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1 Symmetric bilinear forms

We will now assume that the characteristic of our field is not 2 (so 1 + 1 6= 0).

1.1 Quadratic forms

Let H be a symmetric bilinear form on a vector space V . Then H gives us a
function Q : V → F defined by Q(v) = H(v, v). Q is called a quadratic form.
We can recover H from Q via the equation

H(v, w) =
1

2
(Q(v + w) − Q(v) − Q(w))

Quadratic forms are actually quite familiar objects.

Proposition 1.1. Let V = F
n. Let Q be a quadratic form on F

n. Then
Q(x1, . . . , xn) is a polynomial in n variables where each term has degree 2. Con-
versely, every such polynomial is a quadratic form.

Proof. Let Q be a quadratic form. Then

Q(x1, . . . , xn) = [x1 · · ·xn]A







x1

...
xn







for some symmetric matrix A.
Expanding this out, we see that

Q(x1, . . . , xn) =
∑

1≤i,j≤n

Aijxixj

and so it is a polynomial with each term of degree 2. Conversely, any polynomial
of degree 2 can be written in this form.

Example 1.2. Consider the polynomial x2 + 4xy + 3y2. This the quadratic

form coming from the bilinear form HA defined by the matrix A =

[

1 2
2 3

]

.
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We can use this knowledge to understand the graph of solutions to x2 +

4xy + 3y2 = 1. Note that HA has a diagonal matrix

[

1 0
0 −1

]

with respect to

the basis (1, 0), (−2, 1). This shows that Q(a(1, 0) + b(−2, 1)) = a2 − b2. Thus
the solutions of x2+4xy+3y2 = 1 are obtained from the solutions to a2−b2 = 1
by a linear transformation. Thus the graph is a hyperbola.

1.2 Diagonalization

As we saw before, the bilinear form is symmetric if and only if it is represented
by a symmetric matrix. We now will consider the problem of finding a basis for
which the matrix is diagonal. We say that a bilinear form is diagonalizable if
there exists a basis for V for which H is represented by a diagonal matrix.

Lemma 1.3. Let H be a non-trivial bilinear form on a vector space V . Then
there exists v ∈ V such that H(v, v) 6= 0.

Proof. There exist u,w ∈ V such that H(u,w) 6= 0. If H(u, u) 6= 0 or H(w,w) 6=
0, then we are done. So we assume that both u,w are isotropic. Let v = u + w.
Then H(v, v) = 2H(u,w) 6= 0.

Theorem 1.4. Let H be a symmetric bilinear form on a vector space V . Then
H is diagonalizable.

This means that there exists a basis v1, . . . , vn for V for which [H]v1,...,vn
is

diagonal, or equivalently that H(vi, vj) = 0 if i 6= j.

Proof. We proceed by induction on the dimension of the vector space V . The
base case is dim V = 0, which is immediate. Assume the result holds for all
bilinear forms on vector spaces of dimension n − 1 and let V be a vector space
of dimension n.

If H = 0, then we are already done. Assume H 6= 0, then by the Lemma we
get v ∈ V such that H(v, v) 6= 0.

Let W = span(v)⊥. Since v is not isotropic, W ⊕ span(v) = V . Since
dim W = n − 1, the result holds for W . So pick a basis v1, . . . , vn−1 for W for
which HW is diagonal and then extend to a basis v1, . . . , vn−1, v for V . Since
vi ∈ W , H(v, vi) = 0 for i = 1, . . . , n−1. Thus the matrix for H is diagonal.

1.3 Diagonalization in the real case

For this section we will mostly work with real vector spaces. Recall that a
symmetric bilinear form H on a real vector space V is called positive definite if
H(v, v) > 0 for all v ∈ V , v 6= 0. A postive-definite symmetric bilinear form is
the same thing as an inner product on V .

Theorem 1.5. Let H be a symmetric bilinear form on a real vector space V .
There exists a basis v1, . . . , vn for V such that [H]v1,...,vn

is diagonal and all the
entries are 1,−1, or 0.
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We have already seen a special case of this theorem. Recall that if H is an
inner product, then there is an orthonormal basis for H. This is the same as a
basis for which the matrix for H consists of just 1s on the diagonal.

Proof. By the previous theorem, we can find a basis w1, . . . , wn for V such that
H(wi, wj) = 0 for i 6= j. Let ai = H(wi, wi) for i = 1, . . . , n. Define

vi =











1√
ai

wi, if ai > 0
1√
−ai

wi, if ai < 0

wi, if ai = 0

(1)

Then H(vi, vi) is either 1,−1, or 0 depending on the three cases above. Also
H(vi, vj) = 0 for i 6= j and so we have found the desired basis.

Corollary 1.6. Let Q be a quadratic form on a vector space V . There exists a
basis v1, . . . , vn for V such that the quadratic form is given by

Q(x1v1 + · · · + xnvn) = x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

p+q

Proof. Let H be a associated bilinear form. Pick a basis v1, . . . , vn as in the
theorem, ordered so that the diagonal entries in the matrix are 1s then −1s,
then 0s. The result follows.

Given a symmetric bilinear form H on a real vector space V , pick a basis
v1, . . . , vn for V as above. Let p be the number of 1s and q be the number of
−1s in the diagonal entries of the matrix. The following result is known (for
some reason) as “Sylveter’s Law of Inertia”.

Theorem 1.7. The numbers p, q depend only on the bilinear form. (They do
not depend on the choice of basis v1, . . . , vn.)

To prove this result, we will begin with the following discussion which applies
to symmetric bilinear forms over any field. Given a symmetric bilinear form H,
we define its radical (sometimes also called kernel) to be

rad(H) = {w ∈ V : H(v, w) = 0 for all v ∈ V }

In other words, rad(H) = V ⊥. Another way of thinking about this is to say
that rad(H) = null(H#).

Lemma 1.8. Let H be a symmetric bilinear form on a vector space V . Let
v1, . . . , vn be a basis for V and let A = [H]v1,...,vn

. Then

dim rad(H) = dimV − rank(A)

Proof. Recall that A is actually the matrix for the linear map H#. Hence
rank(A) = rank(H#). So the result follows by the rank-nullity theorem for
H#.
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Proof of Theorem 1.7. The lemma shows us that p + q is an invariant of H. So
it suffices to show that p is independent of the basis.

Let

p̃ = max (dimW : W is a subspace of V and H|W is positive definite)

Clearly, p̃ is independent of the basis. We claim that p = p̃.
Assume that our basis v1, . . . , vn is ordered so that

H(vi, vi) = 1 for i = 1, . . . p,

H(vi, vi) = −1 for i = p + 1, . . . , p + q, and

H(vi, vi) = 0 for i = p + q + 1, . . . , n

Let W = span(v1, . . . , vp). Then dimW = p and so p ≤ p̃.

To see that p̃ ≤ p, let W̃ be a subspace of V such that H|W̃ is positive

definite and dim W̃ = p̃.
We claim that W̃ ∩ span(vp+1, . . . , vn) = 0. Let v ∈ W̃ ∩ span(vp+1, . . . , vn),

v 6= 0. Then H(v, v) > 0 by the definition of W̃ . On the other hand, if
v ∈ span(vp+1, . . . , vn), then

v = xp+1vp+1 + · · · + xnvn

and so H(v, v) = −x2
p+1 − · · · − x2

p+q ≤ 0. We get a contradiction. Hence

W̃ ∩ span(vp+1, . . . , vn) = 0.
This implies that

dim W̃ + dim span(vp+1, . . . , vn) ≤ n

and so p̃ ≤ n − (n − p) = p as desired.

The pair (p, q) is called the signature of the bilinear form H. (Some authors
use p − q for the signature.)

Example 1.9. Consider the binear form on R
2 given by the matrix

[

0 1
1 0

]

. It

has signature (1,−1).

Example 1.10. In special relativity, symmetric bilinear forms of signature (3, 1)
are used.

In the complex case, the theory simplifies considerably.

Theorem 1.11. Let H be a symmetric bilinear form on a complex vector space
V . Then there exists a basis v1, . . . , vn for V for which [H]v1,...,vn

is a diagonal
matrix with only 1s or 0s on the diagonal. The number of 0s is the dimension
of the radical of H.

Proof. We follow the proof of Theorem 1.5. We start with a basis w1, . . . , wn

for which the matrix of H is diagonal. Then for each i with H(wi, wi) 6= 0, we
choose ai such that a2

i = 1
H(wi,wi)

. Such ai exists, since we are working with

complex numbers. Then we set vi = aiwi as before.
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