REPRESENTATION THEORY ASSIGNMENT 2 DUE FRIDAY FRIDAY FEBRUARY 18

- (1) Show that there is a isomorphism of Lie groups $\mathbb{R}^{\times} \to \mathbb{R} \times \mathbb{Z}/2$ (where \mathbb{R}^{\times} is a group under multiplication and \mathbb{R} is a group under addition). Use this fact to show that \mathbb{R}^{\times} has two different structure of a real algebraic group. Show that these two different structures are non-isomorphic by showing that their complexifications are different.
- (2) (a) Show that every algebraic representation of $GL_n(\mathbb{R})$ on (finite-dimensional) complex vector space is complete reducible (i.e. is the direct sum of irreducible subrepresentations).
 - (b) Give an example of a non-algebraic representation of $GL_n(\mathbb{R})$ on a (finite-dimensional) complex vector space which is not complete reducible.
- (3) Consider $G = SO_{2n}(\mathbb{C})$. Find the roots and coroots of G as well the $\psi_{\alpha} : SL_2(\mathbb{C}) \to SO_{2n}(\mathbb{C})$.

Here is a suggestion to help you get started. Recall that $SO_{2n}(\mathbb{C})$ is the automorphisms of \mathbb{C}^{2n} which preserve a nondegenerate symmetric bilinear form \langle , \rangle . Choose a basis

$$v_1,\ldots,v_n,v_{-1},\ldots,v_n$$

for \mathbb{C}^{2n} such that

$$\langle v_i, v_j \rangle = \begin{cases} 1, & \text{if } i = j \pm n \\ 0, & \text{otherwise} \end{cases}$$

Then the maximal torus is given by those elements of $SO_{2n}(\mathbb{C})$ which are diagonal with respect to this basis.

- (4) Consider the group $GO_{2n}(\mathbb{C})$ which is called the orthogonal similitude group. It consists of those automorphisms of \mathbb{C}^{2n} which preserve the bilinear form up to a scalar. In other words for each $g \in G$, there exists a scalar $a \in \mathbb{C}^{\times}$ such that $\langle gv, gw \rangle =$ $a \langle v, w \rangle$ for all $v, w \in \mathbb{C}^{2n}$. Find the root datum of $GO_{2n}(\mathbb{C})$ and compare with $SO_{2n}(\mathbb{C})$.
- (5) Show that $\Lambda^2 \mathbb{C}^4$ carries a natural non-degenerate symmetric bilinear form. Use this fact to define a 2-to-1 cover $SL_4(\mathbb{C}) \to SO_6(\mathbb{C})$. What does this map look like on the level of root data?