
HOMEWORK SET #2: DUE SEPTEMBER 30

(1) A 9 × 9 grid gets covered by 16 5 × 1 tiles and a single 1 × 1 tile.
What are the possible positions for the 1× 1 tile?

Solution: Place co-ordinates on the grid such that the cells are
{(i, j) : 1 ≤ i ≤ 9, 1 ≤ j ≤ 9}. Color the grid with 5 colors
C0, C1, C2, C3, C4 such that cell (i, j) gets colored Ck if i + j ≡ 5
mod 5. Note that every 5 × 1 tile contains one cell of each Color.
A simple count shows that there is 1 more cell of color C0 then the
other colors, and thus the 1 × 1 tile must be colored C0. Thus it
must lie on a cell (a, b) with 5 | a + b. Applying a similar coloring
with (i − j) mod 5 likewise shows that 5 | a − b. Thus we see that
5 divides both a and b, and so the only option is a = b = 5. We
conclude that in any tiling, the 1× 1 tile must be in the center.

It remains to exhibit a coloring with a 1 × 1 in the center. To
do this, we first group our sixteen 1 × 5 tiles into four 4 × 5 tiles.
We then place them on the grid in a rotationally symmetric fashion,
with the first one having vertices {(1, 1), (1, 5), (4, 1), (4, 5)}.

(2) Consider the usual tetris piece: Prove that one cannot tile an
20 × 20 board with 100 such pieces (rotations and reflections are
allowed).

Solution: Note that every tetris pieces covers at most as many
tiles from the bottom row as from the second-most bottom row,
and strictly fewer if it touches the third-most bottom row at all.
Since they both has the same number (20) of cells, it follows that in
any tiling the bottom two rows must be completely tiled with tetris
pieces. So it suffices to show that a 2× 20 board cannot be tiled by
tetris pieces. But this is easy. For example, one cannot even tile two
adjacent corners.

(3) Consider the tetris piece above. Suppose a 9× 9 board is tiled with
such pieces together with 1× 1 pieces. What is the most number of
tetris pieces that can be used?

Solution: Place co-ordinates on the grid such that the cells are
{(i, j) : 1 ≤ i ≤ 9, 1 ≤ j ≤ 9}. Notice that every tetris piece contains
exactly one cell both of whose co-ordinates are even. Thus there can
be at most 16 such pieces. You can fit 16 such pieces by fitting 4
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pieces into a 2 × 9 board 4 times. Its hard for me to draw stuff in
PDF files.

(4) Prove that -shaped L-tetrominos (4 squares, width 2, height 3)
cannot tile a 10× 10 board.

Solution: Color the rows alternately black and white. Note that
every tetrominoe covers 3 cells of one color and 1 of the other, thus
an odd number of each. Any tiling has to use 100

4 = 25 tiles, and
would thus cover an odd number of cells of each color. But the total
number of cells of each color is even.

(5) An infinite chessboard has a positive integer written in every square.
The value in each square is the average of the values in the four
squares around it. Prove that all the numbers in all the squares are
equal.

Solution: Consider the smallest value M written in any cell (note
that this exists since any set of positive integers has a minimum,
even if this set is infinite). Notice that if some cell C in the grid
has the value M , then all the other 4 cells adjacent to it must also
have the value M . Otherwise, their average would be larger and
contradict the condition in the question. Now suppose C0 has the
value M . For any other cell C, one may connect C0 and C via a path
of adjacent squares. This means C also have the value M written
inside it. Thus all the cells have the same value M and we are done.

(6) Is it possible to find 100 consecutive positive integers with exactly 7
primes among them?

Solution: Let Sn = {n, n+1, . . . , n+99}. Let f(n) be the number
of primes in Sn. Since Sn+1 is obtained from Sn by adding a number
and then removing a number, it follows that |f(n + 1)− f(n)| = 1.
Thus, f(n) only changes by a most 1 every time n increases to n+1.
Now note that f(1) = 25 > 7. Thus, if f(n) is never equal to 7, it
follows that f(n) can never take any value less then 7 either, since
it would have had to have ‘leapfrogged’ over 71. So it is enough for
us to exhibit a specific value of n for which f(n) ≤ 7. To do this,
note that f(100! + 1) = 0.

(7) On a large flat field, 235 people are positioned so that for each person
the distances to all the other people are different. Everyone has a
water pistol and at a given time fires the pistol on the person nearest
to them. Show that at least 1 person is left dry.

1This is intuitive enough that I wouldn’t require a proof, but it is easy enough to give
a proof by induction
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Solution: By induction, we show that the conclusion holds with
2k+1 people for any non-negative integer k. The base case of k = 1:
Let A,B,C be three people, and suppose that B and C are the closes
pair. Then they shoot each other, and so nobody shoots A and she
is left dry.

Now for the inductive step, suppose we established the premise
for k − 1. Again, let A,B be the closes pair of people. Then they
shoot each other. Now, if anyone else shoots A or B then one of
them is shot twice, which means that some other person must be
left dry (otherwise there would have been more than 2k + 1 shots!).
So we may assume that no-one else shot A and B. Thus, for the
other 2k − 1 people, they all shot the closest person to them who is
not A or B. Now we are done by our inductive hypothesis.

(8) n red points and n blue points are drawn in the plane such that no
3 points lie on a line. Prove we can join each red point to a single
blue point by a line segment, such that no 2 line segments cross.

Solution: Consider all possible pairings of red points and blue
points by line segments, and take the one with the smallest possible
sum of all the lengths of the line segments. Now suppose for the sake
of contradiction that two line segments cross, so that A,B are red,
C,D are blue, and the line sgements AC and BD cross. Now that
means that ABCD is a convex quadrilateral whose diagonals are AC
and BD. By the triangle inequality, |AC| + |BD| > |AD| + |BC|
which would mean that if we instead joined A to D and B to C the
sum of the lengths of all the line segments would decrease. This is a
contradiction.

(9) In a school there are n kids, such that every kid is friends with
exactly 3 others (friendship is mutual, so if A is friends with B then
B is friends with A). Prove that we can split the kids up into 2
rooms, such that every kid is friends with at most 2 others in the
same room.

Solution: Consider a splitting into rooms such that the number
of people in a room with all of their friends is as small as possible.
Now suppose for the sake of contradiction that some person A and
his 3 friends B,C,D all in the same room. If we move A into the
other room, then A will no longer be in a room with all of their
friends. Moreover, noone in the other room is friends with A, so the
total number of people with all of their friends in the same room will
decrease by 1. This is a contradiction.


