6 Toric Manifolds

Definition 6.1 (M?",w) is a toric manifold if it is equipped with the (effective)
Hamiltonian action of a torus T™ for which the dimension of the torus is half the

dimension of the manifold.
®: M —R"

Comparison with integrable systems: An integrable system is a symplectic
manifold M?" equipped with n linearly independent Poisson commuting functions

fi,--., fn (in other words the corresponding Hamiltonian vector fields are linearly
independent almost everywhere).
So a toric manifold is an integrable system for which the functions fi,..., f,

may be chosen in such a way that the Hamiltonian flows of the Poisson commuting
functions are periodic with period 1 almost everywhere.

The image of the moment map ®(M) is a convex polyhedron B C R" (the Newton
polytope of M).

All polytopes arising from toric manifolds satisfy the following:

Proposition 6.2 1. For each vertex p there are exactly n edges leaving it
2. The edges are of the form p+tv; (j =1,...,n) where v; € (Z")*(= AV)).
3. The weights vy, ..., v, form a basis of the weight lattice AV, for each vertex p.

Remark: M is a toric orbifold (rather than a smooth manifold) iff only (1) and
(2) are satisfied. (A reference on orbifolds is [23].)
We shall see below that

Theorem 6.3 (see e.g. Audin Chap. VII or Guillemin Chap. 1) If B is a convex
polytope satisfying (1), (2), (3) then there is a toric manifold M such that (M) = B.

Theorem 6.4 (Delzant) Toric manifolds are classified by their moment polytopes:
in other words, if My, My are two toric manifolds with moment maps ®, and 5 and
Oy (M) = $o(Ms), then there is a T™-equivariant symplectic diffeomorphism between
My and M.

To see Theorem 77, given a polytope B satisfying (1)-(3) we exhibit a toric manifold
M with ®(M) = B.
Write B = ﬂ;l:l{x e R" :<z,u; >< \;} for u; € R* and \; € R.

Definition 6.5 If B is an n-dimensional polyhedron in R"™, then (a) F; is an i-

dimensional face of B if F; is an i-simplex (b) IntF; is congruent to the interior of
the i-simplex. (c¢) Every point in B is in the interior of exactly one face.
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Definition 6.6 A facet of an n-dimensional polytope is an (n — 1)-dimensional face.
The number of facets in B is d: they are indexed by j, and have normals u; € Z".
The u; are assumed to be primitive (in other words they are not given by an integer
multiple of another element of Z™).

We have a short exact sequence of vector spaces
0—>n-5RESR -0
where 7 : e; — u;. Because u; € A" = Hom(Z",27Z), this exponentiates to
1-NSUD* S U0 -1

so N = Ker(r) is a torus.
We know the moment map for the action of U(1)¢ on C is

1
J:(21,...,24) — 5 (|Zl|27-~'7|zd|2) +c

Set ¢ = ()\1, - .,)\d).
For the action of N on C? the moment map is i* o J where

0 — (R™)* ~ (Rd)* R n* — 0
(for n = Lie(N) =2 R"%). Reduce C? with respect to the action of N :

Proposition 6.7 (a)(i* o J)7'(0)/N is a symplectic manifold M (b) M is equipped
with the Hamiltonian action of T™ with moment map ® and ®(M) = B.

Example 6.8
cpr?
The moment polytope is the right triangle with vertices (0,0), (0,1) and (1,0). Let u;
be the normal vector to the i-th face. uy = (0,—1), up = (—1,0) and uz = (1,1).
n— R 5 R?
e Uy

(1,0,0) (0, —1)

(0,1,0) > (—1,0)

(0,0,1) — (1,1)

(0 —-11
™\ -1 o 1
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n=R(1,1,1) C R* = Ker()
N=U(1)
Reduce C* with respect to action of N :

i:(1,1,1) — R?
i*:R* - R
i*(v) =<wv,(1,1,1) >

1
J (21, 22, 23) = —§(|Zl|2, |20]%, [23]%) + (A1, A2, A3)

" 1
e J(ZhZQ,Zg) = —52 |2;]|2 —+ ()\1 +)\2+/\3)

J
1 , 1
"3 Xl
J
(i* o J)"*(0)/N = CP?

Proof of Proposition ??: breaks down into

Lemma 1 N acts freely on (i* o J)~!(0) (by section on symplectic quotients)
Define B C (R")* ; B’ = 7*(B) C (RY)*

Lemma 2: Claim

(*o)H0)=J Y(B)={zeR:i* 0 J(2) =0}
Proof:
JRY = {(z1,...,29) ER 1< ez >< Nyi=1,...,d}.
i*(z) =0 iff x = 7*(y) for y € (R™)*; in other words i*(J(2)) = 0 iff J(z) = 7n*(y) for
some y € (R™)* and
<e,m(y)>< N, i=1,...,d
iff
<m(e),y>< Nyi=1,...,d
iff
< Uy >< )\Z', Z:L,d
iff y e Biff 7*(y) € B' so J(z) € B'.
Lemma 3: If 2 € C?, define I C {1,...,d} by z; =0iffi € I.
Stab(z) =T = {(uy,...,uq) i € I = u; = 1}.

This is
U(1)d-1l,
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Lemma 4: For any z € J'(A’), Stab(z) is transverse to N, which acts freely at z.
Proof Faces F; of A (or of its image A’) are determined by choosing a subset

<wu;,y>=N, yeR™

<ep,m(y) >= N

These determine a torus 7; C T
Note that the condition
Icr

is equivalent to
Fp C Fy.

Also that the largest sets I (corresponding to vertices Fr = p) have n elements because
of the hypothesis that each vertex has n edges leaving from it, or equivalently it is
the intersection of n facets.

If a vertex is the intersection of m facets then each edge is the choice of one facet
to omit, in other words the number of edges is the number of facets.

So for any I (corresponding to a facet) it sits in several maximal I, With |[pax| =
h corresponding to the vertices in the face for which Fy_,_ = p (where p is a vertex).
In other words {u;,i € Iax} forms a basis of the integer lattice Z™ = AT C t.

The edges leaving the vertex p correspond to a basis of AV C t* which is dual to
the basis {u;,7 € Iax} since

Tr={(z1,...,2a) €U : z; = 1if j eI} = {exp(z 0;e;),0; € R, e; basis of R?}

J

under
exp(m)(T7) "2 exp Z 6,u;.
A
So
Ty, =T".
So

T] — T] =T,

max

So since N = Ker(T¢ — T™), N NT; = {1} for any I corresponding to a face Fy
of the polyhedron B’ = 7*(B). This happens iff N acts freely on J~!(F}) so N acts
freely on J~1(B') = (i* o J)71(0).

By our earlier results on reduction in stages, 7" = T¢/N acts on (i*oJ)"1(0)/N =
M in a Hamiltonian way.

The above results show:

0= N—-T¢—=T" =0
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If
ze J Y B) = (i*oJ)"}0)

then

J(z) € Im(R™)*
and so

o.M — (R")"

®(m) € Im(J)
Claim

m € & (F;) «— Stab(m) =T; C T"

SO

Stab(m) = T7.

So ®(m) € Int(B) iff T™ acts freely at m.

®(m) is in exactly one facet iff 7™ acts with 1-dimensional stabilizer.

®(n) is in intersection of exactly 2 facets iff 7" acts with 2-dimensional stabilizer,
ete.

®(m) is a vertex iff T fixes m.

Remark 6.9 B C t* = (R")* : normals to facets are u; € A C t, if Fy is intersec-

tion of < x,u; >= X;. Fori € I. the u; (i € I) generate the stabilizer at any point in
q)_l(F[).

Theorem 6.10 ®~1(b) 2 T /Ty if b € Int(F;). In particular, the symplectic quotient
of M at any point b € (R™)* is a point ®~1(b)/T™".

3. Fans and alternative description of toric manifolds (Ref: Audin Chap.
VII)

Definition 6.11 A fan X is the specification of a family of convex cones in R™ with
origin 0 generated by elements u; € A and for which

(a) every face of a cone is a cone
(b) if Cy and Cy are cones then Cy N Cy is a face of Cy and of Cs.

The data in a fan is “dual” to the data in the polyhedron B.

1-dimensional cones C; correspond to rays Ru; through the normals u; to the
hyperplanes cutting out B

An indexing set I C {1,...,d} of order r determines a cone C; = C(U,,,...,U;,)
of dimension r which corresponds to the face F; = {x :< u;,x >=\; for i € I} in
B of codimension r (dimension n — 7).

The origin 0 (which is a 0 dimensional cone) corresponds to the face of dimension
n.

However, when you pass from polyhedron B to fan X, you lose the information \;
(1 =1,...,d) specifying the distance of hyperplanes in B from the origin.
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Proposition 6.12 Fans classify toric manifolds up to diffeomorphism.

Newton polytopes classify toric manifolds up to symplectic diffeomorphism. For ex-
ample, spheres S? of different radius but the same centre have the same fan but
different Newton polytopes [—r, r| where r is the radius of the sphere.

Construction of toric manifold starting from a fan

Note that for any indexing set I C {1,...,d} of order r, the cone C; may or may
not be present in the fan >.

(depending on whether or not the intersection of the hyperplanes N; < w;,y >=
Ai} is nonempty).

We have, as previously,

0—n—R—=R"—0
1= N—-UD*—=U1)"—0
1 — Ng — (C) —= (CH" — 0

N¢ = (C*)4™ is the (complex) Lie group whose Lie algebra is n ® C: it is called
the complexification of N.

Definition 6.13 e; = {(21,...,24) € C?: 2; =0 if j & I} has dimension |I|. In
particular eg = 0. The toric manifold associated to the fan ¥ is My, = Us,/N¢ where
Us, is an open set in C%:

Uz - (Cd \ U[:Cﬂfze].

Alternative definition:

Us = Urc,exUr

where
U={2€C . 2j=0=jcl}

— ((C*)f % (CI
Conditions for a fan to correspond to a compact smooth toric variety:
1. Fan is complete
2. Cr € ¥ implies e; Nn ® C = (). The preceding item is a consequence of

3. Each cone of ¥ is generated by {u;,i € I}, which forms part of an integer basis
of the integer lattice A!

4. All n-dimensional cones of ¥ (which correspond to vertices of the Newton poly-
tope) are generated by part of a Z-basis of A
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Example 6.14 1. n=2,d=2{I}=0,{1},{2},{1,2}

We have all possible indexing sets so Uy, = C?
2.n=2d=2{I}=0,{1},{2}
Cré¢x—I={12},I=0

r=p = {0}
50
Us = C*\ {0}
9. n=2d=3
I=0, {1}7 {2}7 {3}7 {12}’ {23}7 {13}
Cr ¢ Y implies I = {123}, which implies I = 0, which implies e; = {0}.

Us, = C*\ {0}

Since n =R(1,1,1) CR? and N = {(\, \,\)|A € U(1)} € U(1)? we have

Ne = {(\, M\ A)|AeC*) c (C)?

We have recovered the more usual description of CP?:
CP* = (C)*\ {o})/C".

4. Recovering a symplectic structure on a toric manifold specified via a
fan

As before we have .

c? L (RY* S
1
T, sm) = =5 (al o Ll

(the inclusion 0 — n - R? 5 R — 0 specifies i*.)

For any regular value £ € n* (£ =i*(\1,...,\q) in our previous notation) we saw
that a toric manifold was specified as

My, .ng = (i 0 J)THE)/N.

For any regular value &, the manifolds My,
manifold

) have the diffeomorphism type of the

77777

My, = Us,/N¢

(a) My inherits an action of (C*)" = (C*)¢/N¢ (the complexification of U(1)").
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(b) This action preserves the complex structure but not the symplectic struc-
ture. The action of U(1)™ preserves both complex and symplectic structures (Kéhler
structure).

Remarks:

(a) Two constructions of Msy:

(i) as a complex manifold, as quotient of an open set in C? by the action of the
complex group N¢

(ii) As a symplectic manifold, as symplectic quotient of C? by the compact group
N.

Construction (i) is an example of a general geometric constrution (“geometric
invariant theory quotient”): Delete “ unstable points” from C¢ (points which would
cause quotient by N¢ to be non-Hausdorff): get

Ms, = (C*\ set of complex codimension > 2) /Nc.

General principle: Symplectic quotient of a Kéahler manifold by a compact group
N is same thing as geometric invariant theory quotient by complexified group N¢
(Atiyah-Bott; Kirwan).
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