Toric Manifolds

Introduction

1 The Jurkiewicz-Danilov Theorem

Suppose M is a toric manifold of dimension 2n equipped with the (effective) Hamiltonian action of $T = U(1)^n$.

Theorem 1.1 (Jurkiewicz-Danilov)

The cohomology of M (with \mathbb{Z} coefficients is

$$H^*(M;\mathbb{Z}) \cong \mathbb{C}[x_1,\ldots,x_d]/(\mathcal{I},\mathcal{J})$$

where the Newton polyhedron of M has d facets and x_j are generators of degree 2, and the ideal \mathcal{I} is generated by

$$\prod_{j\in I} x_j$$

where v_j are a collection of facets with no common intersection point in the polytope. Also the ideal \mathcal{J} is defined by

$$\mathcal{J} = \sum_{i} \alpha_i x_i$$

for $\alpha \in \pi^*((\mathbf{R^n})^*)$.

Recall the short exact sequence

$$0 \to n \to \mathbf{R^d} \to \mathbf{R^n} \to \mathbf{0}$$

where we take the symplectic quotient of $\mathbf{R}^{\mathbf{d}}$ by N and inherit a manifold with a Hamiltonian action of $\mathbf{R}^{\mathbf{n}}$.

(Proof: see Theorem 7, S. Tolman, J. Weitsman, The cohomology ring of symplectic quotients, CAG 11 (2003) no. 4, 751–773.

Example:

$$H^*(\mathbb{C}P^n) = \mathbb{C}[x] / \langle x^{n+1} \rangle$$

The moment polytope of $\mathbb{C}P^n$ is an n-simplex in \mathbb{R}^{n+1} . It has n + 1 facets D_0, \ldots, D_n , so we assign n + 1 degree 2 generators x_0, \ldots, x_n . This gives N has dimension 1 and d = n + 1. The only collection of facets that do not have a common intersection point is $\{D_0, D_1, \ldots, D_n\}$. So this gives a relation $x_0x_1 \ldots x_n$. The linear relations are $x_0 - x_j$, $1 \le j \le n$. So this yields the familiar characterization of the cohomology ring of $\mathbb{C}P^n$.

Example 2:

$H^*(\mathbb{C}P^1)$

This is a special case of Example 1. There are two facets D_+, D_- (which are the points +1 and -1). They do not intersect, so we choose two degree 2 generators

 x_+ and x_- and assign one relation $x_+x_- = 0$ (the ideal \mathcal{I} in this case is generated by x_+x_-).

The linear relation is $x_{+} - x_{-} = 0$, so the ideal \mathcal{I} is generated by $x_{+} - x_{-}$.

This means that the cohomology ring of $\mathbb{C}P^1$ is

$$\mathbb{C}[x_+, x_-] / \langle x_+ - x_-, x_+ x_- \rangle \cong \mathbb{C}[x_+] / \langle (x_+)^2 \rangle.$$

Example 3: $H^*(\mathbb{C}P^1 \times \mathbb{C}P^1)$

The moment polytope is a square with vertices $F_{++} = (+1, 1), F_{+-} = (1, -1),$ $F_{-+} = (-1, 1), F_{--} = (-1, -1).$ There are four faces, each determined by setting one of the coordinates (either the first or the second) to a constant value of +1 or -1. Write these as $D_{+}, D_{-}, D_{+}, D_{-}$ (where \cdot denotes the coordinate that is allowed to vary). Put corresponding degree 2 generators $x_{+}, x_{-}, x_{+}, x_{-}$.

 $D_{+} \cap D_{\cdot} = \emptyset$, and likewise $D_{\cdot+} \cap D_{\cdot-} = \emptyset$. This gives two relations $x_{+} \cdot x_{-} = 0$ and $x_{\cdot+} \cdot x_{\cdot-} = 0$. These generate the ideal \mathcal{I} .

The linear relations are as follows. The image of π^* is generated by $x_{+} - x_{-}$ and $x_{+} - x_{-}$...

This means

$$H^*(\mathbb{C}P^1 \times \mathbb{C}P^1) = \mathbb{C}[x_{+\cdot}, x_{-\cdot}, x_{\cdot+}, x_{\cdot-}] / \langle x_{+\cdot} - x_{-\cdot}, x_{+\cdot} - x_{-\cdot}, x_{+\cdot} x_{-\cdot}, x_{+\cdot} x_{-\cdot} \rangle$$
$$\cong \mathbb{C}[x_{\cdot+}, x_{+\cdot}] / \langle (x_{\cdot+})^2, (x_{+\cdot})^2 \rangle.$$