÑ X be a divisor with simple
normal crossings with components Z1,...,Zk. Denote each stratum of the associated normal crossing strat-
ification by XI . We say
(1) π is transverse to Z if for all I Ď t1, ..., ku, π|XI

: XI Ñ Y is smooth and surjective.
(2) π is a transverse locally trivial fibration if for each q P Y , we have an (analytic) open neighborhood V of

q and a diffeomorphism φ fitting into a commutative diagram π´1V
φ

«C8
//

π
""

V ˆ π´1pqq

p1
yy

V

, such that

for all I Ď t1, ..., ku, the restrictions pπ´1V q XXI
φ
ÝÑ V ˆ pπ´1pqq XXIq are also diffeomorphisms.

Remark. Note that if π is a transverse locally trivial fibration, then in particular π|XH : XzZ Ñ Y is a
locally trivial fibration.

Theorem 1.5 (Theorem 3.1.17, see also Ehresmann fibration theorem 1.3). Let X π
ÝÑ Y be a map of smooth

varieties, and let Z ı
ãÝÑ X be a divisor with simple normal crossings. If π is a smooth, proper morphism

that is transverse to Z, then π is a transverse locally trivial fibration.

For the proof of theorem 1.7 and for exercise 1.12, we record the following result from Balazs’ talk:

Lemma 1.6 (Lemma 3.5.8). Let X be a smooth variety, and let Z ãÑ X be a divisor with simple normal
crossings. If we denote U “ XzZ


ãÝÑ X for its complement open embedding, then ˚ sends finite type local

systems to constructible complexes on X with respect to the normal crossing stratification. Moreover, for
a local system L on U , codimX SuppH ip˚L q ě i for all i P Z.

Theorem 1.7 (π˚, π! preserves constructibility, theorem 3.8.1). For a map X π
ÝÑ Y of varieties, the functors

π˚ and π! preserve constructibility, i.e., map DbcpX, kq to DbcpY, kq.

First, consider the following special case of the proper pushforward functor:

Lemma 1.8. Let X be a smooth irreducible affine variety, and let L be a local system on X of finte type.
Then RΓcpL q is constructible.

Proof. This is proved by theorem 3.7.6 of [Achar] and by Poincaré duality for complex manifolds, both
discussed in Balazs’ talks. As X with its complex topology is a connected complex manifold, we know
H ipX,L _q Ñ

„
H2n´i
c pX,L q_ for each i P Z by Poincaré duality (where n “ dimX). Since X is an affine

variety, the left hand side is finite dimensional and vanishes unless 0 ď i ď n. Thus, H i
cpX,L q is finite

dimensional and vanishes unless n ď i ď 2n.

Proof of theorem 1.7. The proof proceeds by induction on dimX . In Step 1 and Step 2, we explain how one
can reduce to the case of (dominant) proper morphisms and open embeddings between irreducible vari-
eties. In Step 3, we prove the case of proper morphisms. In Step 4, we prove the case of open embeddings,
finishing the proof.

[Step 1]. Reduction to the case of constructible sheaves, X being irreducible, and π being dominant.
The first two reductions were explained in Balazs’ talk [Elek], proposition 3.18 and lemma 3.19. By de-

composing π as X Ñ imπ
cl

ãÝÑ Y , we know it is enough to consider the part X Ñ imπ, i.e., the case where
πpXq is dense in the target (π being dominant), since we know ı˚ “ ı! preserves constructibility. AsX was
irreducible, Y “ πpXq is also irreducible.
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[Step 2.] By Nagata’s compactification theorem 1.2, we know it is enough to treat the case of proper
morphisms and open embeddings separately for ˚-pushforwards.

[Step 3.] The case of proper morphisms. Suppose X π
ÝÑ Y is proper. We proceed by induction on

dimX . Note that the initial case dimX “ 0 is trivial. We will eventually reduce to the case of lemma 1.8
and the case involving locally trivial fibrations between smooth varieties, even if the latter morphisms are
not necessarily proper.
(3-1) Reduction to the case of Y being smooth.

By taking a dense and smooth open subset V 
ãÝÑ Y , we have a recollement distinguished triangle

!
!π˚F // π˚F // ı˚ı

˚π˚F
`1 // .

By adopting the abbreviation πV :“ π|π´1V : π´1V Ñ V for the base change of π, we know by proper
base change the above distinguished triangle takes the following form:

!pπV q˚pF |π´1V q
// π˚F // ı˚pπY zV q˚pF |π´1pY zV qq

`1 // .

The third object is constructible due to induction hypothesis, as π´1pY zV q ‰ X . Thus it is enough to
prove the case of πV , i.e., the case of morphisms with smooth target.
(3-2) Reduction to the case of F “ !L , where L is a local system of finite type on a smooth (nonempty)
affine open subset U 

ãÝÑ X .
Take a smooth affine open subset U making F |U “: L a local system. The following image of the

recollement distinguished triangle

π˚!
!F // π˚F // π˚ı˚ı

˚F
`1 //

“ π˚p!L q “ pπ|Zq˚pF |Zq.

and the induction hypothesis applied to the proper morphism π|Z : Z Ñ Y reduces us to the case of
F “ !L .
(3-3) Reduction to the case Z “ XzU

ı
ãÝÑ X is a divisor with simple normal crossings.

Apply resolution of singularities to Z ı
ãÝÑ X to have a proper morphism rX

p
ÝÑ X from a smooth variety,

such that p´1pZq rı
ãÝÑ rX is a divisor with simple normal crossings and its complement π´1pUq r

ãÝÑ rX satis-
fies p˝r “  via identification p´1pUq “ U . Then rπ “ π ˝p is still a proper morphism with dim rX “ dimX ,
and we have rπ˚r!L “ π˚p˚r!L “ π˚!L .
(3-4) The case of dimY “ 0.

We have Y “ ˚, so π˚!L “ pπ ˝ q!L “ RΓcpL q. The right hand side is constructible by lemma 1.8.
(3-5) Reduction to the case of locally trivial fibrations when dimY ą 0.

Apply generic smoothness on target to each π|XI
: XI Ñ Y , I Ď t1, ..., ku. Here, k is the number of

irreducible components of Z. Then, we have a single dense open subset V ãÑ Y making π|π´1pV qXXI
:

π´1pV q X XI Ñ V smooth for all I Ď t1, ..., ku. Thus if we let π1 :“ π´1pV q
πV
ÝÝÑ V , then π1 is a smooth

proper map transverse to the divisor π´1pV q X Z with simple normal crossings in π´1pV q, hence is a
transverse locally trival fibration by theorem 1.5.

We check the constructibility of π˚!L . By applying the argument of (3-1) on V ãÑ Y , we know it is
enough to check the constructibility of π1˚

`

p!L q|π´1pV q

˘

. As p!L q|π´1pV q –
`

π´1pV q

˘

!

`

L |π´1pV qXU

˘

by
proper base change (where π´1pV q is the base change of  by π´1pV q ãÑ X), we have π1˚

`

p!L q|π´1pV q

˘

–

π1˚

´

`

π´1pV q

˘

!

`

L |π´1pV qXU

˘

¯

–
`

π1|π´1pV qXU

˘

!

`

L |π´1pV qXU

˘

. Note that we used π˚ “ π!, and also note
that π1|π´1pV qXU is not necessarily proper. As π1|π´1pV qXU is a locally trivial fibration, we know
π1˚

`

p!L q|π´1pV q

˘

–
`

π1|π´1pV qXU

˘

!

`

L |π´1pV qXU

˘

P D`locpV, kq by theorem 2.12.3 of [Achar] explained in
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Roger’s talk [Bai]. For each point q of V , pπ1q˚
`

p!L q|π´1pV q

˘

q
– paπ´1pqqq˚

`

p!L q|π´1pqq

˘

, and as dimπ´1pqq

= dimπ´1V ´ dimV = dimX ´ dimY ă dimX by smoothness of π1, we can apply induction hypothesis
on each aπ´1pqq to ensure pπ1q˚

`

p!L q|π´1pV q

˘

P DbcpV, kq indeed.
[Step 4.] The case of open embeddings. Suppose X 

ãÝÑ Y is an open embedding. Again we proceed by

induction on dimX , and the initial case dimX “ 0 is again trivial. We first prove the case of local systems
on smooth X using [Step 3], and then prove the general case.
(4-1) The case of X being smooth and F “ L being a local system of finite type on X .

For convenience, identify X with its image in Y . Apply resolution of singularities to Y zX Ď Y to

obtain a proper morphism rY
p
ÝÑ Y from a smooth variety identifying the open subset p´1pXq r

ãÝÑ rY with
X , hence making ˚L “ p˚r˚L . Since r˚L is constructible by lemma 1.6, and since p˚ preserves con-
structibility by [Step 3], we know ˚L is constructible.
(4-2) The general case.

Take a smooth open subset U k
ãÝÑ X so F |U “: L is a local system. Let XzU ı

ãÝÑ X be its complement.
From the recollement distinguished triangle ı!ı!F Ñ F Ñ k˚L and (4-1), we know ı!ı

!F is constructible.
Hence ı˚

`

ı!ı
!F

˘

– ı!F is also constructible. Now, consider the image of the above recollement distin-

guished triangle p|XzU q˚pı!F q Ñ ˚F Ñ p ˝ kq˚L
`1
ÝÝÑ by ˚. By induction hypothesis, p|XzU q˚pı!F q is

constructible. By (4-1), p ˝ kq˚L is also constructible, and we conclude ˚L is constructible.

Using above theorem 1.7 for the case of open embeddings, we can now prove π! preserves con-
structibility as follows.

Proposition 1.9 (π! preserves constructibility, cf. corollary 3.9.13). Let X π
ÝÑ Y be a morphism of varieties.

Then π! sends DbcpY, kq to DbcpX, kq.

Proof. We proceed by Noetherian induction on X . Let G P DbcpY, kq.
[Step 1.] The initial case X “ ˚.

π becomes a closed embedding, so let us denote π “ ı : ˚ ãÑ Y and use  for its complementary open
embedding. For G P DbcpY, kq, we have a recollement distinguished triangle ı!ı!G Ñ G Ñ ˚

˚G
`1
ÝÝÑ. As G

and ˚˚G are constructible, ı!ı!G is constructible, and hence ı˚ı!ı!G “ ı!G is also constructible.
[Step 2.] Reduction to the case of smooth morphisms.

Take any dense open subset U 1 ãÑ X which is smooth. Applying the generic smoothness on target to π|U 1 ,
we obtain a dense open subset V ãÑ Y such that the base change U :“ π´1pV q X U 1

πU
ÝÝÑ V is a smooth

morphism. Denote the open embedding U Ď X by , and its complementary closed embedding by ı. Then
the recollement distinguished triangle gives

ı!ı
!π!G // π!G // ˚

˚π!G
`1 //

“ ı!pπ|XzU q
!G “ ˚π

!
U pG |V q.

The first object is constructible by induction hypothesis. Hence it is enough to prove the third object is
constructible, and this reduces us to the case of smooth morphisms.

[Step 3.] Case of smooth morphisms.
Recall that for a smooth morphism X

π
ÝÑ Y of relative dimension d, π! – π˚r2ds. As π˚ preserves con-

structibility, we know π! also preserves constructibility.

Our next target is RHom , whose proof below requires proposition 1.9 for closed embeddings and the-
orem 1.7 for open embeddings.
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Proposition 1.10 (RHom preserves constructibility). For each variety X , RHomkX preserves constructible
complexes, i.e., induces RHom : DbcpX, kq

op ˆ DbcpX, kq Ñ DbcpX, kq.

Proof. As the functor RHom is triangulated on each of the arguments, we can apply induction on the num-
ber of nonvanishing cohomologies on each arguments to reduce to the case of both input complexes F
and G being constructible sheaves. We then proceed by Noetherian induction. Take a smooth irreducible
open subset U making F |U “: L a finite type local system. The associated recollement distinguished
triangle is

ı!ı
!RHompF ,G q // RHompF ,G q // ˚

˚RHompF ,G q
`1 // .

We have ı!RHompF ,G q – RHompı˚F , ı!G q by dual projection formula isomorphism in [Achar], proposi-
tion 2.10.10. Thus the distinguished triangle takes the following form:

ı!RHompı˚F , ı!G q // RHompF ,G q // ˚RHompL ,G |U q
`1 // .

By induction hypothesis and the fact that both ı! and ı! preserves constructibility, we know the first object
is constructible. As RHompL ,G |U q – L _ b G |U is constructible, the third object is also constructible by
theorem 1.7. Hence RHompF ,G q is constructible.

We finish this section with two cohomology vanishing results for constructible sheaves. Roughly, they
say the vanishing pattern is the same as vanishing of Betti cohomologies of complex manifolds.

Exercise 1.11 (Theorem 3.8.4, compact support case). Let X be a variety of dimension n, and let F be
a constructible sheaf on X . Show the following statement: H i

cpX,F q is finite dimensional over k for all
i P Z, and H i

cpX,F q “ 0 unless 0 ď i ď 2n.
Here is an outline of the proof. As paXq!F is constructible, the finite dimensionality statement is al-

ready proved with 1.7. We prove the vanishing claim by Noetherian induction.
(1) Case of X “ ˚ is immediate, and the dimension 0 case follows.
(2) For n ą 0, take a smooth n-dimensional open subset U 

ãÝÑ X with complement Z, and use an appro-
priate recollement triangle to form a distinguished triangle RΓcpF |U q Ñ RΓcpF q Ñ RΓcpF |Zq

`1
ÝÝÑ. Show

that it is enough to verify the statement [H i
cpU,F |U q “ 0 unless 0 ď i ď 2n].

(3) Prove the vanishing statement for X smooth and F “ L being a (finite type) local system. Note that
X is a complex manifold in complex topology, so one may use de Rham resolution.

Exercise 1.12 (Theorem 3.8.5). Let X be a variety of dimension n, and let F be a constructible sheaf on X .
Show that H ipX,F q is finite dimensional over k for all i P Z, and H ipX,F q “ 0 unless 0 ď i ď 2n.
(1) One has to show H ipX,F q “ 0 for i ą 2n. Check the vanishing for the case of X smooth and F “ L
being a local system. Again, one may use de Rham resolution.
(2) General case. Proceed by induction on dimX , and on each fixed dimension, use Noetherian induction.
Observe that the initial case X “ ˚ is trivial. Otherwise, take a smooth irreducible open U 

ãÝÑ X making
F |U “: L a local system. Use recollement triangle to check that it is enough to show [H ipX, !L q “ 0 for
i ą 2n].
(3) Reductions: show that we may assume X “ U , and that we may assume X is smooth and XzU ı

ãÝÑ X
is a divisor with simple normal crossings.
(4) Use recollement triangle !L Ñ ˚L Ñ ı˚ı

˚˚L
`1
ÝÝÑ and lemma 1.6 to have codimX SuppH ipı˚ı

˚˚L q ě

i for i ě 1. Hence, codimZ SuppH ipı˚˚L r1sq ě i for all i P Z.
(5) Show the following statement:
Suppose the statement on the vanishing is true for all closed subvarieties of X , and suppose we are given
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a complex G P DbcpX, kq satisfying [codimX SuppH ipG q ě i for i ď n, and H ipG q “ 0 for i ą 2n]. Then,
H ipX,G q “ 0 for i ą 2n.
(6) Rotate the standard recollement triangle to have a distinguished triangle RΓpı˚˚L r´1sq Ñ RΓp!L q Ñ

RΓpL q. Use this triangle, the smooth local system case (2), the conclusion of (4), and step (5) to deduce
the vanishing for H ipX, !L q.

2 Verdier duality

Definition 2.1. Let X be a variety.
(1) The dualizing complex of X is the complex ωX :“ a!Xk.
(2) The Verdier duality functor D “ DX : DbcpX, kq

op Ñ DbcpX, kq is the functor given by D :“ RHomp¨, ωXq.

By proposition 1.9, we know ωX P DbcpX, kq, and hence by 1.10, RHompF , ωXq is constructible for any
F P DbcpX, kq.

Theorem 2.2. The Verdier duality functor D : DbcpX, kq
op Ñ DbcpX, kq satisfies the following properties:

(1) For X “ SpecC “ ˚, D “ RHomp¨, kq.
(2) D2 – idDb

cpX,kq
.

(3) D commutes with pushforwards and pullbacks intertwining ˚ and !, i.e, we have isomorphisms

π˚ ˝ D – D ˝ π!, π! ˝ D – D ˝ π˚, and

π! ˝ D – D ˝ π˚, π˚ ˝ D – D ˝ π!.

(4) There are functorial isomorphisms RHompF ,G q – DpFbLDG q – RHompDG ,DF q for F ,G P DbcpX, kq.

This is our main theorem of this section. Note that the property (1) is obvious, and the property (2)
generalizes the fact that the double dual of a finite dimensional vector space is canonically isomorphic to
the original vector space. The following exercise shows the above properties characterize D:

Exercise 2.3. LetX be a variety, and let D be a functor satisfying the properties listed in theorem 2.2. Show
the followings:
(1) By using the properties (1), (2), and (3), show that we have an isomorphism RΓpF q Ñ

„
RHompRΓcpDF q, kq

functorial in F P DbcpX, kq.
(2) Show that for each open subsetU ãÑ X , we have an isomorphism RΓppDF q|U q Ñ

„
RΓpRHompF , a!Xkq|U q

functorial in F . Use the isomorphism from (1) and the property (2) and (3) (for open embeddings).
(3) Conclude that if there was a morphism DF Ñ RHompF , a!Xkq functorial in F , then it must be an
isomorphism in DbcpX, kq.

Proof of Theorem 2.2. We show the properties (2), (3) and (4).
[Step 1.] The evaluation morphism idÑ D2.

We explain the evaluation morphism idDb
cpX,kq

Ñ D2, which will be the isomorphism in property (2).
First, note that we have a canonical morphism of complexes G

ev
ÝÑ chHompchHompG ,Qq,Qq of sheaves

functorial in G and Q in ComppShpX, kqq. This is a complex version of the familiar evaluation map G Ñ

HompHompG ,Qq,Qq “ s ÞÑ pφ ÞÑ φpsqq for sheaves.

Exercise 2.4. Figure out the sign rule for the complex version of the evaluation map.
Answer: for each k P Z and a local section s P G kpUq, the i-th component of evkpsq sends each local section
φ of Hom i

pG |U ,Q|U q to p´1qikφkpsq. This choice of signs respects differentials of each complexes.
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This functorial map of complexes induces a morphism F
ev
ÝÑ RHompRHompF , ωXq, ωXq in DbcpX, kq func-

torial in F , by taking an injective resolution ωX
qis
ÝÑ
„

Q and using the evaluation map for complexes F

and Q.
[Step 2.] Property (2), case of smooth X and F P DblocfpX, kq.

(2-1) Reduction to the case of local systems.
By induction on the number of nonvanishing cohomologies, we may assume F “ L is a local system of
finite type on X .
(2-2) Proof of the case of local systems.
Note that by smoothness of X , DpL q “ RHompL , ωXq – L _r2ns P DblocfpX, kq, where L _ “ HompL , kXq

is the dual local system. Hence D2pL q – pL _q_, and we only have to verify the evaluation map L
ev
ÝÑ

pL _q_ is an isomorphism. As contractible open subsets form a base of X , it is enough to prove that its
restriction to a contractible open subset U such that L |U – MU is an isomorphism. The restriction takes
the form MU

ev
ÝÑ HompHompMU , kU q, kU q, and as U is contractible, we know it is enough to verify the map

M
ev
ÝÑ HompHompM,kq, kq is an isomorphism. As M is a finite dimensional k-vector space, we know it is

true.
[Step 3.] Property (3), easy cases.

(3-1) π˚ ˝ D – D ˝ π!.
Compute Dπ!F “ RHompπ!F , ωY q

adj.
Ñ
„
π˚RHompF , π!ωY q “ π˚RHompF , ωXq “ π˚DF .

(3-2) π! ˝ D – D ˝ π˚.
Use the dual projection formula isomorphism π!RHompG ,H q – RHompπ˚G , π!H qwith H “ ωY .

[Step 4.] Proof of the isomorphism Dp˚F q – !DpF q, where U 
ãÝÑ X is an open embedding of a

smooth irreducible open subset into a variety X and F P DblocfpU, kq.
(4-1) We first state the following vanishing property:
Let pCˆqn 

ãÝÑ Cn be the canonical open embedding. Then for G P D`locppC
ˆqn, kq, RΓcp˚G q “ 0.

We refer to lemma 3.5.5 and lemma 3.5.7 of [Achar] for the proof.
(4-2) Reduction to the case of X “ U and X being irreducible.

By factoring U


44
� �  // U �

� ı // X , we are reduced to the case of  “  being dominant, as ı˚ “ ı! commutes with

D by [Step 3]. Thus, we may also assume X is irreducible.
(4-3) Reduction to the case of Z :“ XzU being a divisor with simple normal crossings inside a smooth X .
By applying resolution of singularities to Z “ XzU ãÑ X , we have a proper morphism rX

p
ÝÑ X from

a smooth variety, so p´1pZq ãÑ rX is a simple normal crossing divisor with complementary open subset

p´1pUq
r

ãÝÑ rX identified with U , hence ˚F “ p˚r˚F . D commutes with p! “ p˚ by [Step 3], so we are
reduced to the case of r.
(4-4) Reduction to the computation pDp˚F qq |Z “ 0.
Consider the recollement distinguished triangle

!
!Dp˚F q // Dp˚F q // ı˚ı

˚Dp˚F q
`1 // .

!Dp˚F q – Dp˚˚F q “ DpF q by [Step 3], so it remains to check pDp˚F qq |Z “ 0.
(4-5) Computation of stalks using normal crossing stratifications.
We check Dp˚F qp “ 0 for each p P Z. We have

H ipDp˚F qqp – colimpPV H
ipV,RHomp˚F |V , ωV qq – colimpPV H

iRHomppV q˚pF |VXU q, kV pnqr2nsq,

and as V is a normal crossing polydisk chart when sufficiently small, it is enough to compute the vanish-
ing RHomppV q˚pF |VXU q, kV q “ 0 for such V . If p P XJ XZ for someH ‰ J Ď t1, ..., kuwith j “ |J |, then
we have the following identifications of topological spaces by the left commutative square:
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V X U „
//� _

V

��

pCˆqj ˆ Cn´j� _

uˆid
��

pCˆqj? _oo
� _

u
��

V „
// Cn “ Cj ˆ Cn´j Cj? _oo

As two horizontal arrows of the right commutative square are homotopy equivalences, we are reduced to
the verification of RHompu˚G , kCj q “ RHompu˚G , ωCj r´2jsq “ 0, where pCˆqj u

ãÝÑ Cj is the inclusion and
G P DblocfppC

ˆqj , kq. By adjunction RHompu˚G , ωCj q – RHompRΓcpu˚G q, kq, so by (4-1), we are done.
[Step 5.] Proof of id ev

Ñ
„

D2, general case.
We use recollement distinguished triangles, [Step 4], and the unicity of triangles lemma in (5-1) below to
prove property (2).
(5-1) We first state the following lemma:

Lemma 2.5 (Unicity of triangles, lemma 1.1.12). Suppose we are given the following two distinguished
triangles and a morphism b in a triangulated category D:

A
u //

a
��

B
v //

b
��

C
`1 //

c
��

A1
u1
// B1

v1
// C 1

`1
// .

If v1bu “ 0, then there exists a map A
a
ÝÑ A1, and hence exists a map C

c
ÝÑ C 1, making the diagram

commutative. If moreover HompA,C 1r´1sq “ 0, then a and c are unique.

Exercise 2.6. (1) Prove lemma 2.5. Hint: use the fact that HompA, ¨q and Homp¨, C 1q are cohomological
functors.
(2) Let X be a variety and let U 

ãÝÑ X be an open embedding with complement Z ı
ãÝÑ X . Using the unicity

of triangles lemma 2.5, show that if F 1 Ñ F Ñ F 2 `1
ÝÝÑ is a distinguished triangle in DbcpX, kq such that

F 1|Z “ 0 and F 2|U “ 0, then it is isomorphic to the recollement distinguished triangle !!F Ñ F Ñ

ı˚ı
˚F

`1
ÝÝÑ.

(5-2) We proceed by Noetherian induction on X . The initial case X “ ˚ was treated in [Step 2]. Suppose
U


ãÝÑ X is a smooth irreducible open subset such that F |U P D

b
locfpU, kq, and set Z :“ XzU

ı
ãÝÑ X . Consider

the following diagram:

!
!F //

a
��

f
–

!!

F //

b–?
��

ı˚ı
˚F

`1 //

c –

��

g

  

D2!
!F //

d
��

D2F // D2ı˚ı
˚F

`1 //

e
��

!
!D2F // D2F // ı˚ı

˚D2F
`1 // .

Rows of the diagram are induced from recollement distinguished triangles. Morphisms a, b, and c are
evaluation maps, and f and g are induced from evaluation maps. The undotted maps form commutative
diagrams by construction. By induction hypothesis and [Step 3], ı˚pF |Zq Ñ

„
ı˚pD2pF |Zqq – D2 pı˚pF |Zqq,

so the arrow c is an isomorphism. Similarly by [Step 2] and [Step 4], F |U Ñ
„

D2pF |U q – pD2F q|U , so the
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arrow f is an isomorphism. Our goal is to prove b is an isomorphism.
(5-3) Application of (5-1) to the diagram of (5-2).

(i) Consider the second and the third rows of the diagram. We have HompD2!
!F , ı˚ı

˚D2F rksq “ 0 for
all k P Z, hence in particular for k “ 0,´1. Indeed, D2! pF |U q – D˚D pF |U q – !D2 pF |U q by [Step 4], so
by adjunction and !ı˚ “ ˚ı! “ 0, we have HompD2!

!F , ı˚ı
˚D2F rksq – HompD2pF |U q, 

!ı˚ı
˚D2F rksq “

0. By lemma 2.5, morphisms d and e uniquely exist, and make the lower squares of the diagram commu-
tative.

(ii) By exercise 2.6 (2), d and e are isomorphisms. Indeed by [Step 3] and [Step 4], pD2!
!F q|Z –

ı˚!D2pF |U q “ 0 and pD2ı˚ı
˚F q|U – D2˚ı˚ı

˚F “ 0.
(iii) Consider the first and the third rows of the diagram. Arguing as (i), we know

Homp!
!F , ı˚ı

˚D2F rksq “ 0 for k “ 0,´1. Hence by lemma 2.5, the diagram of (5-2) including the dotted
arrows is commutative. In particular, d ˝ a “ f . As both f and d are isomorphisms, a is an isomorphism.
This implies b is an isomorphism.

[Step 6.] Proof of the remaining isomorphisms in property (3) and property (4).
As we already have established property (2), we can conjugate D on both sides of the isomorphisms
from [Step 2] to obtain the remaining isomorphisms in property (3). For example, Dπ! – Dpπ!DqD Ñ

„

DpDπ˚qD – π˚D.
By using property (2), definition of D, and the derived tensor-Hom adjunction, we can compute

RHompF ,G q – RHompF ,D2G q “ RHompF ,RHompDG , ωXqq – RHompDG bF , ωXq – DpF b DG q.

Exercise 2.7. Finish [Step 6], by establishing the remaining isomorphism DpF b DG q – RHompDG ,DF q.

3 Compatibility of b with six operations and D

The moto is: b “ bL commutes with the six operations and D on constructible derived categories in
reasonable (“expectable”) ways. We record the natural isomorphisms here without proof.

Proposition 3.1 (Proposition 3.10.1). For maps of varieties X π
ÝÑ X 1, Y ρ

ÝÑ Y 1 and F P DbcpX, kq, G P

DbcpY, kq, we have natural isomorphisms
π!F b ρ!G Ñ

„
pπ ˆ ρq! pF b G q, and

π˚F b ρ˚G Ñ
„
pπ ˆ ρq˚pF b G q.

Proposition 3.2. For maps of varieties X π
ÝÑ X 1, Y ρ

ÝÑ Y 1 and F P DbcpX
1, kq, G P DbcpY

1, kq, we have
natural isomorphisms

π˚F b ρ˚G Ñ
„
pπ ˆ ρq˚ pF b G q, and

π!F b ρ!G Ñ
„
pπ ˆ ρq!pF b G q.

Remark. The first compatibility of π! with b in proposition 3.1 is often called the Kunneth formula, and it is
valid already for the complexes in D`. Likewise, the first compatibility of π˚ with b in proposition 3.2 is
also true for the complexes in D`.

Example 3.3. Taking aX and aY as π and ρ in the second isomorphism of proposition 3.2, we in particular
have ωX b ωY – ωXˆY .

Proposition 3.4 (Proposition 3.10.3 and corollary 3.10.5). For varieties X and Y , denote X p
ÐÝ X ˆ Y

q
ÝÑ Y

for the projections. Then for F ,F 1 P DbcpX, kq and G P DbcpY, kq, we have a natural isomorphism
RHompF ,F 1qb G – RHompp˚F ,F 1 b G q.
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Exercise 3.5. Let X π
ÝÑ X 1 and Y ρ

ÝÑ Y 1 be maps of varieties. Using proposition 3.4, show that we have the
following natural isomorphisms:
(1) RHompF ,F 1qbRHompG ,G 1q – RHompF bG ,F 1bG 1q, F ,F 1 P DbcpX, kq, G ,G 1 P DbcpY, kq.
(2) pDF qb pDG q – DpF b G q, F P DbcpX, kq,G P DbcpY, kq.
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