
Toric Manifolds

Introduction



1 Toric Manifolds

Definition 1.1 (M2n, ω) is a toric manifold if it is equipped with the (effective)

Hamiltonian action of a torus Tn for which the dimension of the torus is half the

dimension of the manifold.

Φ : M2n → Rn

Comparison with integrable systems: An integrable system is a symplectic

manifold M2n equipped with n linearly independent Poisson commuting functions

f1, . . . , fn (in other words the corresponding Hamiltonian vector fields are linearly

independent almost everywhere).

So a toric manifold is an integrable system for which the functions f1, . . . , fn may

be chosen in such a way that the Hamiltonian flows of the Poisson commuting

functions are periodic with period 1 almost everywhere.

The image of the moment map Φ(M) is a convex polyhedron B ⊂ Rn (the

Newton polytope of M).



All polytopes arising from toric manifolds satisfy the following:

Proposition 1.2 1. For each vertex p there are exactly n edges leaving it

2. The edges are of the form p+ tvj (j = 1, . . . , n) where vj ∈ (Zn)∗(= ΛW )).

3. The weights v1, . . . , vn form a basis of the weight lattice ΛW , for each vertex p.



Remark 1.3 M is a toric orbifold (rather than a smooth manifold) iff only (1)

and (2) are satisfied.

(A reference on orbifolds is the book by Henriques and Metzler.)

We shall see below that

Theorem 1.4 (see e.g. Audin Chap. VII or Guillemin Chap. 1) If B is a convex

polytope satisfying (1), (2), (3) then there is a toric manifold M such that

Φ(M) = B.

Theorem 1.5 (Delzant) Toric manifolds are classified by their moment

polytopes: in other words, if M1, M2 are two toric manifolds with moment maps

Φ1 and Φ2 and Φ1(M1) = Φ2(M2), then there is a Tn-equivariant symplectic

diffeomorphism between M1 and M2.



To see Theorem 1.4, given a polytope B satisfying (1)-(3) we exhibit a toric

manifold M with Φ(M) = B.

Write B = ∩dj=1{x ∈ Rn :< x,uj >≤ λj} for uj ∈ Rn and λj ∈ R.

Definition 1.6 If B is an n-dimensional polyhedron in Rn, then (a) Fi is an

i-dimensional face of B if Fi is an i-simplex (b) IntFi is congruent to the interior

of the i-simplex. (c) Every point in B is in the interior of exactly one face.

Definition 1.7 A facet of an n-dimensional polytope is an (n− 1)-dimensional

face. The number of facets in B is d: they are indexed by j, and have normals

uj ∈ Z
n. The uj are assumed to be primitive (in other words they are not given by

an integer multiple of another element of Zn).



We have a short exact sequence of vector spaces

0→ n
i
→ Rd π

→ Rn → 0

where π : ej 7→ uj . Because uj ∈ ΛW = Hom(Zn, 2πZ), this exponentiates to

1→ N
i
→ U(1)d

π
→ U(1)n → 1

so N = Ker(π) is a torus.

We know the moment map for the action of U(1)d on C
d is

J : (z1, . . . , zd) 7→ −
1

2

(

|z1|
2, . . . , |zd|

2
)

+ c.

Set c = (λ1, . . . , λd).

For the action of N on C
d the moment map is i∗ ◦ J where

0→ (Rn)∗
π∗

→ (Rd)∗
i∗

→ n∗ → 0

(for n = Lie(N) ∼= Rn−d). Reduce C
d with respect to the action of N :

Proposition 1.8 (a)(i∗ ◦ J)−1(0)/N is a symplectic manifold M (b) M is

equipped with the Hamiltonian action of Tn with moment map Φ and Φ(M) = B.



Example 1.9

CP 2

The moment polytope is the right triangle with vertices (0, 0), (0, 1) and (1, 0). Let

ui be the normal vector to the i-th face. u1 = (0,−1), u2 = (−1, 0) and

u3 =
1
2(1, 1).

n→ R3 π
→ R2

π : ei 7→ ui

(1, 0, 0) 7→ (0,−1)

(0, 1, 0) 7→ (−1, 0)

(0, 0, 1) 7→ (1, 1)

λ1 = λ2 = 0; λ3 =
1
2

π =





0 −1 1

−1 0 1





n = R(1,1,1) ⊂ R3 = Ker(π)

N ∼= U(1)



Reduce C
3 with respect to action of N :

i : (1, 1, 1) 7→ R3

i∗ : R3 → R

i∗(v) =< v, (1, 1, 1) >

J(z1, z2, z3) = −
1

2
(|z1|

2, |z2|
2, |z3|

2) + (λ1, λ2, λ3)

i∗ ◦ J(z1, z2, z3) = −
1

2

∑

j

|zj |
2 + (λ1 + λ2 + λ3)

= −
1

2

∑

j

|zj |
2 +

1

2

(i∗ ◦ J)−1(0)/N = CP 2



Proof of Proposition 1.8: The proof breaks down into

Lemma 1 N acts freely on (i∗ ◦ J)−1(0) (by section on symplectic quotients)

Define B ⊂ (Rn)∗ ; B′ = π∗(B) ⊂ (Rd)∗

Lemma 2: Claim

(i∗ ◦ J)−1(0) = J−1(B′) = {z ∈ Rd : i∗ ◦ J(z) = 0}

Proof:

J(Rd) = {(x1, . . . ,xd) ∈ Rd :< ei,x >≤ λi, i = 1, . . . ,d}.

i∗(x) = 0 iff x = π∗(y) for y ∈ (Rn)∗; in other words i∗(J(z)) = 0 iff J(z) = π∗(y)

for some y ∈ (Rn)∗ and

< ei, π
∗(y) >≤ λi, i = 1, . . . , d

iff

< π(ei), y >≤ λi, i = 1, . . . , d

iff

< ui, y >≤ λi, i = 1, . . . , d

iff y ∈ B iff π∗(y) ∈ B′ so J(z) ∈ B′.



Lemma 3: If z ∈ C
d, define I ⊂ {1, . . . , d} by zi = 0 iff i ∈ I.

Stab(z) = TI = {(u1, . . . , ud) : i /∈ I =⇒ ui = 1}.

This is

U(1)d−|I|.

Lemma 4: For any z ∈ J−1(B′), Stab(z) is transverse to N , which acts freely at

z. Proof Faces FI of B (or of its image B′) are determined by choosing a subset

< ui, y >= λi, y ∈ Rn∗

< ei, π
∗(y) >= λi

These determine a torus TI ⊂ T d.

• Note that the condition

I ⊂ I ′

is equivalent to

FI′ ⊂ FI .

Also that the largest sets I (corresponding to vertices FI = p) have n elements

because of the hypothesis that each vertex has n edges leaving from it, or

equivalently it is the intersection of n facets.



• If a vertex is the intersection of a collection of facets, then each edge is the

choice of one facet to omit.

So for any I (corresponding to a facet) it sits in several maximal Imax with

|Imax| = n corresponding to the vertices in the face for which FImax
= p (where p

is a vertex). In other words {ui, i ∈ Imax} forms a basis of the integer lattice

Z
n = ΛI ⊂ Lie(T ).

The edges leaving the vertex p correspond to a basis of ΛW ⊂ Lie(T )∗ which is

dual to the basis {ui, i ∈ Imax} since

TI = {(z1, . . . , zd) ∈ U(1)d : zj = 1 if j ∈ I} = {exp(
∑

j

θjej), θj ∈ R,

ej basis of Rd}

under

exp(π)(TI)
expπ
= exp

∑

j 6=I

θjuj .

• So

TImax

∼= Tn.

So

TI → TImax

∼= Tn.



• So since N = Ker(T d → Tn), N ∩ TI = {1} for any I corresponding to a face FI

of the polyhedron B′ = π∗(B).

• This happens iff N acts freely on J−1(FI) so N acts freely on

J−1(B′) = (i∗ ◦ J)−1(0).

By our earlier results on reduction in stages, Tn = T d/N acts on

(i∗ ◦ J)−1(0)/N = M in a Hamiltonian way.



The above results show:

0→ N → T d → Tn → 0

0→ (Rn)∗
π
→ (Rd)∗ → n∗ → 0

• If

z ∈ J−1(B′) = (i∗ ◦ J)−1(0)

then

J(z) ∈ Im(Rn)∗

So

Φ : M → (Rn)∗

(Rn)∗ → (Rd)∗

Φ(m) ∈ Im(J)

• Claim

m ∈ Φ−1(FI)←→ Stab(m) = TI ⊂ Tn

so

Stab(m) ∼= TI .

• So Φ(m) ∈ Int(B) iff Tn acts freely at m.



• Φ(m) is in exactly one facet iff Tn acts with 1-dimensional stabilizer.

• Φ(n) is in intersection of exactly 2 facets iff Tn acts with 2-dimensional

stabilizer, etc.

• Φ(m) is a vertex iff Tn fixes m.



Remark 1.10 B ⊂ Lie(T )∗ = (Rn)∗ : normals to facets are uj ∈ ΛI ⊂ Lie(T ), if

FI is intersection of < x, ui >= λi. For i ∈ I. the ui (i ∈ I) generate the

stabilizer at any point in Φ−1(FI).

Theorem 1.11 Φ−1(b) ∼= Tn/TI if b ∈ Int(FI). In particular, the symplectic

quotient of M at any point b ∈ (Rn)∗ is a point Φ−1(b)/Tn.



3. Fans and alternative description of toric manifolds (Ref: Audin Chap.

VII)

Definition 1.12 A fan Σ is the specification of a family of convex cones in Rn

with origin 0 generated by elements ui ∈ ΛI and for which

(a) every face of a cone is a cone

(b) if C1 and C2 are cones then C1 ∩ C2 is a face of C1 and of C2.

The data in a fan is “dual” to the data in the polyhedron B.

• 1-dimensional cones Ci correspond to rays Rui through the normals ui to the

hyperplanes cutting out B

• An indexing set I ⊂ {1, . . . , d} of order r determines a cone

CI = C(Ui1 , . . . , Uir) of dimension r which corresponds to the face

Fi = {x :< ui, x >= λi for i ∈ I} in B of codimension r (dimension n− r).

• The origin 0 (which is a 0 dimensional cone) corresponds to the face of

dimension n.



However, when you pass from polyhedron B to fan Σ, you lose the information λi

(i = 1, . . . , d) specifying the distance of hyperplanes in B from the origin.

Proposition 1.13 Fans classify toric manifolds up to diffeomorphism.

Newton polytopes classify toric manifolds up to symplectic diffeomorphism. For

example, spheres S2 of different radius but the same centre have the same fan but

different Newton polytopes [−r, r] where r is the radius of the sphere.



Construction of toric manifold starting from a fan

• Note that for any indexing set I ⊂ {1, . . . , d} of order r, the cone CI may or

may not be present in the fan Σ.

(depending on whether or not the intersection of the hyperplanes

∩i < ui, y >= λi} is nonempty).

• We have, as previously,

0→ n→ Rd → Rn → 0

1→ N → U(1)d → U(1)n → 0

1→ NC → (C∗)d → (C∗)n → 0

• The space NC
∼= (C∗)d−n is the (complex) Lie group whose Lie algebra is n⊗C:

it is called the complexification of N .

Definition 1.14 eI = {(z1, . . . , zd) ∈ C
d : zj = 0 if j /∈ I} has dimension |I|. In

particular e∅ = 0. The toric manifold associated to the fan Σ is MΣ = UΣ/NC

where UΣ is an open set in C
d:

UΣ = C
d \ ∪I:CI /∈ΣeI .



Alternative definition:

UΣ = ∪I,CI∈ΣUI

where
UI = {z ∈ C

d : zj = 0 =⇒ j ∈ I}

= (C∗)Ī × C
I

Conditions for a fan to correspond to a compact smooth toric variety:

1. Fan is complete

2. CI ∈ Σ implies eI ∩ n⊗ C = ∅. The preceding item is a consequence of

3. Each cone of Σ is generated by {ui, i ∈ I}, which forms part of an integer basis
of the integer lattice ΛI

4. All n-dimensional cones of Σ (which correspond to vertices of the Newton poly-
tope) are generated by part of a Z-basis of ΛI .



Example 1.15 1. n = 2, d = 2 {I} = ∅, {1}, {2}, {1, 2}

We have all possible indexing sets so UΣ = C
2

2. n = 2, d = 2 {I} = ∅, {1}, {2}

CĪ /∈ Σ→ Ī = {12}, I = ∅

eI=∅ = {0}

so

UΣ = C
2 \ {0}

3. n = 2, d = 3

I = ∅, {1}, {2}, {3}, {12}, {23}, {13}

CĪ /∈ Σ implies Ī = {123}, which implies I = ∅, which implies eI = {0}.

UΣ = C
3 \ {0}

Since n = R(1,1,1) ⊂ R3 and N = {(λ, λ, λ)|λ ∈ U(1)} ⊂ U(1)3 we have

NC = {(λ, λ, λ)|λ ∈ C
∗} ⊂ (C∗)3

We have recovered the more usual description of CP 2:

CP 2 = (C∗)3 \ {0})/C∗.



4. Recovering a symplectic structure on a toric manifold specified via a

fan

As before we have

C
d J
→ (Rd)∗

i∗

→ n∗

J(z1, . . . , zd) = −
1

2
(|z1|

2, . . . , |zd|
2)

(the inclusion 0→ n
i
→ Rd π

→ Rn → 0 specifies i∗.)

For any regular value ξ ∈ n∗ (ξ = i∗(λ1, . . . , λd) in our previous notation) we saw

that a toric manifold was specified as

M(λ1,...,λd) = (i∗ ◦ J)−1(ξ)/N.

For any regular value ξ, the manifolds M(λ1,...,λd) have the diffeomorphism type of

the manifold

MΣ = UΣ/NC

.



(a) MΣ inherits an action of (C∗)n = (C∗)d/NC (the complexification of U(1)n).

(b) This action preserves the complex structure but not the symplectic structure.

The action of U(1)n preserves both complex and symplectic structures (Kähler

structure).

Remarks:

(a) Two constructions of MΣ:

(i) as a complex manifold, as quotient of an open set in C
d by the action of the

complex group NC

(ii) As a symplectic manifold, as symplectic quotient of Cd by the compact group

N .

Construction (i) is an example of a general geometric constrution (“geometric

invariant theory quotient”): Delete “ unstable points” from C
d (points which

would cause quotient by NC to be non-Hausdorff): get

MΣ =
(

C
d \ set of complex codimension ≥ 2

)

/NC.

General principle: Symplectic quotient of a Kähler manifold by a compact group

N is same thing as geometric invariant theory quotient by complexified group NC

(Atiyah-Bott; Kirwan).



I Background Material




