MAT1312 Exercises 1

Due date: January 30, 2020)

- (1) Show that the symplectic volume of a toric manifold is equal to the Euclidean volume of its moment polytope.
- (2) Show that $\mathbb{C}P^2$ is the toric manifold whose moment polytope is the isosceles right triangle.
- (3) Exhibit explicitly the subsets of $\mathbb{C}P^3$ for which the stabilizer under the standard action of $U(1)^3$ is
 - (a) isomorphic to U(1)
 - (b) isomorphic to $U(1)^2$
 - (c) isomorphic to $U(1)^3$.

Describe the images of these subsets under the moment map $\mu_{U(1)^3}$: show that they are

- (a) facets (i.e. 2-dimensional faces)
- (b) edges (i.e. 1-dimensional faces)
- (c) vertices.

(4) (Example of projection of moment polytopes)

(a) Give an approximate sketch of the image $\mu_H(M)$ in the case when $M = \mathbb{C}P^3$, $T = U(1)^3 \subset U(1)^4$ acting in the usual way (so the moment polytope is a 3-simplex in \mathbb{R}^4) and $H = U(1)^2$ acting via some embedding in $U(1)^3$: choose the orthocomplement of Lie(H) in Lie(T) to be some axis $\mathbb{R}\hat{v}$ through the origin in \mathbb{R}^3 . (The image will depend on the axis $\mathbb{R}\hat{v}$ chosen: draw the axis you have chosen.)

(b) What are the *regular values* for the moment map of H?