REPRESENTATION THEORY ASSIGNMENT 1 DUE FRIDAY JANUARY 28

- (1) Let G be a finite group acting on a finite set X. Explain how to construct a representation of G on $V = \mathbb{C}[X]$. Prove that $\chi_V(g)$ is the number of fixed points of g acting on X.
- (2) Let V be the 2-dimensional irreducible representation of S_3 . Using the character table computed in class, decompose $V^{\otimes n}$ as a representation of S_3 .
- (3) Find the character table of S_4 .
- (4) Let G be a finite group and V be an irreducible representation. Prove that the dimension of V divides the size of G.
- (5) Prove that if G is a finite group, then it is impossible to find a proper subgroup T, such that every element of G is conjugate into T.

Use this to prove that if G is a finite group and T is a proper subgroup, then the map $Rep(G) \to Rep(T)$ (given by restriction of representations) is not injective.

- (6) Take $T = U(1)^2$, thought of as 2×2 unitary diagonal matrices. T acts on \mathbb{C}^2 in the obvious manner. Decompose $(\mathbb{C}^2)^{\otimes n}$ as a representation of T. (This means find all the weight spaces and their dimensions.) Do the same thing for $Sym^n \mathbb{C}^2$.
- (7) Consider \mathbb{C}^{\times} and its coordinate ring

$$R = \mathcal{O}(\mathbb{C}^{\times}) = \mathbb{C}[z, z^{-1}].$$

Define a \mathbb{C} -antilinear ring homomorphism $\sigma : R \to R$ by setting $\sigma(z^n) = z^{-n}$, and extending "antilinearly", so that

$$\sigma(\sum_{n} a_n z^n) = \sum_{n} \overline{a_n} z^{-n}$$

where – denotes complex conjugation.

Prove that $R^{\sigma} = \{f \in R : f^{\sigma} = f\}$ is isomorphic to

$$\mathbb{R}[x,y]/(x^2+y^2-1).$$

Now generalize this result. If T is a compact torus and $T_{\mathbb{C}}$ is its complexification, construct an analog of σ and compute its invariants.