
8 Equivariant Cohomology

References: Audin §5, Berline-Getzler-Vergne §7 .

Definition 8.1 Let G be a compact Lie group. The universal bundle EG is a con-
tractible space on which G acts freely.

Definition 8.2 The classifying space BG is BG = EG/G.

Proposition 8.3
H∗(BG) = S(g∗)G = S(t∗)W

(polynomials on g invariant under the adjoint action, or polynomials on t invariant
under the Weyl group action)

Here, the degree in H∗(BG) is twice the degree as a polynomial on g.
(Chern-Weil: evaluate polynomials on curvature)

Example 8.4 S1 acts freely on all S2n+1, and these have homology only in dimen-
sions 0 and 2n + 1. The universal space EU(1) is

S∞ = {(z1, z2, . . .) ∈ C ⊗ Z : only finitely many nonzero terms,
∑

j

|zj|
2 = 1}

= S1 ∪ S3 ∪ . . .

where S2n−1 → S2n+1 via (z1, . . . , zn) 7→ (z1, . . . , zn, 0). The space S∞ is in fact
contractible, so it is EU(1).

Lemma 8.5
BU(1) = EU(1)/U(1) = CP∞

Proposition 8.6 H∗(BU(1)) = C[x] where x has degree 2.

Recall

H∗(CP n) =
C[x]

< xn+1 = 0 >
.

8.1 Homotopy quotients

Suppose M is a manifold acted on by a compact Lie group (not necessarily freely).
We want to find a substitute for the cohomology of M/G, which is in general not a
manifold.

Definition 8.7
H∗

G(M) = H∗(MG)

where we define the homotopy quotient

MG = (M × EG)/G.
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Proposition 8.8 If G acts freely on M then M/G is a smooth manifold and

H∗
G(M) = H∗(M/G)

More generally, H∗
G(M) is a module over the ring

H∗
G = H∗

G(pt) = H∗(BG).

8.2 The Cartan model

De Rham cohomology version of H∗(MG):

Definition 8.9
Ω∗

G(M) = (Ω∗(M) ⊗ S(g∗))G

where we have defined

S(g∗) = {f : g → R : f is a polynomial}

Here, S(g∗) is acted on by G through the coadjoint action of G on g∗.

Example 8.10 T abelian:

Ω∗
T (M) = Ω∗(M)T ⊗ S(t∗)

since all polynomials on t are automatically invariant, because the action of T on t
is trivial.

Lemma 8.11
S(t∗) = C[x1, . . . , xℓ]

where ℓ = dim(T )

Proposition 8.12
S(g∗)G = S(t∗)W

where the Weyl group W acts on t

Let X be a vector field on M . An element f ∈ Ω∗
G(M) may be thought of as a G-

equivariant map f : g → Ω∗(M), where the dependence of f(X) ∈ Ω∗(M) on X ∈ g
is polynomial. The grading on Ω∗

G(M) is defined by deg(f) = n + 2p if X 7→ f(X) is
p-linear in X and f(X) ∈ Ωn(M). We may define a differential

D : Ω∗
G(M) → Ω∗

G(M)

by
(Df)(X) = d(f(X)) − ιX#f(X)

where X# is the vector field on M generated by the action of X ∈ g and ι denotes
the interior product. Then D ◦ D = 0 and D increases the degree in Ω∗

G(M) by 1.

36



Theorem 8.13 (Cartan [13]) H∗
G(M) is naturally isomorphic to the cohomology

H∗(Ω∗
G(M), D) of this complex.

In particular, since D = 0 on Ω∗
G, we see that H∗

G = H∗
G(pt) = S(g∗)G.

If (M,ω) is a symplectic manifold equipped with the Hamiltonian action of a
compact group G, with moment map Φ, we define

ω̄(X) = ω + ΦX ∈ Ω2
G(M).

Lemma 8.14
Dω̄ = 0

Proof:
(Dω̄)(X) = dω − iX#ω + dΦX

But
iX#ω = dΦX

by definition of Hamiltonian group actions.
So Dω̄ = 0 and we can define [ω̄] ∈ H2

G(M).

Definition 8.15 A principal circle bundle over a point p equipped with the action of
a torus T is P = S1 equipped with a weight β ∈ Hom(T, U(1)). Thus T acts on S1 by

t ∈ T : z ∈ S1 7→ β(t)z.

Denote this bundle by Pβ.

Example 8.16
T = U(1), β(t) = tm

for m ∈ Z

Denote this bundle by Pm.

8.3 Characteristic classes of bundles over BU(1) and BT

Example 8.17
EU(1) ×U(1) Pm

is the homotopy quotient of Pm. Explicitly this means

{(z, w) ∈ EU(1) ×U(1) Pm}/ ∼

where
(z, w) ∼ (zu−1, umw).

Every point (z, w) is equivalent to a point (z′, 1) by choosing u = w−1/m so

(z, w) ∼ (zw1/m, 1).

37



Since there are m solutions to u = w−1/m, any two of which differ by multiplication
by a power of e2πi/m, we see that

EU(1) ×U(1) Pm = EU(1)/Zm

where
Zm = {e2πir/m, r = 0, . . . ,m − 1}.

Connection form θm on EU(1) ×U(1) Pm:

Note that a connection form θ on EU(1) satisfies
∫

π−1(b)
θ = 1. We also expect θm

to satisfy
∫

π−1
m (b)

θm = 1.

But since each fibre of EU(1) may be written as {eiφ, φ ∈ [0, 2π]} and the fibre of
EU(1)/Zm

πm→ BU(1) corresponds to {eiφ, φ ∈ [0, 2π/m]} , we have
∫

π−1
m (b)

θ = 1
m

so

we need

Lemma 8.18
θm = mθ

in terms of our earlier θ.

It follows that the first Chern class c1(Pm) of the principal circle bundle Pm (which
is represented in Chern-Weil theory by the curvature of dθm) satisfies

Lemma 8.19
c1(Pm)(X) = mX

where c = c1(EU(1) → BU(1)) is the generator of H∗(BU(1)).

This is a special case of

Lemma 8.20 Let T → P → M be a principal T -bundle with connection

θ = (θ1, . . . , θℓ) ∈ Ω1(P ) ⊗ t.

Let β ∈ Hom(T, U(1)). Form the associated principal circle bundle P ×T S1 :=

{(p, s) ∈ P × S1}/ ∼

where (p, s) ∼ (pt, β(t−1)s) for t ∈ T . Write Lie(β) : t → R.

Lie(β) = {(b1, . . . , bℓ)}

(bj ∈ Z). Then a connection form on P ×T S1 is

ℓ
∑

j=1

bjθj = Lie(β)(θ).
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Lemma 8.21 If (x1, . . . , xℓ) ∈ H2(BT ) are the generators of H∗(BT ) for a torus T
of rank ℓ, then the first Chern class of the associated principal circle bundle

ET ×T (S1)β

specified by the weight β is

c1(ET ×T (S1)β) =
ℓ

∑

j=1

bjxj.

8.4 Characteristic classes in terms of the Cartan model

Definition 8.22 A G-equivariant vector bundle over a G-manifold M is a vector
bundle V → M with an action of G on the total space covering the action of G on
M .

An equivariant principal circle bundle P → M is a principal circle bundle with
the action of G on the total space P covering the action of M .

Lemma 8.23 Suppose P → M is a principal circle bundle with connection θ ∈
Ω1(P ). Its first Chern class is represented in de Rham cohomology by c1(P ) = [dθ].

Lemma 8.24 If P
π
→ M is a G-equivariant principal U(1)-bundle then its equivari-

ant first Chern class is represented in the Cartan model by

cG
1 (P ) = [Dθ] = [dθ − iX#θ]

where X# is the vector field on P generated by X ∈ g.

Proof: For a collection of sections sα : Uα ⊂ M → P , s∗αDθ is closed but not
exact in Ω∗

G(M). In particular, if M is a point and P = Pβ = U(1) equipped with
β ∈ Hom(T, U(1)), then

c1(Pβ) = [Dθ] = −(Lie(β))(X) = −iX#θ

(since dθ = 0 on M).

Lemma 8.25 If P → M is a principal U(1) bundle with T action, and the T action
on M is trivial (but the T action on the total space of P is not trivial), then on each
fibre π−1(m) ∼= S1, the T action is given by a weight β ∈ Hom(T, U(1)). Then

cT
1 (P ) = [Dθ] = [dθ − β(X)].

Remark 8.26 Atiyah-Bott p. 9 have a different convention on characteristic num-
bers. One obtains their convention from ours by replacing X by −X. Our convention
is consistent with Berline-Getzler-Vergne §7.1.

The situation of the preceding Lemma arises in the following context:

Lemma 8.27 Let M be equipped with a T action, and let F be a component of MT .
For α ∈ H∗

T (M) and iF : F → M the inclusion map,

i∗F α ∈ H∗
T (F ) = H∗(F ) ⊗ H∗

T (pt) = H∗(F ) ⊗ R[x1, . . . , xℓ].
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8.5 Equivariant first Chern class of a prequantum line bundle

Definition 8.28 Let (M,ω) be a symplectic manifold with a Hamiltonian action of a
group G. A prequantum bundle with connection is a principal circle bundle P → M
for which c1(P ) = [ω], equipped with a connection θ for which dθ = π∗ω.

Lemma 8.29 If we impose the condition that LX#θ = 0, then

diX#θ = −iX#dθ

= −iX#ω = −dΦX .

It is thus natural to also impose the condition

iX#θ = −ΦX .

Thus the specification of a moment map for the group action is equivalent to specifying
a lift of the action of T from M to the total space P .

Lemma 8.30 If F ⊂ M is a component of the fixed point set, then

i∗F ω̄(X) ∈ Ω2
T (F )

= ω|F + ΦX(F ).

Proof: For any f ∈ F , P |f is a copy of S1 on which T acts using a weight βF ∈
Hom(T, U(1)).

Lie(βF ) ∈ Hom(t, R).

The equivariant first Chern class of P is

cT
1 (P )|F = c1(P )|F − Lie(βF ) = [ω]|F − Lie(βF ).

Identifying the two equivariant extensions of ω|F we see that

ΦX(F ) = −Lie(βF )(X).

At fixed points of the action, the value of the moment map is a weight: provided the
symplectic form ω satisfies [ω] = c1(P ) for some principal S1-bundle P . This is true
iff [ω] ∈ H2(M, Z).

8.6 Euler classes and equivariant Euler classes

References: Roe, Gilkey, Milnor-Stasheff Appendix C

Definition 8.31 If E is a complex vector bundle of rank m (write this as EC) then
we may regard it as a real vector bundle of rank 2m (write this as ER).
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Definition 8.32 The Euler class of E is a characteristic class e(E) associated with
real vector bundles E → M of rank r, if r is the (real) dimension of M .

Definition 8.33 If EC is a complex vector bundle of (complex) rank m, then e(ER) =
cm(EC).

Proposition 8.34 (Euler class is multiplicative) If E = E1 ⊕ E2, then e(E) =
e(E1)e(E2).

Proposition 8.35 If E = L1 ⊕ . . . ⊕ Lm (direct sum of line bundles) then e(E) =
c1(L1) . . . c1(Lm).

Proposition 8.36 If E is a complex vector bundle with a T action, and E =
∑

j Lj

where the Lj are complex line bundles with T action given by weights βj : T → U(1),
then the equivariant Euler clas of E is

eT (E) =
∏

j

cT
1 (Lj)

which is represented in the Cartan model by

eT (E)(X) =
∏

j

(dθj − (Lieβj)(X)).

We can usually reduce to this situation by the splitting principle: see Bott-Tu §21.

Example 8.37 If T acts on M and F is a component of MT , then the normal bundle
νF is a T -equivariant bundle over F (T acts trivially on F , but not on νF ). Assume
νF decomposes equivariantly as

∑

j νF,j with weights βF,j.

The equivariant Euler class eF := eT (νF ) is then given by

eF (X) =
∏

j

(c1(νF,j) − βF,j(X)).

(References: Berline-Getzler-Vergne §7.2; Audin Chap. V.6).

8.7 Localization formula for torus actions

If M is a G-manifold of dimension m, then the equivariant pushforward is

∫

M

: H∗
G(M) → H∗

G(pt).

Topologically this is the pairing with the fundamental class of M . In the Cartan
model, we represent α by η ∈ Ω∗

G(M) satisfying Dη = 0. Stokes’ theorem implies
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that if M has no boundary then
∫

M
Dα(X) = 0 for any α ∈ Ω∗

G(M). Thus
∫

M
η(X)

depends only on the class of η in the cohomology of the Cartan model. Define

Z∗
G(M) = {α ∈ Ω∗

G(M) : Dα = 0}

and
B∗

G(M) = DΩ∗
G(M).

So
H∗

G(M) = Z∗
G(M)/B∗

G(M)

and
∫

M

: H∗
G(M) → H∗

G(pt).

Remark 8.38 The integral

is a smooth function of X (cf. sin X/X is a smooth function of X). But the terms
corresponding to individual F are meromorphic functions of X which do have poles.
These poles cancel in the sum over F .

8.8 Proof of localization theorem when MT consists of iso-
lated fixed points

In this case eF (X) = (−1)n
∏

j βF,j(X). This implies the dimension of M is even, since
nontrivial irreducible representations of T have real dimension 2, and if F is a fixed
point, TF M must decompose as a direct sum of nontrivial irreducible representations
of T . (If there were any subspaces of TF M on which T acted trivially, they would
be tangent to the fixed point set MT , but we have already assumed MT consists of
isolated fixed points.

Lemma 8.39 Let θ be any 1-form on M for which θ(X#) = 0 iff x#
m = 0. Then

on M \ MT we have that if α ∈ Ω∗
T (M) and Dα = 0,

α = D

(

θα

Dθ

)

.

Proof:
(a) D is an antiderivation (because d and iX# are antiderivations)
(b) So D(θα) = (Dθ)α (since Dα = 0 and

α = D

(

θα

Dθ

)

(we use that D(f/Dθ) = Df/Dθ).
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(c) The formal expression θα
Dθ

makes sense on M \MT since Dθ = dθ− θ(X#) and
θ(X#) 6= 0 on M \ MT . Then

1

Dθ
=

1

−θ(X#

(

1 −
dθ

θ(X#)

)

=
−1

θ(X#)

∑

r≥0

(

dθ

θ(X#)

)r

and (dθ)r = 0 for 2r > dim(M). So the series only has a finite number of nonzero
terms.

Lemma 8.40 There exist θ satisfying the hypotheses of the previous lemma (cf. in-
verse of equivariant Euler class). We may construct θ on M as follows. Denote it by
θ′. Choose a T -invariant metric g on M and define for ξ ∈ TmM

θ′m(X#
m, ) = g(X#

m, X#
m)

Then θ′m(X#
m) = g(X#

m, X#
m) = 1 on M \ MT . In a neighbourhood of F ∈

MT , we shall take a differnet choice of θ: denote it by θH . Choose coordinates
(x1, . . . , x2n−1, x2n) on TF M ∼= C ⊕ . . . C (n copies of C) for which T acts on j-th
copy of C (with coordinates zj = x2j−1 + ix2j) by linear action with weight βj ∈
Hom(T, U(1)), Lie(βj) : t → R.

Define Lie(βj)(X) = λj ∈ R for a specific X ∈ t for which all the Lie(βj)(X) are
nonzero. (This is true for almost all X ∈ t.)

On C
n ∼= TF M , define

θ′ =
∑

j

1

λj

(x2j−1dx2j − x2jdx2j−1).

Using the exponential map as defined in differential geometry:

exp : TF M → M

This map is T -equivariant.
So

(x1, . . . , x2n)

become coordinates on an open neighbourhood UF of F in M , and in these coordinates,
the action of T is still given by the linear action on C

n for which the action on the
j-th copy of C is given by the weight βj.

Using a partition of unity, construct a smooth T -invariant function

f : M → [0, 1]

43



with f = 0 on M \ UF . Choose an open neighbourhood F ∈ VF ⊂ UF (for instance
UF is a ball of radius 2, and VF is a ball of radius 1) and require f = 1 on VF . Then
define

θ = (1 − f)θ′ + fθ′′

Thus
θ|M\∪

F∈MT UF
= θ′

and
θ|VF

= θ′′

and for appropriately chosen f , θm(X#) 6= 0 when m /∈ MT .

Lemma 8.41 (Stokes’ Theorem for Cartan model for manifolds with boundary) Let
M be a manifold with boundary ∂M , with G action such that the action of G sends
∂M to ∂M . If α ∈ Ω∗

G(M) then

∫

M

Dα =

∫

∂M

α.

Proof: Decompose α = α0 + . . . + αdimM where αj is a differential form of degree j
(depending on X). Then

∫

M
α :=

∫

M
αdimM (the other αj contribute 0, by definition).

Then (Dα)dimM = dαdimM−1 (since the iX# part of the Cartan model differential
reduces degree of forms so it cannot contribute). Now apply ordinary Stokes’ Theorem
to (Dα)dimM .

Let Bǫ(F ) ⊂ exp(UF ) be a ball of radius ǫ around F (in the local coordinates on
exp(UF )). Then

∫

M

α = lim
ǫ→0

∫

M\∪F Bǫ(F )

α

= lim
ǫ→0

∫

M\∪F Bǫ(F )

D

(

θα

Dθ

)

= − lim
ǫ→0

∑

F

∫

∂Bǫ(F )

θα

Dθ

(by Stokes). Define ∂Bǫ(F ) = Sǫ(F ), a sphere of radius ǫ in C
n.

Sǫ(F ) = {(x1, . . . , x2n) :
∑

j

|xj|
2 = ǫ2}.

Define φ : S2n−1 → Sǫ(F ) by φ(x̄) = ǫx̄.
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8.9 Equivariant characteristic classes

Define the pushforward map π∗ : Ω∗
G(M) → Ω∗

G by π∗(η)(X) =
∫

M
η(X).

Stokes’ Theorem for equivariant cohomology in the Cartan model tells us that if
M is a G-manifold with boundary and G : ∂M → ∂M (where the action of G on ∂M
is locally free) and η ∈ Ω∗

G(M), then

∫

M

(Dη)(X) =

∫

∂M

η(X).

It follows that the pushforward map π∗ induces a map H∗
G(M) → H∗

G.

Definition 8.42 Suppose E is a (complex) vector bundle on a manifold M equipped
with a Hamiltonian action of a group G which lifts the action of G on M . The
equivariant Chern classes cG

r (E) are given by

cG
r (E) = cr(E ×G EG → M ×G EG).

Likewise the equivariant Euler class of E is given by

eG(E) = e(E ×G EG → M ×G EG).

Example 8.43 Equivariant characteristic classes in the Cartan model. Sup-
pose E is a complex vector bundle of rank N on a manifold M equipped with the action
of a group G. Let ∇ be a connection on E compatible with the action of G. Define
the moment of E, µ̃ ∈ G(EndE ⊗ g∗) (see [6], Section 7.1) as follows:

LX#s −∇X#s = µ̃(X)s (1)

for s ∈ G(E) (where X ∈ G and X# is the vector field on M defined by the action
of G). Notice that the action of G on the total space of E permits us to define the
Lie derivative LX#s of a section s ∈ G(E), and that the formula (1) defines µ̃ as a
zeroth order operator (i.e. a section of EndE depending linearly on X ∈ g).

We find that the representatives in the Cartan model of cG
r (E) are given by

cG
r (E) = [τr(F∇ + µ̃(X))]

where F∇ ∈ G(EndE ⊗ Ω2(M)) is the curvature of ∇ and τr is the elementary sym-
metric polynomial of degree r on u(N) giving rise to the Chern class cr.

Remark 8.44 If M is symplectic and E is a complex line bundle L whose first Chern
class is the De Rham cohomology class of the symplectic form, then the moment
defined in Example 8.43 reduces to the symplectic moment map for the action of G.
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Example 8.45 Suppose E is a complex line bundle over M equipped with an action
of a torus T compatible with the action of T on M , and denote by F the components
of the fixed point set of T over M . Suppose a torus T acts on the fibres of E|F with
weight βF ∈ t∗: in other words exp(X) ∈ T : z ∈ E|F 7→ eiβF (X)z. Then

eT (E)|F = c1(E) + βF (X).

Example 8.46 If G acts on a manifold M , bundles associated to M (e.g. tangent
and cotangent bundles) naturally acquire a compatible action of G.

Example 8.47 Suppose a torus T acts on M and let F be a component of the fixed
point set. (Notice that each F is a manifold, since the action of T on the tangent
space TfM at any f ∈ F can be linearized and the linearization gives charts for F as
a manifold.) Let νF be the normal bundle to F in M ; then T acts on νF . Without
loss of generality (using the splitting principle: see for instance [10]) we may assume
that νF decomposes T -equivariantly as a sum of line bundles νF,j on each of which T
acts with weight βF,j ∈ t∗. Thus one observes that the equivariant Euler class of νF

is
eF (X) =

∏

j

(c1(νF,j) + βF,j(X)).

Notice that βF,j 6= 0 for any j (since otherwise νF,j would be tangent to the fixed
point set rather than normal to it). We may thus define

e0
F (X) =

∏

j

βF,j(X)

and we have
eF (X) = e0

F (X)
∏

j

(1 + c1(νF,j)/βF,j(X)).

Since c1(νF,j)/βF,j(X) is nilpotent, we find that we may define the inverse of eF (X)
by

1

eF (X)
=

1

e0
F (X)

∞
∑

r=0

(−1)r(c1(νF,j)/βF,j(X))r;

only a finite number of terms contribute to this sum.

Example 8.48 U(1) actions with isolated fixed points.
Suppose the action of T ∈ U(1) on M has isolated fixed points. Suppose the normal

bundle νF = TF M at each fixed point F decomposes as a direct sum νF
∼= ⊕N

j=1νF,j

where each νF,j
∼= C and M acts with multiplicity µF,j on νF,j (for 0 6= µF,j ∈ Z): in

other words
t ∈ U(1) : zj ∈ νF,j 7→ tµF,jzj.

We then find that the equivariant Euler class is

eF (X) = (
∏

j

µF,j)X
N .
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8.10 The abelian localization theorem

A very important localization formula for equivariant cohomology with respect to
torus actions is given by the following theorem.

Theorem 8.49 (Berline-Vergne [8]; Atiyah-Bott [3]) Let T be a torus acting
on a manifold M , and let F index the components F of the fixed point set MT of the
action of T on M . Let η ∈ H∗

T (M). Then

∫

M

η(X) =
∑

F∈F

∫

F

η(X)

eF (X)
.

Proof 1: (Berline-Vergne [8]) Let us assume T = U(1) for simplicity. Define
Mǫ = M −

∐

F UF
ǫ where UF

ǫ is an ǫ-neighbourhood (in a suitable equivariant metric)
of the component F of the fixed point set MT . On Mǫ, T acts locally freely, so we
may choose a connection θ on Mǫ viewed as the total space of a principal (orbifold)
U(1) bundle (in other words, θ is a 1-form on Mǫ for which θ(V ) = 1 where V is the
vector field generating the S1 action). Now for every equivariant form η ∈ Ω∗

T (M)
for which Dη = 0, we have that

η = D
( θη

dθ − X

)

.

Applying the equivariant version of Stokes’ theorem we see that

∫

M

η(X) = lim
ǫ→0

∫

Mǫ

η(X) =
∑

F

lim
ǫ→0

∫

∂UF
ǫ

θη(X)

dθ − X
.

It can be shown (see [8] or Section 7.2 of [6]) that as ǫ → 0,
∫

∂UF
ǫ

θη(X)
dθ−X

tends to
∫

F
η(X)

eF (X)
. 2

Proof 2: (Atiyah-Bott[3]) We work with the functorial properties of the pushfor-
ward (in equivariant cohomology) under the map iF including F in M . We see that
i∗F (iF )∗ = eF is multiplication by the equivariant Euler class eF of the normal bundle
to F . Further one may show ([30], Section 6, Proposition 8) that the map

∑

F

i∗F : H∗
T (M) 7→ ⊕F∈FH∗(F ) ⊗ H∗

T

is injective. Thus we see that each class η ∈ H∗
T (M) satisfies

η =
∑

F∈F

(iF )∗
1

eF

i∗F η (2)

(by applying i∗F to both sides of the equation). Now
∫

M
η = π∗η (where the map π :

M → pt and π∗ : H∗
T (M) → H∗

T is the pushforward in equivariant cohomology). The
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result now follows by applying π∗ to both sides of (2) (since π∗ ◦ (iF )∗ = (πF )∗ =
∫

F
).

Proof 3: (Bismut [9]; Witten [40], 2.2.2) Let λ ∈ Ω1(M) be such that ιX#λ = 0
if and only if X# = 0: for instance we may choose λ(Y ) = g(X#, Y ) for any tangent
vector Y (where g is any G-invariant metric on M). We observe that if Dη = 0 then
∫

M
η(X) =

∫

M
η(X)etDλ for any t ∈ R. Now Dλ = dλ − g(X#, X#), so

∫

M

η(X)etDλ =

∫

M

η(X)e−tg(X#,X#)
∑

n≥0

tn(dλ)n/n!.

Taking the limit as t → ∞ we see that the integral reduces to contributions from
points where X# = 0 (i.e. from the components F of the fixed point set of T ). A
careful computation yields Theorem 8.49.2

2The technique used in this proof – introducing a parameter t, showing independence of t by a
cohomological argument and showing localization as t tends to some limit – is by now universal in
geometry and physics. Two of the original examples were Witten’s treatment of Morse theory in
[38] and the heat equation proof of the index theorem [4].
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