6 Toric Manifolds

Definition 6.1 (M^{2n}, ω) is a toric manifold if it is equipped with the (effective) Hamiltonian action of a torus T^n for which the dimension of the torus is half the dimension of the manifold.

 $\Phi: M^{2n} \to \mathbb{R}^n$

Comparison with integrable systems: An *integrable system* is a symplectic manifold M^{2n} equipped with n linearly independent Poisson commuting functions f_1, \ldots, f_n (in other words the corresponding Hamiltonian vector fields are linearly independent almost everywhere).

So a toric manifold is an integrable system for which the functions f_1, \ldots, f_n may be chosen in such a way that the Hamiltonian flows of the Poisson commuting functions are periodic with period 1 almost everywhere.

The image of the moment map $\Phi(M)$ is a convex polyhedron $B \subset \mathbb{R}^n$ (the Newton polytope of M).

All polytopes arising from toric manifolds satisfy the following:

Proposition 6.2 1. For each vertex p there are exactly n edges leaving it

2. The edges are of the form $p + tv_i$ (j = 1, ..., n) where $v_i \in (\mathbb{Z}^n)^* (= \Lambda^W)$.

3. The weights v_1, \ldots, v_n form a basis of the weight lattice Λ^W , for each vertex p.

Remark: M is a toric orbifold (rather than a smooth manifold) iff only (1) and (2) are satisfied. (A reference on orbifolds is [23].)

We shall see below that

Theorem 6.3 (see e.g. Audin Chap. VII or Guillemin Chap. 1) If B is a convex polytope satisfying (1), (2), (3) then there is a toric manifold M such that $\Phi(M) = B$.

Theorem 6.4 (Delzant) Toric manifolds are classified by their moment polytopes: in other words, if M_1 , M_2 are two toric manifolds with moment maps Φ_1 and Φ_2 and $\Phi_1(M_1) = \Phi_2(M_2)$, then there is a T^n -equivariant symplectic diffeomorphism between M_1 and M_2 .

To see Theorem ??, given a polytope B satisfying (1)-(3) we exhibit a toric manifold M with $\Phi(M) = B$.

Write $B = \bigcap_{j=1}^{d} \{x \in \mathbb{R}^n : \langle x, u_j \rangle \leq \lambda_j\}$ for $u_j \in \mathbb{R}^n$ and $\lambda_j \in \mathbb{R}$.

Definition 6.5 If B is an n-dimensional polyhedron in \mathbb{R}^n , then (a) F_i is an idimensional face of B if F_i is an i-simplex (b) Int F_i is congruent to the interior of the i-simplex. (c) Every point in B is in the interior of exactly one face. **Definition 6.6** A facet of an n-dimensional polytope is an (n-1)-dimensional face. The number of facets in B is d: they are indexed by j, and have normals $u_j \in \mathbb{Z}^n$. The u_j are assumed to be primitive (in other words they are not given by an integer multiple of another element of \mathbb{Z}^n).

We have a short exact sequence of vector spaces

$$0 \to \mathbf{n} \stackrel{i}{\to} \mathbb{R}^d \stackrel{\pi}{\to} \mathbb{R}^n \to 0$$

where $\pi: e_j \mapsto u_j$. Because $u_j \in \Lambda^W = \operatorname{Hom}(\mathbb{Z}^n, 2\pi\mathbb{Z})$, this exponentiates to

$$1 \to N \xrightarrow{i} U(1)^d \xrightarrow{\pi} U(1)^n \to 1$$

so $N = \text{Ker}(\pi)$ is a torus.

We know the moment map for the action of $U(1)^d$ on \mathbb{C}^d is

$$J: (z_1, \ldots, z_d) \mapsto -\frac{1}{2} (|z_1|^2, \ldots, |z_d|^2) + c.$$

Set $c = (\lambda_1, \ldots, \lambda_d)$.

For the action of N on \mathbb{C}^d the moment map is $i^* \circ J$ where

$$0 \to (\mathbb{R}^n)^* \xrightarrow{\pi^*} (\mathbb{R}^d)^* \xrightarrow{i^*} \mathbf{n}^* \to 0$$

(for $\mathbf{n} = \operatorname{Lie}(N) \cong \mathbb{R}^{n-d}$). Reduce \mathbb{C}^d with respect to the action of N:

Proposition 6.7 $(a)(i^* \circ J)^{-1}(0)/N$ is a symplectic manifold M (b) M is equipped with the Hamiltonian action of T^n with moment map Φ and $\Phi(M) = B$.

Example 6.8

 $\mathbb{C}P^2$

The moment polytope is the right triangle with vertices (0,0), (0,1) and (1,0). Let u_i be the normal vector to the *i*-th face. $u_1 = (0,-1)$, $u_2 = (-1,0)$ and $u_3 = \frac{1}{2}(1,1)$.

$$\mathbf{n} \to \mathbb{R}^3 \xrightarrow{\pi} \mathbb{R}^2$$
$$\pi : e_i \mapsto u_i$$
$$(1, 0, 0) \mapsto (0, -1)$$
$$(0, 1, 0) \mapsto (-1, 0)$$
$$(0, 0, 1) \mapsto (1, 1)$$
$$\pi = \begin{pmatrix} 0 & -1 & 1\\ -1 & 0 & 1 \end{pmatrix}$$

 $\lambda_1 = \lambda_2 = 0; \ \lambda_3 = \frac{1}{2}$

$$\mathbf{n} = \mathbb{R}(1, 1, 1) \subset \mathbb{R}^3 = \operatorname{Ker}(\pi)$$

 $N \cong U(1)$

Reduce \mathbb{C}^3 with respect to action of N:

$$i: (1, 1, 1) \mapsto \mathbb{R}^{3}$$

$$i^{*}: \mathbb{R}^{3} \to \mathbb{R}$$

$$i^{*}(v) = \langle v, (1, 1, 1) \rangle$$

$$J(z_{1}, z_{2}, z_{3}) = -\frac{1}{2}(|z_{1}|^{2}, |z_{2}|^{2}, |z_{3}|^{2}) + (\lambda_{1}, \lambda_{2}, \lambda_{3})$$

$$i^{*} \circ J(z_{1}, z_{2}, z_{3}) = -\frac{1}{2}\sum_{j} |z_{j}|^{2} + (\lambda_{1} + \lambda_{2} + \lambda_{3})$$

$$= -\frac{1}{2}\sum_{j} |z_{j}|^{2} + \frac{1}{2}$$

$$(i^{*} \circ J)^{-1}(0)/N = \mathbb{C}P^{2}$$

Proof of Proposition ??: breaks down into

Lemma 1 N acts freely on $(i^* \circ J)^{-1}(0)$ (by section on symplectic quotients) Define $B \subset (\mathbb{R}^n)^*$; $B' = \pi^*(B) \subset (\mathbb{R}^d)^*$

Lemma 2: Claim

$$(i^* \circ J)^{-1}(0) = J^{-1}(B') = \{z \in \mathbb{R}^d : i^* \circ J(z) = 0\}$$

Proof:

$$J(\mathbb{R}^{d}) = \{ (x_{1}, \dots, x_{d}) \in \mathbb{R}^{d} : < e_{i}, x > \leq \lambda_{i}, i = 1, \dots, d \}$$

 $i^*(x) = 0$ iff $x = \pi^*(y)$ for $y \in (\mathbb{R}^n)^*$; in other words $i^*(J(z)) = 0$ iff $J(z) = \pi^*(y)$ for some $y \in (\mathbb{R}^n)^*$ and

$$\langle e_i, \pi^*(y) \rangle \leq \lambda_i, \quad i = 1, \dots, d$$

 iff

$$<\pi(e_i), y>\leq \lambda_i, i=1,\ldots,d$$

iff

$$\langle u_i, y \rangle \leq \lambda_i, \quad i = 1, \dots, d$$

iff $y \in B$ iff $\pi^*(y) \in B'$ so $J(z) \in B'$.

Lemma 3: If $z \in \mathbb{C}^d$, define $I \subset \{1, \ldots, d\}$ by $z_i = 0$ iff $i \in I$.

$$\operatorname{Stab}(z) = T_I = \{(u_1, \dots, u_d) : i \in I \Rightarrow u_i = 1\}.$$

This is

$$U(1)^{d-|I|}$$

Lemma 4: For any $z \in J^{-1}(\Delta')$, $\operatorname{Stab}(z)$ is transverse to N, which acts freely at z. **Proof** Faces F_I of Δ (or of its image Δ') are determined by choosing a subset

$$\langle u_i, y \rangle = \lambda_i, \quad y \in \mathbb{R}^{n*}$$

 $\langle e_i, \pi^*(y) \rangle = \lambda_i$

These determine a torus $T_I \subset T^d$.

Note that the condition

 $I \subset I'$

is equivalent to

 $F_{I'} \subset F_I$.

Also that the largest sets I (corresponding to vertices $F_I = p$) have n elements because of the hypothesis that each vertex has n edges leaving from it, or equivalently it is the intersection of n facets.

If a vertex is the intersection of m facets then each edge is the choice of one facet to omit, in other words the number of edges is the number of facets.

So for any I (corresponding to a facet) it sits in several maximal I_{max} with $|I_{\text{max}}| = h$ corresponding to the vertices in the face for which $F_{I_{\text{max}}} = p$ (where p is a vertex). In other words $\{u_i, i \in I_{\text{max}}\}$ forms a basis of the integer lattice $\mathbb{Z}^n = \Lambda^I \subset \mathbf{t}$.

The edges leaving the vertex p correspond to a basis of $\Lambda^W \subset \mathbf{t}^*$ which is dual to the basis $\{u_i, i \in I_{\text{max}}\}$ since

$$T_I = \{(z_1, \dots, z_d) \in U(1)^d : z_j = 1 \text{ if } j \in I\} = \{exp(\sum_j \theta_j e_j), \theta_j \in \mathbb{R}, e_j \text{ basis of } \mathbb{R}^d\}$$

under

$$\exp(\pi)(T_I) \stackrel{\exp \pi}{=} \exp \sum_{j \neq I} \theta_j u_j.$$

 So

$$T_{I_{\max}} \cong T^n$$

 So

$$T_I \to T_{I_{\max}} \cong T^n.$$

So since $N = \text{Ker}(T^d \to T^n)$, $N \cap T_I = \{1\}$ for any I corresponding to a face F_I of the polyhedron $B' = \pi^*(B)$. This happens iff N acts freely on $J^{-1}(F_I)$ so N acts freely on $J^{-1}(B') = (i^* \circ J)^{-1}(0)$.

By our earlier results on reduction in stages, $T^n = T^d/N$ acts on $(i^* \circ J)^{-1}(0)/N = M$ in a Hamiltonian way.

The above results show:

$$0 \to N \to T^d \to T^n \to 0$$
$$0 \to (\mathbb{R}^n)^* \xrightarrow{\pi} (\mathbb{R}^d)^* \to \mathbf{n}^* \to 0$$

If

$$z \in J^{-1}(B') = (i^* \circ J)^{-1}(0)$$

then

 $J(z) \in \operatorname{Im}(\mathbb{R}^n)^*$

and so

$$\Phi: M \to (\mathbb{R}^n)^*$$
$$(\mathbb{R}^n)^* \to (\mathbb{R}^d)^*$$
$$\Phi(m) \in \operatorname{Im}(J)$$

 Claim

$$m \in \Phi^{-1}(F_I) \longleftrightarrow \operatorname{Stab}(m) = T_I \subset T^m$$

 \mathbf{SO}

 $\operatorname{Stab}(m) \cong T_I.$

So $\Phi(m) \in \text{Int}(B)$ iff T^n acts freely at m.

 $\Phi(m)$ is in exactly one facet iff T^n acts with 1-dimensional stabilizer.

 $\Phi(n)$ is in intersection of exactly 2 facets iff T^n acts with 2-dimensional stabilizer, etc.

 $\Phi(m)$ is a vertex iff T^n fixes m.

Remark 6.9 $B \subset \mathbf{t}^* = (\mathbb{R}^n)^*$: normals to facets are $u_j \in \Lambda^I \subset \mathbf{t}$, if F_I is intersection of $\langle x, u_i \rangle = \lambda_i$. For $i \in I$. the u_i $(i \in I)$ generate the stabilizer at any point in $\Phi^{-1}(F_I)$.

Theorem 6.10 $\Phi^{-1}(b) \cong T^n/T_I$ if $b \in \text{Int}(F_I)$. In particular, the symplectic quotient of M at any point $b \in (\mathbb{R}^n)^*$ is a point $\Phi^{-1}(b)/T^n$.

3. Fans and alternative description of toric manifolds (Ref: Audin Chap. VII)

Definition 6.11 A fan Σ is the specification of a family of convex cones in \mathbb{R}^n with origin 0 generated by elements $u_i \in \Lambda^I$ and for which

(a) every face of a cone is a cone

(b) if C_1 and C_2 are cones then $C_1 \cap C_2$ is a face of C_1 and of C_2 .

The data in a fan is "dual" to the data in the polyhedron B.

1-dimensional cones C_i correspond to rays $\mathbb{R}u_i$ through the normals u_i to the hyperplanes cutting out B

An indexing set $I \subset \{1, \ldots, d\}$ of order r determines a cone $C_I = C(U_{i_1}, \ldots, U_{i_r})$ of dimension r which corresponds to the face $F_i = \{x : < u_i, x > = \lambda_i \text{ for } i \in I\}$ in B of codimension r (dimension n - r).

The origin 0 (which is a 0 dimensional cone) corresponds to the face of dimension n.

However, when you pass from polyhedron B to fan Σ , you lose the information λ_i $(i = 1, \ldots, d)$ specifying the distance of hyperplanes in B from the origin.

Proposition 6.12 Fans classify toric manifolds up to diffeomorphism.

Newton polytopes classify toric manifolds up to symplectic diffeomorphism. For example, spheres S^2 of different radius but the same centre have the same fan but different Newton polytopes [-r, r] where r is the radius of the sphere.

Construction of toric manifold starting from a fan

Note that for any indexing set $I \subset \{1, \ldots, d\}$ of order r, the cone C_I may or may not be present in the fan Σ .

(depending on whether or not the intersection of the hyperplanes $\cap_i < u_i, y > = \lambda_i$ } is nonempty).

We have, as previously,

$$0 \to \mathbf{n} \to \mathbb{R}^d \to \mathbb{R}^n \to 0$$
$$1 \to N \to U(1)^d \to U(1)^n \to 0$$
$$1 \to N_{\mathbb{C}} \to (\mathbb{C}^*)^d \to (\mathbb{C}^*)^n \to 0$$

 $N_{\mathbb{C}} \cong (\mathbb{C}^*)^{d-n}$ is the (complex) Lie group whose Lie algebra is $\mathbf{n} \otimes \mathbb{C}$: it is called the complexification of N.

Definition 6.13 $e_I = \{(z_1, \ldots, z_d) \in \mathbb{C}^d : z_j = 0 \text{ if } j \notin I\}$ has dimension |I|. In particular $e_{\emptyset} = 0$. The toric manifold associated to the fan Σ is $M_{\Sigma} = U_{\Sigma}/N_{\mathbb{C}}$ where U_{Σ} is an open set in \mathbb{C}^d :

$$U_{\Sigma} = \mathbb{C}^a \setminus \bigcup_{I:C_I \notin \Sigma} e_I.$$

Alternative definition:

$$U_{\Sigma} = \bigcup_{I, C_I \in \Sigma} U_I$$

where

$$U_I = \{ z \in \mathbb{C}^d : z_j = 0 \Longrightarrow j \in I \}$$
$$= (\mathbb{C}^*)^{\overline{I}} \times \mathbb{C}^I$$

Conditions for a fan to correspond to a compact smooth toric variety:

- 1. Fan is complete
- 2. $C_I \in \Sigma$ implies $e_I \cap \mathbf{n} \otimes \mathbb{C} = \emptyset$. The preceding item is a consequence of
- 3. Each cone of Σ is generated by $\{u_i, i \in I\}$, which forms part of an integer basis of the integer lattice Λ^I
- 4. All *n*-dimensional cones of Σ (which correspond to vertices of the Newton polytope) are generated by part of a \mathbb{Z} -basis of Λ^{I} .

Example 6.14 1. $n = 2, d = 2 \{I\} = \emptyset, \{1\}, \{2\}, \{1, 2\}$

We have all possible indexing sets so $U_{\Sigma} = \mathbb{C}^2$

2. $n = 2, d = 2 \{I\} = \emptyset, \{1\}, \{2\}$

$$C_{\bar{I}} \notin \Sigma \to \bar{I} = \{12\}, I = \emptyset$$

 $e_{I=\emptyset} = \{0\}$

so

$$U_{\Sigma} = \mathbb{C}^2 \setminus \{0\}$$

3. n = 2, d = 3

$$I = \emptyset, \{1\}, \{2\}, \{3\}, \{12\}, \{23\}, \{13\}$$

 $C_{\bar{I}} \notin \Sigma$ implies $\bar{I} = \{123\}$, which implies $I = \emptyset$, which implies $e_I = \{0\}$.

 $U_{\Sigma} = \mathbb{C}^3 \setminus \{0\}$

Since $\mathbf{n} = \mathbb{R}(1, 1, 1) \subset \mathbb{R}^3$ and $N = \{(\lambda, \lambda, \lambda) | \lambda \in U(1)\} \subset U(1)^3$ we have

$$N_{\mathbb{C}} = \{(\lambda, \lambda, \lambda) | \lambda \in \mathbb{C}^*\} \subset (\mathbb{C}^*)^3$$

We have recovered the more usual description of $\mathbb{C}P^2$:

$$\mathbb{C}P^2 = (\mathbb{C}^*)^3 \setminus \{0\})/\mathbb{C}^*.$$

4. Recovering a symplectic structure on a toric manifold specified via a fan

As before we have

$$\mathbb{C}^{d} \xrightarrow{J} (\mathbb{R}^{d})^{*} \xrightarrow{i^{*}} \mathbf{n}^{*}$$
$$J(z_{1}, \dots, z_{d}) = -\frac{1}{2}(|z_{1}|^{2}, \dots, |z_{d}|^{2})$$

(the inclusion $0 \to \mathbf{n} \xrightarrow{i} \mathbb{R}^d \xrightarrow{\pi} \mathbb{R}^n \to 0$ specifies i^* .)

For any regular value $\xi \in \mathbf{n}^*$ ($\xi = i^*(\lambda_1, \ldots, \lambda_d)$ in our previous notation) we saw that a toric manifold was specified as

$$M_{(\lambda_1,...,\lambda_d)} = (i^* \circ J)^{-1}(\xi)/N.$$

For any regular value $\xi,$ the manifolds $M_{(\lambda_1,\dots,\lambda_d)}$ have the diffeomorphism type of the manifold

$$M_{\Sigma} = U_{\Sigma}/N_{\mathbb{C}}$$

(a) M_{Σ} inherits an action of $(\mathbb{C}^*)^n = (\mathbb{C}^*)^d / N_{\mathbb{C}}$ (the complexification of $U(1)^n$).

(b) This action preserves the complex structure but not the symplectic structure. The action of $U(1)^n$ preserves both complex and symplectic structures (Kähler structure).

Remarks:

(a) Two constructions of M_{Σ} :

(i) as a complex manifold, as quotient of an open set in \mathbb{C}^d by the action of the complex group $N_{\mathbb{C}}$

(ii) As a symplectic manifold, as symplectic quotient of \mathbb{C}^d by the compact group N.

Construction (i) is an example of a general geometric construction ("geometric invariant theory quotient"): Delete "unstable points" from \mathbb{C}^d (points which would cause quotient by $N_{\mathbb{C}}$ to be non-Hausdorff): get

 $M_{\Sigma} = \left(\mathbb{C}^d \setminus \text{set of complex codimension} \ge 2\right) / N_{\mathbb{C}}.$

General principle: Symplectic quotient of a Kähler manifold by a compact group N is same thing as geometric invariant theory quotient by complexified group $N_{\mathbb{C}}$ (Atiyah-Bott; Kirwan).