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(1) Show that if every room in a house has an even number of doors, then the number of outside
entrance doors must be even as well.

Proof. Consider all the sides of all the doors. Since every door has 2 sides, there is an
even number of such. Now, every side of a door is either facing a room or the outside. By
assumption, every room has an even number of doors, so summing over all rooms there
must an even number of sides of doors which face rooms. Since there is an even number of
door sides total, there must also be an even number of sides of doors facing the outside.

�

(2) At first a room is empty. Each minute, either one person enters or two people leave. After
exactly 310 minutes, could the room contain exactly 1001 people?

Proof. Let x be the number of people in a room on turn n. Then on turn n + 1, we have
either x+1 or x−2 people. These are the same modulo 3. Thus, whatever happens, modulo
3 the number of people on turn n is n. Now 310 is 0 modulo 3, whereas 1001 is not, so this
cannot happen.

�

(3) A quadrominoe is a 4×1 tile, which can be oriented horizontally or vertically. Can a 10×10
square be tiled with 25 4× 1 Quadrominoes?

Proof. Label the individual squares (i, j) for 1 ≤ i, j ≤ 10. Then inside every square write
the remainder of i + j modulo 4. Note that inside every 1 × 4 tile the numbers 0, 1, 2, 3
appear once each. However, there are 26 tiles with 3 written inside of them. Since any
tiling would involve 25 colors, the answer is no. �

(4) If 127 people play in a singles tennis tournament, prove that at the end of the tournament
the number of people who have played an odd number of games is even.

Proof. The total number of pairs (G,P ) where G was a game played and P was a participant
in G is even, since for every game there are 2 people playing. We can count this in 2 ways,
by first summing over G or first summing over P . Formally,∑

G

#players playing in G =
∑
P

#games that P played in.

Thus, if we sum the total number of games played by each player we get an even number.
Thus there must be an even number of odd numbers in the sum, which implies the statement.

�

(5) Let P1, . . . , P2015 be distinct points in the plane, with no three points lying on a line.
Connect the points with the line segments

P1P2, P2P3, . . . , P2014P2015, P2015P1

(some of these line segments may intersect each other). Can one draw a line that passes
through the interior of each of these 2015 line segments?

Proof. We argue by contradiction. Assume such a line L exists. Note that L divides the
plane into 2 sides. Since P1P2 intersects L, it follows that P1 and P2 are on opposite sides.
Likewise, P2 and P3 are on opposite sides. Thus, P1 is on the same side as P3. Continuing
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on in this way, we see that P1 is on the same side as P2015. But this contradicts that L
intersects P1P2015.

�

(6) The n cards of a deck (where n is an arbitrary positive integer) are labeled 1, 2, . . . , n.
Starting with the deck in any order, repeat the following operation: if the card on top is
labeled k, reverse the order of the first k cards. Prove that eventually the first card will be
1 (so no further changes occur). Hint: This is not quite an invariants question, but
more of a mix between an induction question and an invariants question

Proof. We claim that every number m > 1 appears in the top of the deck at most 2n−m

times, which obviously implies the statement. We argue by reverse induction on m. First,
suppose m = n. Note that if n appears at the top of the deck, it will immediately after
appear in the n’th position. Now for the number in the n’th position to change, the top
of the deck must be n. Thus, from then on n will always be in the n’th position. This
establishes the base case.

Now for the induction step, suppose m appears at the top of the deck. Then immediately
afterwards, it appears in the m’th position. Now, for the position of m to change from that
point, a number larger then m must appear at the top of the deck. Thus, between any 2
instances of m appearing at the top of the deck, there must be a larger number appearing
at the top of the deck. This happens 1 + 2 + 4 + · · · + 2n−m−1 = 2n−m − 1 times by our
induction. Thus, m can appear at the top of the deck at most 2n−m times, as desired.

�

(7) You have a stack of 2n+ 1 cards, which you can shuffle using the two following operations:
• Cut: Remove any number of cards from the top of the pile, and put them in the bottom

(in the same order)
• Riffle: Remove the top n cards, and put them in order in the spaces between the

remaining n + 1 cards.
Prove that, no matter how many operations you perform, you can reorder the cards in

at most 2n(2n + 1) different ways.

Proof. Label the positions 1, 2, . . . , 2n + 1 and work modulo 2n + 1. Then observe that a
cut takes the card in position x to the card in position x+ k for some k, and a riffle takes x
to 2x. Thus, by a straightforward induction any combination of these moves takes the card
in position x to the card in position ax + b for some a, b modulo 2n + 1, and a 6= 0. There
are only 2n(2n + 1) such pairs, completing the proof.

�


