
6 Toric Manifolds

Definition 6.1 (M2n, ω) is a toric manifold if it is equipped with the (effective)
Hamiltonian action of a torus T n for which the dimension of the torus is half the
dimension of the manifold.

Φ : M2n → R
n

Comparison with integrable systems: An integrable system is a symplectic
manifold M2n equipped with n linearly independent Poisson commuting functions
f1, . . . , fn (in other words the corresponding Hamiltonian vector fields are linearly
independent almost everywhere).

So a toric manifold is an integrable system for which the functions f1, . . . , fn

may be chosen in such a way that the Hamiltonian flows of the Poisson commuting
functions are periodic with period 1 almost everywhere.

The image of the moment map Φ(M) is a convex polyhedron B ⊂ R
n (the Newton

polytope of M).
All polytopes arising from toric manifolds satisfy the following:

Proposition 6.2 1. For each vertex p there are exactly n edges leaving it

2. The edges are of the form p + tvj (j = 1, . . . , n) where vj ∈ (Zn)∗(= ΛW )).

3. The weights v1, . . . , vn form a basis of the weight lattice ΛW , for each vertex p.

Remark: M is a toric orbifold (rather than a smooth manifold) iff only (1) and
(2) are satisfied. (A reference on orbifolds is [23].)

We shall see below that

Theorem 6.3 (see e.g. Audin Chap. VII or Guillemin Chap. 1) If B is a convex
polytope satisfying (1), (2), (3) then there is a toric manifold M such that Φ(M) = B.

Theorem 6.4 (Delzant) Toric manifolds are classified by their moment polytopes:
in other words, if M1, M2 are two toric manifolds with moment maps Φ1 and Φ2 and
Φ1(M1) = Φ2(M2), then there is a T n-equivariant symplectic diffeomorphism between
M1 and M2.

To see Theorem ??, given a polytope B satisfying (1)-(3) we exhibit a toric manifold
M with Φ(M) = B.

Write B = ∩d
j=1{x ∈ R

n :< x, uj >≤ λj} for uj ∈ R
n and λj ∈ R.

Definition 6.5 If B is an n-dimensional polyhedron in R
n, then (a) Fi is an i-

dimensional face of B if Fi is an i-simplex (b) IntFi is congruent to the interior of
the i-simplex. (c) Every point in B is in the interior of exactly one face.
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Definition 6.6 A facet of an n-dimensional polytope is an (n− 1)-dimensional face.
The number of facets in B is d: they are indexed by j, and have normals uj ∈ Z

n.
The uj are assumed to be primitive (in other words they are not given by an integer
multiple of another element of Z

n).

We have a short exact sequence of vector spaces

0→ n
i
→ R

d π
→ R

n → 0

where π : ej 7→ uj. Because uj ∈ ΛW = Hom(Zn, 2πZ), this exponentiates to

1→ N
i
→ U(1)d π

→ U(1)n → 1

so N = Ker(π) is a torus.
We know the moment map for the action of U(1)d on C

d is

J : (z1, . . . , zd) 7→ −
1

2

(

|z1|
2, . . . , |zd|

2
)

+ c.

Set c = (λ1, . . . , λd).
For the action of N on C

d the moment map is i∗ ◦ J where

0→ (Rn)∗
π∗

→ (Rd)∗
i∗
→ n∗ → 0

(for n = Lie(N) ∼= R
n−d). Reduce C

d with respect to the action of N :

Proposition 6.7 (a)(i∗ ◦ J)−1(0)/N is a symplectic manifold M (b) M is equipped
with the Hamiltonian action of T n with moment map Φ and Φ(M) = B.

Example 6.8

CP 2

The moment polytope is the right triangle with vertices (0, 0), (0, 1) and (1, 0). Let ui

be the normal vector to the i-th face. u1 = (0,−1), u2 = (−1, 0) and u3 = 1
2
(1, 1).

n→ R
3 π
→ R

2

π : ei 7→ ui

(1, 0, 0) 7→ (0,−1)

(0, 1, 0) 7→ (−1, 0)

(0, 0, 1) 7→ (1, 1)

λ1 = λ2 = 0; λ3 = 1
2

π =

(

0 −1 1
−1 0 1

)
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n = R(1, 1, 1) ⊂ R
3 = Ker(π)

N ∼= U(1)

Reduce C
3 with respect to action of N :

i : (1, 1, 1) 7→ R
3

i∗ : R
3 → R

i∗(v) =< v, (1, 1, 1) >

J(z1, z2, z3) = −
1

2
(|z1|

2, |z2|
2, |z3|

2) + (λ1, λ2, λ3)

i∗ ◦ J(z1, z2, z3) = −
1

2

∑

j

|zj|
2 + (λ1 + λ2 + λ3)

= −
1

2

∑

j

|zj|
2 +

1

2

(i∗ ◦ J)−1(0)/N = CP 2

Proof of Proposition ??: breaks down into
Lemma 1 N acts freely on (i∗ ◦ J)−1(0) (by section on symplectic quotients)

Define B ⊂ (Rn)∗ ; B′ = π∗(B) ⊂ (Rd)∗

Lemma 2: Claim

(i∗ ◦ J)−1(0) = J−1(B′) = {z ∈ R
d : i∗ ◦ J(z) = 0}

Proof:

J(Rd) = {(x1, . . . , xd) ∈ R
d :< ei, x >≤ λi, i = 1, . . . , d}.

i∗(x) = 0 iff x = π∗(y) for y ∈ (Rn)∗; in other words i∗(J(z)) = 0 iff J(z) = π∗(y) for
some y ∈ (Rn)∗ and

< ei, π
∗(y) >≤ λi, i = 1, . . . , d

iff
< π(ei), y >≤ λi, i = 1, . . . , d

iff
< ui, y >≤ λi, i = 1, . . . , d

iff y ∈ B iff π∗(y) ∈ B′ so J(z) ∈ B′.
Lemma 3: If z ∈ C

d, define I ⊂ {1, . . . , d} by zi = 0 iff i ∈ I.

Stab(z) = TI = {(u1, . . . , ud) : i ∈ I ⇒ ui = 1}.

This is
U(1)d−|I|.
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Lemma 4: For any z ∈ J−1(∆′), Stab(z) is transverse to N , which acts freely at z.
Proof Faces FI of ∆ (or of its image ∆′) are determined by choosing a subset

< ui, y >= λi, y ∈ R
n∗

< ei, π
∗(y) >= λi

These determine a torus TI ⊂ T d.
Note that the condition

I ⊂ I ′

is equivalent to
FI′ ⊂ FI .

Also that the largest sets I (corresponding to vertices FI = p) have n elements because
of the hypothesis that each vertex has n edges leaving from it, or equivalently it is
the intersection of n facets.

If a vertex is the intersection of m facets then each edge is the choice of one facet
to omit, in other words the number of edges is the number of facets.

So for any I (corresponding to a facet) it sits in several maximal Imax with |Imax| =
h corresponding to the vertices in the face for which FImax

= p (where p is a vertex).
In other words {ui, i ∈ Imax} forms a basis of the integer lattice Z

n = ΛI ⊂ t.
The edges leaving the vertex p correspond to a basis of ΛW ⊂ t∗ which is dual to

the basis {ui, i ∈ Imax} since

TI = {(z1, . . . , zd) ∈ U(1)d : zj = 1 if j ∈ I} = {exp(
∑

j

θjej), θj ∈ R, ej basis of R
d}

under
exp(π)(TI)

exp π
= exp

∑

j 6=I

θjuj.

So
TImax

∼= T n.

So
TI → TImax

∼= T n.

So since N = Ker(T d → T n), N ∩ TI = {1} for any I corresponding to a face FI

of the polyhedron B′ = π∗(B). This happens iff N acts freely on J−1(FI) so N acts
freely on J−1(B′) = (i∗ ◦ J)−1(0).

By our earlier results on reduction in stages, T n = T d/N acts on (i∗◦J)−1(0)/N =
M in a Hamiltonian way.

The above results show:

0→ N → T d → T n → 0

0→ (Rn)∗
π
→ (Rd)∗ → n∗ → 0
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If
z ∈ J−1(B′) = (i∗ ◦ J)−1(0)

then
J(z) ∈ Im(Rn)∗

and so
Φ : M → (Rn)∗

(Rn)∗ → (Rd)∗

Φ(m) ∈ Im(J)

Claim
m ∈ Φ−1(FI)←→ Stab(m) = TI ⊂ T n

so
Stab(m) ∼= TI .

So Φ(m) ∈ Int(B) iff T n acts freely at m.
Φ(m) is in exactly one facet iff T n acts with 1-dimensional stabilizer.
Φ(n) is in intersection of exactly 2 facets iff T n acts with 2-dimensional stabilizer,

etc.
Φ(m) is a vertex iff T n fixes m.

Remark 6.9 B ⊂ t∗ = (Rn)∗ : normals to facets are uj ∈ ΛI ⊂ t, if FI is intersec-
tion of < x, ui >= λi. For i ∈ I. the ui (i ∈ I) generate the stabilizer at any point in
Φ−1(FI).

Theorem 6.10 Φ−1(b) ∼= T n/TI if b ∈ Int(FI). In particular, the symplectic quotient
of M at any point b ∈ (Rn)∗ is a point Φ−1(b)/T n.

3. Fans and alternative description of toric manifolds (Ref: Audin Chap.
VII)

Definition 6.11 A fan Σ is the specification of a family of convex cones in R
n with

origin 0 generated by elements ui ∈ ΛI and for which
(a) every face of a cone is a cone
(b) if C1 and C2 are cones then C1 ∩ C2 is a face of C1 and of C2.

The data in a fan is “dual” to the data in the polyhedron B.
1-dimensional cones Ci correspond to rays Rui through the normals ui to the

hyperplanes cutting out B
An indexing set I ⊂ {1, . . . , d} of order r determines a cone CI = C(Ui1 , . . . , Uir)

of dimension r which corresponds to the face Fi = {x :< ui, x >= λi for i ∈ I} in
B of codimension r (dimension n− r).

The origin 0 (which is a 0 dimensional cone) corresponds to the face of dimension
n.

However, when you pass from polyhedron B to fan Σ, you lose the information λi

(i = 1, . . . , d) specifying the distance of hyperplanes in B from the origin.
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Proposition 6.12 Fans classify toric manifolds up to diffeomorphism.

Newton polytopes classify toric manifolds up to symplectic diffeomorphism. For ex-
ample, spheres S2 of different radius but the same centre have the same fan but
different Newton polytopes [−r, r] where r is the radius of the sphere.

Construction of toric manifold starting from a fan

Note that for any indexing set I ⊂ {1, . . . , d} of order r, the cone CI may or may
not be present in the fan Σ.

(depending on whether or not the intersection of the hyperplanes ∩i < ui, y >=
λi} is nonempty).

We have, as previously,

0→ n→ R
d → R

n → 0

1→ N → U(1)d → U(1)n → 0

1→ NC → (C∗)d → (C∗)n → 0

NC
∼= (C∗)d−n is the (complex) Lie group whose Lie algebra is n⊗ C: it is called

the complexification of N .

Definition 6.13 eI = {(z1, . . . , zd) ∈ C
d : zj = 0 if j /∈ I} has dimension |I|. In

particular e∅ = 0. The toric manifold associated to the fan Σ is MΣ = UΣ/NC where
UΣ is an open set in C

d:
UΣ = C

d \ ∪I:CI /∈ΣeI .

Alternative definition:

UΣ = ∪I,CI∈ΣUI

where
UI = {z ∈ C

d : zj = 0 =⇒ j ∈ I}

= (C∗)Ī × C
I

Conditions for a fan to correspond to a compact smooth toric variety:

1. Fan is complete

2. CI ∈ Σ implies eI ∩ n⊗ C = ∅. The preceding item is a consequence of

3. Each cone of Σ is generated by {ui, i ∈ I}, which forms part of an integer basis
of the integer lattice ΛI

4. All n-dimensional cones of Σ (which correspond to vertices of the Newton poly-
tope) are generated by part of a Z-basis of ΛI .

29



Example 6.14 1. n = 2, d = 2 {I} = ∅, {1}, {2}, {1, 2}

We have all possible indexing sets so UΣ = C
2

2. n = 2, d = 2 {I} = ∅, {1}, {2}

CĪ /∈ Σ→ Ī = {12}, I = ∅

eI=∅ = {0}

so
UΣ = C

2 \ {0}

3. n = 2, d = 3
I = ∅, {1}, {2}, {3}, {12}, {23}, {13}

CĪ /∈ Σ implies Ī = {123}, which implies I = ∅, which implies eI = {0}.

UΣ = C
3 \ {0}

Since n = R(1, 1, 1) ⊂ R
3 and N = {(λ, λ, λ)|λ ∈ U(1)} ⊂ U(1)3 we have

NC = {(λ, λ, λ)|λ ∈ C
∗} ⊂ (C∗)3

We have recovered the more usual description of CP 2:

CP 2 = (C∗)3 \ {0})/C
∗.

4. Recovering a symplectic structure on a toric manifold specified via a

fan

As before we have
C

d J
→ (Rd)∗

i∗
→ n∗

J(z1, . . . , zd) = −
1

2
(|z1|

2, . . . , |zd|
2)

(the inclusion 0→ n
i
→ R

d π
→ R

n → 0 specifies i∗.)
For any regular value ξ ∈ n∗ (ξ = i∗(λ1, . . . , λd) in our previous notation) we saw

that a toric manifold was specified as

M(λ1,...,λd) = (i∗ ◦ J)−1(ξ)/N.

For any regular value ξ, the manifolds M(λ1,...,λd) have the diffeomorphism type of the
manifold

MΣ = UΣ/NC

.
(a) MΣ inherits an action of (C∗)n = (C∗)d/NC (the complexification of U(1)n).
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(b) This action preserves the complex structure but not the symplectic struc-
ture. The action of U(1)n preserves both complex and symplectic structures (Kähler
structure).

Remarks:

(a) Two constructions of MΣ:
(i) as a complex manifold, as quotient of an open set in C

d by the action of the
complex group NC

(ii) As a symplectic manifold, as symplectic quotient of C
d by the compact group

N .
Construction (i) is an example of a general geometric constrution (“geometric

invariant theory quotient”): Delete “ unstable points” from C
d (points which would

cause quotient by NC to be non-Hausdorff): get

MΣ =
(

C
d \ set of complex codimension ≥ 2

)

/NC.

General principle: Symplectic quotient of a Kähler manifold by a compact group
N is same thing as geometric invariant theory quotient by complexified group NC

(Atiyah-Bott; Kirwan).
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